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9.2 Eigenanalysis II

Discrete Dynamical Systems

The matrix equation

y =
1

10







5 4 0
3 5 3
2 1 7






x(1)

predicts the state y of a system initially in state x after some fixed
elapsed time. The 3× 3 matrix A in (1) represents the dynamics which
changes the state x into state y. Accordingly, an equation y = Ax
is called a discrete dynamical system and A is called a transition
matrix.

The eigenpairs of A in (1) are shown in details page 482 to be (1,v1),
(1/2,v2), (1/5,v3) where the eigenvectors are given by

v1 =







1
5/4

13/12






, v2 =







−1
0
1






, v3 =







−4
3
1






.(2)

Market Shares. A typical application of discrete dynamical systems
is telephone long distance company market shares x1, x2, x3, which are
fractions of the total market for long distance service. If three companies
provide all the services, then their market fractions add to one: x1 +
x2 + x3 = 1. The equation y = Ax gives the market shares of the three
companies after a fixed time period, say one year. Then market shares
after one, two and three years are given by the iterates

y1 = Ax,
y2 = A2x,
y3 = A3x.

Fourier’s eigenanalysis model gives succinct and useful formulas for the
iterates: if x = a1v1 + a2v2 + a3v3, then

y1 = Ax = a1λ1v1 + a2λ2v2 + a3λ3v3,
y2 = A2x = a1λ

2
1v1 + a2λ

2
2v2 + a3λ

2
3v3,

y3 = A3x = a1λ
3
1v1 + a2λ

3
2v2 + a3λ

3
3v3.

The advantage of Fourier’s model is that an iterate An is computed
directly, without computing the powers before it. Because λ1 = 1 and
limn→∞ |λ2|n = limn→∞ |λ3|n = 0, then for large n

yn ≈ a1(1)v1 + a2(0)v2 + a3(0)v3 =







a1

5a1/4
13a1/12






.
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The numbers a1, a2, a3 are related to x1, x2, x3 by the equations a1 −
a2 − 4a3 = x1, 5a1/4 + 3a3 = x2, 13a1/12 + a2 + a3 = x3. Due to
x1 + x2 + x3 = 1, the value of a1 is known, a1 = 3/10. The three market
shares after a long time period are therefore predicted to be 3/10, 3/8,
39/120. The reader should verify the identity 3

10 + 3
8 + 39

120 = 1.

Stochastic Matrices. The special matrix A in (1) is a stochastic
matrix, defined by the properties

n
∑

i=1

aij = 1, akj ≥ 0, k, j = 1, . . . , n.

The definition is memorized by the phrase each column sum is one.
Stochastic matrices appear in Leontief input-output models, pop-
ularized by 1973 Nobel Prize economist Wassily Leontief.

Theorem 9 (Stochastic Matrix Properties)
Let A be a stochastic matrix. Then

(a) If x is a vector with x1 + · · · + xn = 1, then y = Ax satisfies
y1 + · · · + yn = 1.

(b) If v is the sum of the columns of I, then ATv = v. Therefore,
(1,v) is an eigenpair of AT .

(c) The characteristic equation det(A − λI) = 0 has a root λ = 1.
All other roots satisfy |λ| < 1.

Proof of Stochastic Matrix Properties:
(a)

∑n

i=1
yi =

∑n

i=1

∑n

j=1
aijxj =

∑n

j=1
(
∑n

i=1
aij)xj =

∑n

j=1
(1)xj = 1.

(b) Entry j of ATv is given by the sum
∑n

i=1
aij = 1.

(c) Apply (b) and the determinant rule det(BT ) = det(B) with B = A − λI
to obtain eigenvalue 1. Any other root λ of the characteristic equation has a
corresponding eigenvector x satisfying (A − λI)x = 0. Let index j be selected
such that M = |xj | > 0 has largest magnitude. Then

∑

i6=j aijxj +(ajj−λ)xj =

0 implies λ =
∑n

i=1
aij

xj

M
. Because

∑n

i=1
aij = 1, λ is a convex combination of

n complex numbers {xj/M}n
j=1. These complex numbers are located in the unit

disk, a convex set, therefore λ is located in the unit disk. By induction on n,
motivated by the geometry for n = 2, it is argued that |λ| = 1 cannot happen for
λ an eigenvalue different from 1 (details left to the reader). Therefore, |λ| < 1.

Details for the eigenpairs of (1): To be computed are the eigenvalues and
eigenvectors for the 3 × 3 matrix

A =
1

10





5 4 0
3 5 3
2 1 7



 .

Eigenvalues. The roots λ = 1, 1/2, 1/5 of the characteristic equation det(A −
λI) = 0 are found by these details:
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0 = det(A − λI)

=

∣

∣

∣

∣

∣

∣

.5 − λ .4 0
.3 .5 − λ .3
.2 .1 .7 − λ

∣

∣

∣

∣

∣

∣

=
1

10
− 8

10
λ +

17

10
λ2 − λ3 Expand by cofactors.

= − 1

10
(λ − 1)(2λ − 1)(5λ − 1) Factor the cubic.

The factorization was found by long division of the cubic by λ − 1, the idea
born from the fact that 1 is a root and therefore λ − 1 is a factor (the Factor
Theorem of college algebra). An answer check in maple:

with(linalg):

A:=(1/10)*matrix([[5,4,0],[3,5,3],[2,1,7]]);

B:=evalm(A-lambda*diag(1,1,1));

eigenvals(A); factor(det(B));

Eigenpairs. To each eigenvalue λ = 1, 1/2, 1/5 corresponds one rref calcula-
tion, to find the eigenvectors paired to λ. The three eigenvectors are given by
(2). The details:

Eigenvalue λ = 1.

A − (1)I =





.5 − 1 .4 0
.3 .5 − 1 .3
.2 .1 .7 − 1





≈





−5 4 0
3 −5 3
2 1 −3



 Multiply rule, multiplier=10.

≈





0 0 0
3 −5 3
2 1 −3



 Combination rule twice.

≈





0 0 0
1 −6 6
2 1 −3



 Combination rule.

≈





0 0 0
1 −6 6
0 13 −15



 Combination rule.

≈





0 0 0
1 0 − 12

13

0 1 − 15

13



 Multiply rule and combination
rule.

≈





1 0 − 12

13

0 1 − 15

13

0 0 0



 Swap rule.

= rref(A − (1)I)

An equivalent reduced echelon system is x − 12z/13 = 0, y − 15z/13 = 0. The
free variable assignment is z = t1 and then x = 12t1/13, y = 15t1/13. Let
x = 1; then t1 = 13/12. An eigenvector is given by x = 1, y = 4/5, z = 13/12.

Eigenvalue λ = 1/2.
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A − (1/2)I =





.5 − .5 .4 0
.3 .5 − .5 .3
.2 .1 .7 − .5





=





0 4 0
3 0 3
2 1 2



 Multiply rule, factor=10.

≈





0 1 0
1 0 1
0 0 0



 Combination and multiply
rules.

= rref (A − .5I)

An eigenvector is found from the equivalent reduced echelon system y = 0,
x + z = 0 to be x = −1, y = 0, z = 1.

Eigenvalue λ = 1/5.

A − (1/5)I =





.5 − .2 .4 0
.3 .5 − .2 .3
.2 .1 .7 − .2





≈





3 4 0
1 1 1
2 1 5



 Multiply rule.

≈





1 0 4
0 1 −3
0 0 0



 Combination rule.

= rref (A − (1/5)I)

An eigenvector is found from the equivalent reduced echelon system x+4z = 0,
y − 3z = 0 to be x = −4, y = 3, z = 1.

An answer check in maple:

with(linalg):

A:=(1/10)*matrix([[5,4,0],[3,5,3],[2,1,7]]);

eigenvects(A);

Coupled and Uncoupled Systems

The linear system of differential equations

x′
1 = −x1 − x3,

x′
2 = 4x1 − x2 − 3x3,

x′
3 = 2x1 − 4x3,

(3)

is called coupled, whereas the linear system of growth-decay equations

y′1 = −3y1,
y′2 = −y2,
y′3 = −2y3,

(4)
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is called uncoupled. The terminology uncoupled means that each dif-
ferential equation in system (4) depends on exactly one variable, e.g.,
y′1 = −3y1 depends only on variable y1. In a coupled system, one of the
differential equations must involve two or more variables.

Matrix characterization. Coupled system (3) and uncoupled sys-
tem (4) can be written in matrix form, x′ = Ax and y′ = Dy, with
coefficient matrices

A =





−1 0 −1
4 −1 −3
2 0 −4



 and D =





−3 0 0
0 −1 0
0 0 −2



 .

If the coefficient matrix is diagonal, then the system is uncoupled. If
the coefficient matrix is not diagonal, then one of the corresponding
differential equations involves two or more variables and the system is
called coupled or cross-coupled.

Solving Uncoupled Systems

An uncoupled system consists of independent growth-decay equations of
the form u′ = au. The recipe solution u = ceat then leads to the general
solution of the system of equations. For instance, system (4) has general
solution

y1 = c1e
−3t,

y2 = c2e
−t,

y3 = c3e
−2t,

(5)

where c1, c2, c3 are arbitrary constants. The number of constants
equals the dimension of the diagonal matrix D.

Coordinates and Coordinate Systems

If v1, v2, v3 are three independent vectors in R3, then the matrix

P = aug(v1,v2,v3)

is invertible. The columns v1, v2, v3 of P are called a coordinate
system. The matrix P is called a change of coordinates.

Every vector v in R3 can be uniquely expressed as

v = t1v1 + t2v2 + t3v3.

The values t1, t2, t3 are called the coordinates of v relative to the basis
v1, v2, v3, or more succinctly, the coordinates of v relative to P .
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Viewpoint of a Driver

The physical meaning of a coordinate system v1, v2, v3 can be under-
stood by considering an auto going up a mountain road. Choose orthog-
onal v1 and v2 to give positions in the driver’s seat and define v3 be the
seat-back direction. These are local coordinates as viewed from the
driver’s seat. The road map coordinates x, y and the altitude z define
the global coordinates for the auto’s position p = x~ı + y~ + z~k.

v1

v3

v2

Figure 1. An auto seat.
The vectors v1(t), v2(t), v3(t) form
an orthogonal triad which is a local
coordinate system from the driver’s
viewpoint. The orthogonal triad
changes continuously in t.

Change of Coordinates

A coordinate change from y to x is a linear algebraic equation x = Py
where the n × n matrix P is required to be invertible (det(P ) 6= 0). To
illustrate, an instance of a change of coordinates from y to x is given by
the linear equations

x =





1 0 1
1 1 −1
2 0 1



y or











x1 = y1 + y3,
x2 = y1 + y2 − y3,
x3 = 2y1 + y3.

(6)

Constructing Coupled Systems

A general method exists to construct rich examples of coupled systems.
The idea is to substitute a change of variables into a given uncoupled
system. Consider a diagonal system y′ = Dy, like (4), and a change of
variables x = Py, like (6). Differential calculus applies to give

x′ = (Py)′

= Py′

= PDy
= PDP−1 x.

(7)

The matrix A = PDP−1 is not triangular in general, and therefore the
change of variables produces a cross-coupled system.

An illustration. To give an example, substitute into uncoupled system
(4) the change of variable equations (6). Use equation (7) to obtain

x′ =







−1 0 −1
4 −1 −3
2 0 −4






x or











x′
1 = −x1 − x3,

x′
2 = 4x1 − x2 − 3x3,

x′
3 = 2x1 − 4x3.

(8)
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This cross-coupled system (8) can be solved using relations (6), (5)
and x = Py to give the general solution







x1

x2

x3






=







1 0 1
1 1 −1
2 0 1













c1e
−3t

c2e
−t

c3e
−2t






.(9)

Changing Coupled Systems to Uncoupled

We ask this question, motivated by the above calculations:

Can every coupled system x′(t) = Ax(t) be subjected to a

change of variables x = Py which converts the system into

a completely uncoupled system for variable y(t)?

Under certain circumstances, this is true, and it leads to an elegant and
especially simple expression for the general solution of the differential
system, as in (9):

x(t) = Py(t).

The task of eigenanalysis is to simultaneously calculate from a cross-
coupled system x′ = Ax the change of variables x = Py and the diagonal
matrix D in the uncoupled system y′ = Dy

The eigenanalysis coordinate system is the set of n independent
vectors extracted from the columns of P . In this coordinate system, the
cross-coupled differential system (3) simplifies into a system of uncou-
pled growth-decay equations (4). Hence the terminology, the method of

simplifying coordinates.

Eigenanalysis and Footballs

An ellipsoid or football is a geometric object de-
scribed by its semi-axes (see Figure 2). In
the vector representation, the semi-axis direc-
tions are unit vectors v1, v2, v3 and the semi-
axis lengths are the constants a, b, c. The vec-
tors av1, bv2, cv3 form an orthogonal triad.

av1

bv2

cv3

Figure 2. A football.
An ellipsoid is built from
orthonormal semi-axis directions v1,
v2, v3 and the semi-axis lengths a, b,
c. The semi-axis vectors are av1,
bv2, cv3.
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Two vectors a, b are orthogonal if both are nonzero and their dot product
a · b is zero. Vectors are orthonormal if each has unit length and they
are pairwise orthogonal. The orthogonal triad is an invariant of the
ellipsoid’s algebraic representations. Algebra does not change the triad:
the invariants av1, bv2, cv3 must somehow be hidden in the equations
that represent the football.

Algebraic eigenanalysis finds the hidden invariant triad av1, bv2, cv3

from the ellipsoid’s algebraic equations. Suppose, for instance, that the
equation of the ellipsoid is supplied as

x2 + 4y2 + xy + 4z2 = 16.

A symmetric matrix A is constructed in order to write the equation in the
form XT AX = 16, where X has components x, y, z. The replacement
equation is4

(

x y z
)







1 1/2 0
1/2 4 0
0 0 4













x
y
z






= 16.(10)

It is the 3× 3 symmetric matrix A in (10) that is subjected to algebraic
eigenanalysis. The matrix calculation will compute the unit semi-axis
directions v1, v2, v3, called the hidden vectors or eigenvectors. The
semi-axis lengths a, b, c are computed at the same time, by finding
the hidden values5 or eigenvalues λ1, λ2, λ3, known to satisfy the
relations

λ1 =
16

a2
, λ2 =

16

b2
, λ3 =

16

c2
.

For the illustration, the football dimensions are a = 2, b = 1.98, c = 4.17.
Details of the computation are delayed until page 490.

The Ellipse and Eigenanalysis

An ellipse equation in standard form is λ1x
2 + λ2y

2 = 1, where λ1 =
1/a2, λ2 = 1/b2 are expressed in terms of the semi-axis lengths a, b. The
expression λ1x

2 + λ2y
2 is called a quadratic form. The study of the

ellipse λ1x
2 + λ2y

2 = 1 is equivalent to the study of the quadratic form
equation

rT Dr = 1, where r =

(

x
y

)

, D =

(

λ1 0
0 λ2

)

.

4The reader should pause here and multiply matrices in order to verify this state-

ment. Halving of the entries corresponding to cross-terms generalizes to any ellipsoid.
5The terminology hidden arises because neither the semi-axis lengths nor the semi-

axis directions are revealed directly by the ellipsoid equation.
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Cross-terms. An ellipse may be represented by an equation in a uv-
coordinate system having a cross-term uv, e.g., 4u2+8uv+10v2 = 5. The
expression 4u2 + 8uv + 10v2 is again called a quadratic form. Calculus
courses provide methods to eliminate the cross-term and represent the
equation in standard form, by a rotation

(

u
v

)

= R

(

x
y

)

, R =

(

cos θ sin θ
− sin θ cos θ

)

.

The angle θ in the rotation matrix R represents the rotation of uv-
coordinates into standard xy-coordinates.

Eigenanalysis computes angle θ through the columns of R, which are the
unit semi-axis directions v1, v2 for the ellipse 4u2 + 8uv + 10v2 = 5. If
the quadratic form 4u2 + 8uv + 10v2 is represented as rT A r, then

r =

(

u
v

)

, A =

(

4 4
4 10

)

, R =
1√
5

(

1 −2
2 1

)

,

λ1 = 12, v1 =
1√
5

(

1
2

)

, λ2 = 2, v2 =
1√
5

(

−2
1

)

.

Rotation matrix angle θ. The components of eigenvector v1 can be
used to determine θ = −63.4◦:

(

cos θ
− sin θ

)

=
1√
5

(

1
2

)

or







cos θ = 1√
5
,

− sin θ = 2√
5
.

The interpretation of angle θ: rotate the orthonormal basis v1, v2 by
angle θ = −63.4◦ in order to obtain the standard unit basis vectors i,
j. Most calculus texts discuss only the inverse rotation, where x, y are
given in terms of u, v. In these references, θ is the negative of the value
given here, due to a different geometric viewpoint.6

Semi-axis lengths. The lengths a ≈ 1.55, b ≈ 0.63 for the ellipse
4u2 +8uv+10v2 = 5 are computed from the eigenvalues λ1 = 12, λ2 = 2
of matrix A by the equations

λ1

5
=

1

a2
,

λ2

5
=

1

b2
.

Geometry. The ellipse 4u2 + 8uv + 10v2 = 5 is completely determined
by the orthogonal semi-axis vectors av1, bv2. The rotation R is a rigid
motion which maps these vectors into a~ı, b~, where ~ı and ~ are the stan-
dard unit vectors in the plane.

The θ-rotation R maps 4u2 +8uv+10v2 = 5 into the xy-equation λ1x
2 +

λ2y
2 = 5, where λ1, λ2 are the eigenvalues of A. To see why, let r = Rs

where s =
(

x y
)T

. Then rT Ar = sT (RT AR)s. Using RTR = I gives

R−1 = RT and RT AR = diag(λ1, λ2). Finally, rT Ar = λ1x
2 + λ2y

2.

6Rod Serling, author of The Twilight Zone, enjoyed the view from the other side

of the mirror.
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Orthogonal Triad Computation

Let’s compute the semiaxis directions v1, v2, v3 for the ellipsoid x2 +
4y2 + xy + 4z2 = 16. To be applied is Theorem 7. As explained on
page 488, the starting point is to represent the ellipsoid equation as a
quadratic form XT AX = 16, where the symmetric matrix A is defined
by

A =







1 1/2 0
1/2 4 0
0 0 4






.

College algebra. The characteristic polynomial det(A − λI) = 0
determines the eigenvalues or hidden values of the matrix A. By cofactor
expansion, this polynomial equation is

(4 − λ)((1 − λ)(4 − λ) − 1/4) = 0

with roots 4, 5/2 +
√

10/2, 5/2 −
√

10/2.

Eigenpairs. It will be shown that three eigenpairs are

λ1 = 4, x1 =







0
0
1






,

λ2 =
5 +

√
10

2
, x2 =







√
10 − 3

1
0






,

λ3 =
5 −

√
10

2
, x3 =







√
10 + 3
−1
0






.

The vector norms of the eigenvectors are given by ‖x1‖ = 1, ‖x2‖ =
√

20 + 6
√

10, ‖x3‖ =
√

20 − 6
√

10. The orthonormal semi-axis direc-
tions vk = xk/‖xk‖, k = 1, 2, 3, are then given by the formulas

v1 =







0
0
1






, v2 =











√
10−3√

20−6
√

10
1√

20−6
√

10

0











, v3 =











√
10+3√

20+6
√

10
−1√

20+6
√

10

0











.

Frame sequence details.

aug(A − λ1I,0) =







1 − 4 1/2 0 0
1/2 4 − 4 0 0
0 0 4 − 4 0







≈







1 0 0 0
0 1 0 0
0 0 0 0






Used combination, multiply
and swap rules. Found rref.
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aug(A − λ2I,0) =









−3−
√

10
2

1
2 0 0

1
2

3−
√

10
2 0 0

0 0 3−
√

10
2 0









≈







1 3 −
√

10 0 0
0 0 1 0
0 0 0 0






All three rules.

aug(A − λ3I,0) =









−3+
√

10
2

1
2 0 0

1
2

3+
√

10
2 0 0

0 0 3+
√

10
2 0









≈







1 3 +
√

10 0 0
0 0 1 0
0 0 0 0






All three rules.

Solving the corresponding reduced echelon systems gives the preceding
formulas for the eigenvectors x1, x2, x3. The equation for the ellipsoid
is λ1X

2 + λ2Y
2 + λ3Z

2 = 16, where the multipliers of the square terms
are the eigenvalues of A and X, Y , Z define the new coordinate system
determined by the eigenvectors of A. This equation can be re-written
in the form X2/a2 + Y 2/b2 + Z2/c2 = 1, provided the semi-axis lengths
a, b, c are defined by the relations a2 = 16/λ1, b2 = 16/λ2, c2 = 16/λ3.
After computation, a = 2, b = 1.98, c = 4.17.
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9.3 Advanced Topics in Linear Algebra

Diagonalization and Jordan’s Theorem

A system of differential equations x′ = Ax can be transformed to an
uncoupled system y′ = diag(λ1, . . . , λn)y by a change of variables x =
Py, provided P is invertible and A satisfies the relation

AP = P diag(λ1, . . . , λn).(1)

A matrix A is said to be diagonalizable provided (1) holds. This equa-
tion is equivalent to the system of equations Avk = λkvk, k = 1, . . . , n,
where v1, . . . , vn are the columns of matrix P . Since P is assumed
invertible, each of its columns are nonzero, and therefore (λk,vk) is an
eigenpair of A, 1 ≤ k ≤ n. The values λk need not be distinct (e.g., all
λk = 1 if A is the identity). This proves:

Theorem 10 (Diagonalization)
An n×n matrix A is diagonalizable if and only if A has n eigenpairs (λk,vk),
1 ≤ k ≤ n, with v1, . . . , vn independent. In this case,

A = PDP−1

where D = diag(λ1, . . . , λn) and the matrix P has columns v1, . . . , vn.

Theorem 11 (Jordan’s theorem)
Any n × n matrix A can be represented in the form

A = PTP−1

where P is invertible and T is upper triangular. The diagonal entries of T
are eigenvalues of A.

Proof: We proceed by induction on the dimension n of A. For n = 1 there is
nothing to prove. Assume the result for dimension n, and let’s prove it when A is
(n+1)×(n+1). Choose an eigenpair (λ1,v1) of A with v1 6= 0. Complete a basis
v1, . . . , vn+1 for Rn+1 and define V = aug(v1, . . . ,vn+1). Then V −1AV =
(

λ1 B
0 A1

)

for some matrices B and A1. The induction hypothesis implies

there is an invertible n × n matrix P1 and an upper triangular matrix T1 such

that A1 = P1T1P
−1

1 . Let R =

(

1 0
0 P1

)

and T =

(

λ1 BT1

0 T1

)

. Then

T is upper triangular and (V −1AV )R = RT , which implies A = PTP−1 for
P = V R. The induction is complete.
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Jordan form J. The upper triangular matrix T in Jordan’s theorem
is called a Jordan form J of the matrix A provided

J =













λ1 J12 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λn−1 Jn−1 n

0 0 0 · · · 0 λn













.

Entries Ji i+1 of J along its super-diagonal are either 0 or 1, while diag-
onal entries λi are eigenvalues of A. A Jordan form is therefore a band
matrix with zero entries off its diagonal and super-diagonal.

Coordinate system matrix P . In the equation A = PJP−1, the
columns of P are independent vectors, called generalized eigenvectors
of A. They form a coordinate system. There is for each eigenvalue
λ of A at least one column x of P satisfying Ax = λx. However, there
may be other columns of P that fail to be eigenvectors, that is, Ax = λx
may be false for many columns x of P .

Cayley-Hamilton Identity

A celebrated and deep result for powers of matrices was discovered by
Cayley and Hamilton (see [B-M]), which says that an n × n matrix A
satisfies its own characteristic equation. More precisely:

Theorem 12 (Cayley-Hamilton)
Let det(A − λI) be expanded as the nth degree polynomial

p(λ) =
n
∑

j=0

cjλ
j ,

for some coefficients c0, . . . , cn−1 and cn = (−1)n. Then A satisfies the
equation p(λ) = 0, that is,

p(A) ≡
n
∑

j=0

cjA
j = 0.

In factored form in terms of the eigenvalues {λj}n
j=1 (duplicates possible),

(−1)n(A − λ1I)(A − λ2I) · · · (A − λnI) = 0.

Proof: If A is diagonalizable, AP = P diag(λ1, . . . , λn), then the proof is
obtained from the simple expansion

Aj = P diag(λj
1, . . . , λ

j
n)P−1,
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because summing across this identity leads to

p(A) =
∑n

j=0
cjA

j

= P
(

∑n

j=0
cj diag(λj

1, . . . , λ
j
n)
)

P−1

= P diag(p(λ1), . . . , p(λn))P−1

= P diag(0, . . . , 0)P−1

= 0.

If A is not diagonalizable, then this proof fails. To handle the general case,
we apply Jordan’s theorem, which says that A = PTP−1 where T is upper

triangular (instead of diagonal) and the not necessarily distinct eigenvalues λ1,
. . . , λn of A appear on the diagonal of T . Using Jordan’s theorem, define

Aǫ = P (T + ǫ diag(1, 2, . . . , n))P−1.

For small ǫ > 0, the matrix Aǫ has distinct eigenvalues λj +ǫj, 1 ≤ j ≤ n. Then
the diagonalizable case implies that Aǫ satisfies its characteristic equation. Let
pǫ(λ) = det(Aǫ − λI). Use 0 = limǫ→0 pǫ(Aǫ) = p(A) to complete the proof.

Solving Triangular Differential Systems

A matrix differential system y′(t) = Ty(t) with T upper triangular splits
into scalar equations which can be solved by elementary methods for first
order scalar differential equations. To illustrate, consider the system

y′1 = 3y1 + x2 + y3,
y′2 = 3y2 + y3,
y′3 = 2y3.

The techniques that apply are the growth-decay recipe for u′ = ku and
the integrating factor method for u′ = ku + p(t). Working backwards
from the last equation, using back-substitution, gives

y3 = c3e
2t,

y2 = c2e
3t − c3e

2t,
y1 = (c1 + c2t)e

3t.

What has been said here applies to any triangular system y′(t) = Ty(t),
in order to write an exact formula for the solution y(t).

If A is an n×n matrix, then Jordan’s theorem gives A = PTP−1 with T
upper triangular and P invertible. The change of variable x(t) = Py(t)
changes x′(t) = Ax(t) into the triangular system y′(t) = Ty(t).

There is no special condition on A, to effect the change of variable
x(t) = Py(t). The solution x(t) of x′(t) = Ax(t) is a product of the
invertible matrix P and a column vector y(t); the latter is the solution
of the triangular system y′(t) = Ty(t), obtained by growth-decay and
integrating factor methods.
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The importance of this idea is to provide a solid method for solving
any system x′(t) = Ax(t). In later sections, we outline how to find
the matrix P and the matrix T , in Jordan’s theorem A = PTP−1.
The additional theory provides efficient matrix methods for solving any
system x′(t) = Ax(t).

Symmetric Matrices and Orthogonality

Described here is a process due to Gram-Schmidt for replacing a given
set of independent eigenvectors by another set of eigenvectors which are
of unit length and orthogonal (dot product zero or 90 degrees apart).
The process, which applies to any independent set of vectors, is especially
useful in the case of eigenanalysis of a symmetric matrix: AT = A.

Unit eigenvectors. An eigenpair (λ,x) of A can always be selected
so that ‖x‖ = 1. If ‖x‖ 6= 1, then replace eigenvector x by the scalar
multiple cx, where c = 1/‖x‖. By this small change, it can be assumed
that the eigenvector has unit length. If in addition the eigenvectors are
orthogonal, then the eigenvectors are said to be orthonormal.

Theorem 13 (Orthogonality of Eigenvectors)
Assume that n × n matrix A is symmetric, AT = A. If (α,x) and (β,y)
are eigenpairs of A with α 6= β, then x and y are orthogonal: x · y = 0.

Proof: To prove this result, compute αx · y = (Ax)T y = xT ATy = xT Ay.
Also, βx ·y = xT Ay. Subtracting the relations implies (α− β)x ·y = 0, giving
x · y = 0 due to α 6= β. The proof is complete.

Theorem 14 (Real Eigenvalues)
If AT = A, then all eigenvalues of A are real. Consequently, matrix A has
n real eigenvalues counted according to multiplicity.

Proof: The second statement is due to the fundamental theorem of algebra.
To prove the eigenvalues are real, it suffices to prove λ = λ when Av = λv
with v 6= 0. We admit that v may have complex entries. We will use A = A
(A is real). Take the complex conjugate across Av = λv to obtain Av = λv.
Transpose Av = λv to obtain vT AT = λvT and then conclude vT A = λvT from
AT = A. Multiply this equation by v on the right to obtain vT Av = λvT v.
Then multiply Av = λv by vT on the left to obtain vT Av = λvT v. Then we
have

λvT v = λvT v.

Because vT v =
∑n

j=1
|vj |2 > 0, then λ = λ and λ is real. The proof is complete.

The Gram-Schmidt process. The eigenvectors of a symmetric
matrix A may be constructed to be orthogonal. First of all, observe
that eigenvectors corresponding to distinct eigenvalues are orthogonal
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by Theorem 13. It remains to construct from k independent eigenvec-
tors x1, . . . , xk, corresponding to a single eigenvalue λ, another set of
independent eigenvectors y1, . . . , yk for λ which are pairwise orthogo-
nal. The idea, due to Gram-Schmidt, applies to any set of k independent
vectors.

Application of the Gram-Schmidt process can be illustrated by example:
let (−1,v1), (2,v2), (2,v3), (2,v4) be eigenpairs of a 4 × 4 symmetric
matrix A. Then v1 is orthogonal to v2, v3, v4. The vectors v2, v3,
v4 belong to eigenvalue λ = 2, but they are not necessarily orthogonal.
The Gram-Schmidt process replaces these vectors by y2, y3, y4 which
are pairwise orthogonal. The result is that eigenvectors v1, y2, y3, y4

are pairwise orthogonal.

Theorem 15 (Gram-Schmidt)
Let x1, . . . , xk be independent n-vectors. The set of vectors y1, . . . ,
yk constructed below as linear combinations of x1, . . . , xk are pairwise
orthogonal and independent.

y1 = x1

y2 = x2 −
x2 · y1

y1 · y1
y1

y3 = x3 −
x3 · y1

y1 · y1
y1 −

x3 · y2

y2 · y2
y2

...

yk = xk − xk · y1

y1 · y1
y1 − · · · − xk · yk−1

yk−1 · yk−1
yk−1

Proof: Let’s begin with a lemma: Any set of nonzero orthogonal vectors y1,

. . . , yk are independent. Assume the relation c1y1 + · · · + ckyk = 0. Take
the dot product of this relation with yj . By orthogonality, cj yj · yj = 0, and
since yj 6= 0, cancellation gives cj = 0 for 1 ≤ j ≤ k. Hence y1, . . . , yk are
independent.

Induction will be applied on k to show that y1, . . . , yk are nonzero and or-
thogonal. If k = 1, then there is just one nonzero vector constructed y1 = x1.
Orthogonality for k = 1 is not discussed because there are no pairs to test. As-
sume the result holds for k − 1 vectors. Let’s verify that it holds for k vectors,
k > 1. Assume orthogonality yi · yj = 0 and yi 6= 0 for 1 ≤ i, j ≤ k − 1. It
remains to test yi · yk = 0 for 1 ≤ i ≤ k − 1 and yk 6= 0. The test depends
upon the identity

yi · yk = yi · xk −
k−1
∑

j=1

xk · yj

yj · yj

yi · yj ,

which is obtained from the formula for yk by taking the dot product with yi. In
the identity, yi ·yj = 0 by the induction hypothesis for 1 ≤ j ≤ k−1 and j 6= i.
Therefore, the summation in the identity contains just the term for index j = i,
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and the contribution is yi · xk. This contribution cancels the leading term on
the right in the identity, resulting in the orthogonality relation yi · yk = 0. If
yk = 0, then xk is a linear combination of y1, . . . , yk−1. But each yj is a linear

combination of {xi}j
i=1

, therefore yk = 0 implies xk is a linear combination
of x1, . . . , xk−1, a contradiction to the independence of {xi}k

i=1. The proof is
complete.

Orthogonal Projection. Reproduced here is the basic material on
shadow projection, for the convenience of the reader. The ideas are
then extended to obtain the orthogonal projection onto a subspace V of
Rn. Finally, the orthogonal projection formula is related to the Gram-
Schmidt equations.

The shadow projection of vector ~X onto the direction of vector ~Y is
the number d defined by

d =
~X · ~Y

|~Y |
.

The triangle determined by ~X and d
~Y

|~Y |
is a right triangle.

d

X

Y Figure 3. Shadow projection d of
vector X onto the direction of
vector Y.

The vector shadow projection of ~X onto the line L through the origin
in the direction of ~Y is defined by

proj~Y
( ~X) = d

~Y

|~Y |
=

~X · ~Y

~Y · ~Y
~Y .

Orthogonal projection for dimension 1. The extension of the shadow
projection formula to a subspace V of Rn begins with unitizing ~Y to iso-
late the vector direction u = ~Y /‖~Y ‖ of line L. Define the subspace
V = span{u}. Then V is identical to L. We define the orthogonal
projection by the formula

ProjV (x) = (u · x)u, V = span{u}.

The reader is asked to verify that

proj~Y
(x) = ProjV (x) = du.

These equalities mean that the orthogonal projection is the vector shadow
projection when V is one dimensional.
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Orthogonal projection for dimension k. Consider a subspace V of
Rn given as the span of orthonormal vectors u1, . . . , uk. Define the
orthogonal projection by the formula

ProjV (x) =
k
∑

j=1

(uj · x)uj , V = span{u1, . . . ,uk}.

Orthogonal projection and Gram-Schmidt. Define y1, . . . , yk

by the Gram-Schmidt relations on page 496. Let uj = yj/‖yj‖ for
j = 1, . . . , k. Then Vj−1 = span{u1, . . . ,uj−1} is a subspace of Rn of
dimension j − 1 with orthonormal basis u1, . . . , uj−1 and

yj = xj −
xj · y1

y1 · y1
y1 − · · · − xk · yj−1

yj−1 · yj−1
yj−1

= xj − ProjVj−1
(xj).

In remembering the Gram-Schmidt formulas, and in the use of the or-
thogonal projection in proofs and constructions, the following key theo-
rem is useful.

Theorem 16 (Orthogonal Projection Properties)
Let V be the span of orthonormal vectors u1, . . . , uk.

(a) Every vector in V has an orthogonal expansion v =
∑k

j=1(v · uj)uj .

(b) The vector ProjV (x) is a vector in the subspace V .

(c) The vector w = x − ProjV (x) is orthogonal to every vector in V .

(d) Among all vectors v in V , the minimum value of ‖x − v‖ is uniquely
obtained by the orthogonal projection v = ProjV (x).

Proof:
(a): Every element v in V is a linear combination of basis elements:

v = c1u1 + · · · + ckuk.

Take the dot product of this relation with basis element uj . By orthogonality,
cj = v · uj .

(b): Because ProjV (x) is a linear combination of basis elements of V , then (b)
holds.

(c): Let’s compute the dot product of w and v. We will use the orthogonal
expansion from (a).

w · v = (x − ProjV (x)) · v

= x · v −





k
∑

j=1

(x · uj)uj



 · v

=
k
∑

j=1

(v · uj)(uj · x) −
k
∑

j=1

(x · uj)(uj · v)

= 0.
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(d): Begin with the Pythagorean identity

‖a‖2 + ‖b‖2 = ‖a + b‖2

valid exactly when a · b = 0 (a right triangle, θ = 90◦). Using an arbitrary v
in V , define a = ProjV (x) − v and b = x − ProjV (x). By (b), vector a is in
V . Because of (c), then a · b = 0. This gives the identity

‖ProjV (x) − v‖2 + ‖x − ProjV (x)‖2 = ‖x− v‖2,

which establishes ‖x−ProjV (x)‖ < ‖x−v‖ except for the unique v such that
‖ProjV (x) − v‖ = 0.

The proof is complete.

Theorem 17 (Near Point to a Subspace)
Let V be a subspace of Rn and x a vector not in V . The near point to x
in V is the orthogonal projection of x onto V . This point is characterized
as the minimum of ‖x − v‖ over all vectors v in the subspace V .

Proof: Apply (d) of the preceding theorem.

Theorem 18 (Cross Product and Projections)
The cross product direction a × b can be computed as c − ProjV (c), by
selecting a direction c not in V = span{a,b}.

Proof: The cross product makes sense only in R3. Subspace V is two di-
mensional when a, b are independent, and Gram-Schmidt applies to find an
orthonormal basis u1, u2. By (c) of Theorem 16, the vector c − ProjV (c) has
the same or opposite direction to the cross product.

Theorem 19 (The QR-Decomposition)
Let the m × n matrix A have independent columns x1, . . . , xn. Then
there is an upper triangular matrix R with positive diagonal entries and an
orthonormal matrix Q such that

A = QR.

Proof: Let y1, . . . , yn be the Gram-Schmidt orthogonal vectors given by
relations on page 496. Define uk = yk/‖yk‖ and rkk = ‖yk‖ for k = 1, . . . , n,
and otherwise rij = ui · xj . Let Q = aug(u1, . . . ,un). Then

x1 = r11u1,
x2 = r22u2 + r21u1,
x3 = r33u3 + r31u1 + r32u2,

...
xn = rnnun + rn1u1 + · · · + rnn−1un−1.

(2)

It follows from (2) and matrix multiplication that A = QR. The proof is
complete.
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Theorem 20 (Matrices Q and R in A = QR)
Let the m × n matrix A have independent columns x1, . . . , xn. Let
y1, . . . , yn be the Gram-Schmidt orthogonal vectors given by relations
on page 496. Define uk = yk/‖yk‖. Then AQ = QR is satisfied by
Q = aug(u1, . . . ,un) and

R =













‖y1‖ u1 · x2 u1 · x3 · · · u1 · xn

0 ‖y2‖ u2 · x3 · · · u2 · xn

...
...

... · · · ...
0 0 0 · · · ‖yn‖













.

Proof: The result is contained in the proof of the previous theorem.
Some references cite the diagonal entries as ‖x1‖, ‖x⊥

2 ‖, . . . , ‖x⊥
n ‖, where x⊥

j =
xj − ProjVj−1

(xj), Vj−1 = span{v1, . . . ,vj−1}. Because y1 = x1 and yj =
xj − ProjVj−1

(xj), the formulas for R are identical.

Theorem 21 (Uniqueness of Q and R)
Let m×n matrix A have independent columns and satisfy the decomposition
A = QR. If Q is m × n orthogonal and R is n × n upper triangular with
positive diagonal elements, then Q and R are uniquely determined.

Proof: The problem is to show that A = Q1R1 = Q2R2 implies R2R
−1

1
= I and

Q1 = Q2. We start with Q1 = Q2R2R
−1

1 . Define P = R2R
−1

1 . Then Q1 = Q2P .
Because I = QT

1 Q1 = PT QT
2 Q2P = PT P , then P is orthogonal. Matrix

P is the product of square upper triangular matrices with positive diagonal
elements, which implies P itself is square upper triangular with positive diagonal
elements. The only matrix with these properties is the identity matrix I. Then
R2R

−1

1 = P = I, which implies R1 = R2 and Q1 = Q2. The proof is complete.

Theorem 22 (Orthonormal Diagonal Form)
Let A be a given n × n real matrix. Then A = QDQ−1 with Q orthogonal
and D diagonal if and only if AT = A.

Proof: The reader is reminded that Q orthogonal means that the columns of
Q are orthonormal. The equation A = AT means A is symmetric.

Assume first that A = QDQ−1 with Q = QT orthogonal (QT Q = I) and
D diagonal. Then QT = Q = Q−1. This implies AT = (QDQ−1)T =
(Q−1)T DT QT = QDQ−1 = A.

Conversely, assume AT = A. Then the eigenvalues of A are real and eigenvectors
corresponding to distinct eigenvalues are orthogonal. The proof proceeds by
induction on the dimension n of the n × n matrix A.

For n = 1, let Q be the 1 × 1 identity matrix. Then Q is orthogonal and
AQ = QD where D is 1 × 1 diagonal.

Assume the decomposition AQ = QD for dimension n. Let’s prove it for A
of dimension n + 1. Choose a real eigenvalue λ of A and eigenvector v1 with
‖v1‖ = 1. Complete a basis v1, . . . , vn+1 of Rn+1. By Gram-Schmidt, we
assume as well that this basis is orthonormal. Define P = aug(v1, . . . ,vn+1).
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Then P is orthogonal and satisfies PT = P−1. Define B = P−1AP . Then B is
symmetric (BT = B) and col(B, 1) = λ col(I, 1). These facts imply that B is
a block matrix

B =

(

λ 0
0 C

)

where C is symmetric (CT = C). The induction hypothesis applies to C to
obtain the existence of an orthogonal matrix Q1 such that CQ1 = Q1D1 for
some diagonal matrix D1. Define a diagonal matrix D and matrices W and Q
as follows:

D =

(

λ 0
0 D1

)

,

W =

(

1 0
0 Q1

)

,

Q = PW.

Then Q is the product of two orthogonal matrices, which makes Q orthogonal.
Compute

W−1BW =

(

1 0

0 Q−1

1

)(

λ 0
0 C

)(

1 0
0 Q1

)

=

(

λ 0
0 D1

)

.

Then Q−1AQ = W−1P−1APW = W−1BW = D. This completes the induc-
tion, ending the proof of the theorem.

Theorem 23 (Eigenpairs of a Symmetric A)
Let A be a symmetric n×n real matrix. Then A has n eigenpairs (λ1,v1),
. . . , (λn,vn), with independent eigenvectors v1, . . . , vn.

Proof: The preceding theorem applies to prove the existence of an orthogonal
matrix Q and a diagonal matrix D such that AQ = QD. The diagonal entries
of D are the eigenvalues of A, in some order. For a diagonal entry λ of D
appearing in row j, the relation A col(Q, j) = λ col(Q, j) holds, which implies
that A has n eigenpairs. The eigenvectors are the columns of Q, which are
independent because Q is orthogonal. The proof is complete.

Theorem 24 (Diagonalization of Symmetric A)
Let A be a symmetric n×n real matrix. Then A has n eigenpairs. For each
distinct eigenvalue λ, replace the eigenvectors by orthonormal eigenvectors,
using the Gram-Schmidt process. Let uj, . . . , un be the orthonormal vectors
so obtained and define

Q = aug(u1, . . . ,un), D = diag(λ1, . . . , λn).

Then Q is orthogonal and AQ = QD.

Proof: The preceding theorem justifies the eigenanalysis result. Already, eigen-
pairs corresponding to distinct eigenvalues are orthogonal. Within the set of
eigenpairs with the same eigenvalue λ, the Gram-Schmidt process produces
a replacement basis of orthonormal eigenvectors. Then the union of all the
eigenvectors is orthonormal. The process described here does not disturb the
ordering of eigenpairs, because it only replaces an eigenvector. The proof is
complete.
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The Singular Value Decomposition

Theorem 25 (Positive Eigenvalues of AT A)
Given an m× n real matrix A, then AT A is a real symmetric matrix whose
eigenpairs (λ,v) satisfy

λ =
‖Av‖2

‖v‖2
≥ 0.(3)

Proof: Symmetry follows from (AT A)T = AT (AT )T = AT A. An eigenpair
(λ,v) satisfies λvT v = vT AT Av = (Av)T (Av) = ‖Av‖2, hence (3).

Definition 4 (Singular Values of A)
Let the real symmetric matrix AT A have real eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λr > 0 = λr+1 = · · · = λn. The numbers σk =

√
λk (1 ≤ k ≤ n)

are called the singular values of the matrix A. The ordering of the
singular values is always with decreasing magnitude.

Theorem 26 (Orthonormal Set u1, . . . , um)
Let the real symmetric matrix AT A have real eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λr > 0 = λr+1 = · · · = λn and corresponding orthonormal eigenvectors
v1,. . . ,vn, obtained by the Gram-Schmidt process. Define the vectors

u1 =
1

σ1
Av1, . . . ,ur =

1

σr

Avr.

Because ‖Avk‖ = σk, then {u1, . . . ,ur} is orthonormal. Gram-Schmidt
can extend this set to an orthonormal basis {u1, . . . ,um} of Rm.

Theorem 27 (The Singular Value Decomposition (svd))
Let A be a given real m × n matrix. Let (λ1,v1),. . . ,(λn,vn) be a set of
orthonormal eigenpairs for AT A such that σk =

√
λk (1 ≤ k ≤ r) defines

the positive singular values of A and λk = 0 for r < k ≤ n. Complete
u1 = (1/σ1)Av1, . . . , ur = (1/σr)Avr to an orthonormal basis {uk}m

k=1for
Rm. Define

U = aug(u1, . . . ,um), Σ =

(

diag(σ1, . . . , σr) 0

0 0

)

,

V = aug(v1, . . . ,vn).

Then the columns of U and V are orthonormal and

A = UΣV T

= σ1u1v
T
1 + · · · + σrurv

T
r

= A(v1)v
T
1 + · · · + A(vr)v

T
r

Proof of Theorem 26: Because AT Avk = λkvk 6= 0 for 1 ≤ k ≤ r, the
vectors uk are nonzero. Given i 6= j, then σiσjui · uj = (Avi)

T (Avj) =
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λjv
T
i vj = 0, showing that the vectors uk are orthogonal. Further, ‖uk‖2 =

vk · (AT Avk)/λk = ‖vk‖2 = 1 because {vk}n
k=1

is an orthonormal set.

The extension of the uk to an orthonormal basis of Rm is not unique, because
it depends upon a choice of independent spanning vectors yr+1, . . . , ym for the
set {x : x · uk = 0, 1 ≤ k ≤ r}. Once selected, Gram-Schmidt is applied to
u1, . . . , ur, yr+1, . . . , ym to obtain the desired orthonormal basis.

Proof of Theorem 27: The product of U and Σ is the m × n matrix

UΣ = aug(σ1u1, . . . , σrur,0, . . . ,0)
= aug(A(v1), . . . , A(vr),0, . . . ,0).

Let v be any vector in Rn. It will be shown that UΣV Tv,
∑r

k=1
A(vk)(vT

k v)
and Av are the same column vector. We have the equalities

UΣV T v = UΣ







vT
1 v
...

vT
n v







= aug(A(v1), . . . , A(vr),0, . . . ,0)







vT
1 v
...

vT
n v







=
r
∑

k=1

(vT
k v)A(vk).

Because v1, . . . , vn is an orthonormal basis of Rn, then v =
∑n

k=1
(vT

k v)vk .
Additionally, A(vk) = 0 for r < k ≤ n implies

Av = A

(

n
∑

k=1

(vT
k v)vk

)

=
r
∑

k=1

(vT
k v)A(vk)

Then Av = UΣV Tv =
∑r

k=1
A(vk)(vT

k v), which proves the theorem.

Standard equation of an ellipse. Calculus courses consider ellipse
equations like 85x2−60xy+40y2 = 2500 and discuss removal of the cross
term −60xy. The objective is to obtain a standard ellipse equation
X2

a2
+

Y 2

b2
= 1. We re-visit this old problem from a different point of

view, and in the derivation establish a connection between the ellipse
equation, the symmetric matrix AT A, and the singular values of A.

9 Example (Image of the Unit Circle) Let A =

(

−2 6
6 7

)

.

Then the invertible matrix A maps the unit circle K into the ellipse

85x2 − 60xy + 40y2 = 2500.

Verify that after a rotation to remove the xy-term, in the new XY -coordinates

the equation is
X2

a2
+

Y 2

b2
= 1, where a = 10 and b = 5.
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Solution: The Pythagorean identity cos2 θ + sin2 θ = 1 will be used together
with the parameterization θ → (cos θ, sin θ) of the unit circle K, 0 ≤ θ ≤ 2π.

Mapping K by the matrix A is formally the set of dual relations
(

x
y

)

= A

(

cos θ
sin θ

)

,

(

cos θ
sin θ

)

= A−1

(

x
y

)

.

The Pythagorean identity used on the second relation implies

85x2 − 60xy + 40y2 = 2500.

This ellipse equation can be represented by the vector-matrix identity

(

x y
)

(

85 30
30 40

)(

x
y

)

= 2500.

The symmetric matrix AT A =

(

85 30
30 40

)

has eigenpair packages

P =
1√
5

(

1 2
−2 1

)

, D =

(

25 0
0 100

)

.

In the coordinate system

(

x
y

)

= P

(

X
Y

)

of the orthogonal matrix P , the

ellipse vector-matrix identity becomes

(

X Y
)

PT

(

85 30
30 40

)

P

(

X
Y

)

= 2500.

Because PT
(

AT A
)

P = D = diag(25, 100), then the ellipse equation has the
standard form

25X2 + 100Y 2 = 2500.

The semi-axis lengths for this ellipse are a =
√

2500

25
= 10 and b =

√

2500

100
= 5,

which are precisely the singular values σ1 = 10 and σ2 = 5 of matrix A.

Singular values and geometry. The preceding example is typical
for all invertible 2 × 2 matrices A. Described here is the geometrical
interpretation for the singular value decomposition A = UΣV T , shown
in Figure 4.

Unit circle K

v2

v1

w1

w2

Image A(K)

Figure 4. Mapping the unit circle.
Invertible matrix A maps the unit circle K into the ellipse A(K). Or-
thonormal vectors v1, v2 are mapped by matrix A = UΣV T into or-
thogonal vectors w1 = Av1, w2 = Av2, which are the semi-axes vectors
of the ellipse. The semi-axis lengths ‖w1‖, ‖w2‖ equal the singular val-
ues σ1, σ2.
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A summary of the example A =

(

−2 6
6 7

)

:

A 2 × 2 invertible matrix A maps the unit circle K into

an ellipse A(K). Decomposition A = UΣV T means A

maps the columns of V into re-scaled columns of U . These

vectors, σ1u1 and σ2u2, are the semi-axis vectors of the

ellipse A(K), whose lengths σ1, σ2 are the singular values.

The columns of V are orthonormal vectors v1, v2, computed as eigenpairs

(λ1,v1), (λ2,v2) of AT A. Then Av1 = UΣV Tv1 = U

(

σ1
0

)

= σ1u1.

Similarly, Av2 = UΣV Tv2 = U

(

0
σ2

)

= σ2u2.
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11.6 Jordan Form and Eigenanalysis

Generalized Eigenanalysis

The main result of generalized eigenanalysis is Jordan’s theorem

A = PJP−1,

valid for any real or complex square matrix A. We describe here how
to compute the invertible matrix P of generalized eigenvectors and the
upper triangular matrix J , called a Jordan form of A:

J =













λ1 J12 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λn−1 Jn−1 n

0 0 0 · · · 0 λn













.

Entries Ji i+1 of J along its super-diagonal are either 0 or 1, while diag-
onal entries λi are eigenvalues of A. A Jordan form is therefore a band
matrix with zero entries off its diagonal and super-diagonal.

An m × m matrix B(λ,m) is called a Jordan block provided it is a
Jordan form, all m diagonal elements are the same eigenvalue λ and all
super-diagonal elements are one:

B(λ,m) =













λ 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ













(m × m matrix)

The Jordan block form of J. Given a square matrix A, a Jordan
form J for A is built from Jordan blocks, more precisely, J is a block
diagonal matrix

J = diag(B(λ1,m1), B(λ2,m2), . . . , B(λk,mk)),

where λ1, . . . , λk are eigenvalues of A and m1 + · · · + mk = n. If
eigenvalues appear in magnitude order, then Jordan blocks with equal
diagonal entries will be adjacent.

Zeros can appear on the super-diagonal of J , because adjacent Jordan
blocks join on the super-diagonal with a zero. A complete specification
of how to build J from A is done in generalized eigenanalysis.

Geometric and algebraic multiplicity. The geometric multi-
plicity GeoMult(λ) is the nullity of A − λI, which is the number of
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basis vectors in a solution to (A − λI)x = 0, or, equivalently, the num-
ber of free variables. The algebraic multiplicity AlgMult(λ) is the
largest integer k such that (r−λ)k divides the characteristic polynomial
det(A − rI).

Theorem 20 (Algebraic and Geometric Multiplicity)
Let A be a square real or complex matrix. Then

1 ≤ GeoMult(λ) ≤ AlgMult(λ).(1)

In addition, there are the following relationships between the Jordan form J
and algebraic and geometric multiplicities.

GeoMult(λ) Equals the number of Jordan blocks B(λ,m) that ap-
pear in J ,

AlgMult(λ) Equals the number of times λ is repeated along the
diagonal of J .

Decoding the equation A = PJP−1. The relation A = PJP−1,
equivalent to AP = PJ , can be expressed in terms of the columns of the
matrix P . If J is a single Jordan block B(λ,m), then the columns v1,
. . . , vm of P satisfy

Av1 = λv1,
Av2 = λv2 + v1,

...
...

...
Avm = λvm + vm−1.

Chains of generalized eigenvectors. Given an eigenvalue λ of
the matrix A, the topic of generalized eigenanalysis determines a Jordan
block B(λ,m) in J by finding an m-chain of generalized eigenvectors
v1, . . . , vm, which appear as columns of P in the relation A = PJP−1.
The very first vector v1 of the chain is an eigenvector, (A − λI)v1 = 0.
The others v2, . . . , vk are not eigenvectors but satisfy

(A − λI)v2 = v1, . . . , (A − λI)vm = vm−1.

Implied by the term m-chain is insolvability of (A − λI)x = vm. The
chain size m is subject to the inequality 1 ≤ m ≤ AlgMult(λ).

The Jordan form J may contain several Jordan blocks for one eigenvalue
λ. To illustrate, if J has only one eigenvalue λ and AlgMult(λ) = 3,
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then J might be constructed as follows:

J = diag(B(λ, 1), B(λ, 1), B(λ, 1)) or J =







λ 0 0
0 λ 0
0 0 λ






,

J = diag(B(λ, 1), B(λ, 2)) or J =







λ 0 0
0 λ 1
0 0 λ






,

J = B(λ, 3) or J =







λ 1 0
0 λ 1
0 0 λ






.

The three generalized eigenvectors for this example correspond to

J =







λ 0 0
0 λ 0
0 0 λ






↔ Three 1-chains,

J =







λ 0 0
0 λ 1
0 0 λ






↔ One 1-chain and one 2-chain,

J =







λ 1 0
0 λ 1
0 0 λ






↔ One 3-chain.

Computing m-chains. Let us fix the discussion to an eigenvalue λ
of A. Define N = A − λI and p = AlgMult(λ).

To compute an m-chain, start with an eigenvector v1 and solve recur-
sively by rref methods Nvj+1 = vj until there fails to be a solution.
This must seemingly be done for all possible choices of v1! The search for
m-chains terminates when p independent generalized eigenvectors have
been calculated.

If A has an essentially unique eigenpair (λ,v1), then this process termi-
nates immediately with an m-chain where m = p. The chain produces
one Jordan block B(λ,m) and the generalized eigenvectors v1, . . . , vm

are recorded into the matrix P .

If u1, u2 form a basis for the eigenvectors of A corresponding to λ, then
the problem Nx = 0 has 2 free variables. Therefore, we seek to find an
m1-chain and an m2-chain such that m1 +m2 = p, corresponding to two
Jordan blocks B(λ,m1) and B(λ,m2).

To understand the logic applied here, the reader should verify that for
N = diag(B(0,m1), B(0,m2), . . . , B(0,mk)) the problem Nx = 0 has
k free variables, because N is already in rref form. These remarks
imply that a k-dimensional basis of eigenvectors of A for eigenvalue λ
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causes a search for mi-chains, 1 ≤ i ≤ k, such that m1 + · · · + mk = p,
corresponding to k Jordan blocks B(λ,m1), . . . , B(λ,mk).

A common naive approach for computing generalized eigenvectors can
be illustrated by letting

A =







1 1 1
0 1 0
0 0 1






, u1 =







1
−1

1






, u2 =







0
1

−1






.

Matrix A has one eigenvalue λ = 1 and two eigenpairs (1,u1), (1,u2).
Starting a chain calculation with v1 equal to either u1 or u2 gives a
1-chain. This naive approach leads to only two independent generalized
eigenvectors. However, the calculation must proceed until three inde-
pendent generalized eigenvectors have been computed. To resolve the
trouble, keep a 1-chain, say the one generated by u1, and start a new
chain calculation using v1 = a1u1 + a2u2. Adjust the values of a1, a2

until a 2-chain has been computed:

aug(A − λI,v1) =







0 1 1 a1

0 0 0 −a1 + a2

0 0 0 a1 − a2






≈







0 1 1 a1

0 0 0 0
0 0 0 0






,

provided a1−a2 = 0. Choose a1 = a2 = 1 to make v1 = u1 +u2 6= 0 and

solve for v2 =
(

0, 1, 0
)

. Then u1 is a 1-chain and v1, v2 is a 2-chain.

The generalized eigenvectors u1, v1, v2 are independent and form the
columns of P while J = diag(B(λ, 1), B(λ, 2)) (recall λ = 1). We justify
A = PJP−1 by testing AP = PJ , using the formulas

J =







λ 0 0
0 λ 1
0 0 λ






, P =







1 1 0
−1 0 1

1 0 0






.

Theorem 21 (Exponential of a Jordan Block Matrix)
If λ is real and

B =













λ 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ













(m × m matrix)

then

eBt = eλt













1 t t2

2 · · · tm−2

(m−2)!
tm−1

(m−1)!
...

...
...

...
...

...
0 0 0 · · · 1 t
0 0 0 · · · 0 1













.

The equality also holds if λ is a complex number, in which case both sides
of the equation are complex.
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The Real Jordan Form of A

Given a real matrix A, generalized eigenanalysis seeks to find a real

invertible matrix P and a real upper triangular block matrix R such
that A = PRP−1. This requirement leads to a real equation for eAt,
appropriate if A itself is real.

If λ is a real eigenvalue of A, then a real Jordan block is a matrix

B = diag(λ, . . . , λ) + N, N =













0 1 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 1
0 0 0 · · · 0













.

If λ = a + ib is a complex eigenvalue of A, then symbols λ, 1 and 0 are

replaced respectively by 2×2 real matrices Λ =

(

a b
−b a

)

, I = diag(1, 1)

and O = diag(0, 0). The corresponding 2m×2m real Jordan block matrix
is given by the formula

B = diag(Λ, . . . ,Λ) + N , N =













O I O · · · O O
...

...
...

...
...

...
O O O · · · O I
O O O · · · O O













.

Nilpotent matrices. The matrix N satisfies Nm = 0. Similarly,
Nm = 0. Such matrices are called nilpotent block matrices. The
least integer m for which Nm = 0 is called the nilpotency of N . A
nilpotent matrix N has a finite exponential series:

eNt = I + Nt + N2 t2

2!
+ · · · + Nm−1 tm−1

(m − 1)!
.

Computing P and R. Generalized eigenvectors for a real eigenvalue
λ are placed into the matrix P in the same order as specified in R by the
corresponding real Jordan block. In the case when λ = a+ ib is complex,
b > 0, the real and imaginary parts of each generalized eigenvector are
entered pairwise into P; the conjugate eigenvalue λ = a − ib is skipped.
The result is a real matrix P and a real upper triangular block matrix R
which satisfy A = PRP−1.

Theorem 22 (Real Block Diagonal Matrix, Eigenvalue a + ib)

Let Λ =

(

a b
−b a

)

, I = diag(1, 1) and O = diag(0, 0). Consider a real



586

Jordan block matrix of dimension 2m × 2m given by the formula

B =













Λ I O · · · O O
...

...
...

...
...

...
O O O · · · Λ I
O O O · · · O Λ













.

If R =

(

cos bt sin bt
− sin bt cos bt

)

, then

eBt = eat













R tR t2

2 R · · · tm−2

(m−2)!R tm−1

(m−1)!R
...

...
...

...
...

...
O O O · · · R tR
O O O · · · O R













.

Solving x′ = Ax. The solution x(t) = eAtx(0) must be real if A is
real. The real solution can be expressed as x(t) = Py(t) where y′(t) =
Ry(t) and R is a real Jordan form of A, containing real Jordan blocks
B down its diagonal. Theorems above provide explicit formulas for eBt,
hence the resulting formula

x(t) = PeRtP−1x(0)

contains only real numbers, real exponentials, plus sine and cosine terms,
which are possibly multiplied by polynomials in t.


