4.7 Cauchy's Kernel

The independent functions y_1 and y_2 in the general solution $y_h = c_1 y_1 + c_2 y_2$ of a homogeneous linear differential equation

$$a(x)y'' + b(x)y' + c(x)y = 0$$

are used to define Cauchy's kernel¹

(1)
$$\mathcal{K}(x,t) = \frac{y_1(t)y_2(x) - y_1(x)y_2(t)}{y_1(t)y_2'(t) - y_1'(t)y_2(t)}.$$

The denominator is the Wronskian of y_1 , y_2 . Define

(2)
$$C_1(t) = \frac{-y_2(t)}{W(t)}, \quad C_2(t) = \frac{y_1(t)}{W(t)}.$$

Then Cauchy's kernel K has these properties (proved on page ??):

$$\mathcal{K}(x,t) = C_1(t)y_1(x) + C_2(t)y_2(x), \qquad \mathcal{K}(x,x) = 0,$$

$$\mathcal{K}_x(x,t) = C_1(t)y_1'(x) + C_2(t)y_2'(x), \qquad \mathcal{K}_x(x,x) = 1,$$

$$\mathcal{K}_{xx}(x,t) = C_1(t)y_1''(x) + C_2(t)y_2''(x), \qquad a\mathcal{K}_{xx} + b\mathcal{K}_x + c\mathcal{K} = 0.$$

Theorem 15 (Cauchy Kernel Shortcut)

Let a, b, c be constants and let U be the unique solution of aU'' + bU' + cU = 0, U(0) = 0, U'(0) = 1. Then Cauchy's kernel is $\mathcal{K}(x,t) = U(x-t)$.

The proof appears on page ??.

Theorem 16 (Variation of Parameters Formula: Cauchy's Kernel)

Let a, b, c, f be continuous near $x=x_0$ and $a(x)\neq 0$. Let $\mathcal K$ be Cauchy's kernel for ay''+by'+cy=0. Then the non-homogeneous initial value problem

$$ay'' + by' + cy = f$$
, $y(x_0) = y'(x_0) = 0$

has solution

$$y_p(x) = \int_{x_0}^x \frac{\mathcal{K}(x,t)f(t)}{a(t)} dt.$$

The proof appears on page ??. Specific initial conditions $y(x_0) = y'(x_0) = 0$ imply that y_p can be determined in a laboratory with just one experimental setup. The integral form of y_p shows that it depends *linearly* on the input f(x).

22 Example (Cauchy Kernel) Verify that the equation 2y'' - y' - y = 0 has Cauchy kernel $\mathcal{K}(x,t) = \frac{2}{3}(e^{x-t} - e^{-(x-t)/2})$.

¹Pronunciation ko-she.

Solution: The two independent solutions y_1 , y_2 are calculated from the *recipe*, which uses the characteristic equation $2r^2 - r - 1 = 0$. The roots are -1/2 and 1. The general solution is $y = c_1 e^{-x/2} + c_2 e^x$. Therefore, $y_1 = e^{-x/2}$ and $y_2 = e^x$.

The Cauchy kernel is the quotient

$$\begin{split} \mathcal{K}(x,t) &= \frac{y_1(t)y_2(x) - y_1(x)y_2(t)}{y_1(t)y_2'(t) - y_1'(t)y_2(t)} & \text{Definition page ??.} \\ &= \frac{e^{-t/2}e^x - e^{-x/2}e^t}{e^{-t/2}e^t + 0.5e^{-t/2}e^t} & \text{Substitute } y_1 = e^{-x/2}, \ y_2 = e^x. \\ &= \frac{2}{3}(e^{-t}e^x - e^{-x/2}e^{t/2}) & \text{Simplify.} \\ &= \frac{2}{3}(e^{x-t} - e^{(t-x)/2}) & \text{Final answer.} \end{split}$$

An alternative method to determine the Cauchy kernel is to apply the shortcut Theorem ??. We will apply it to check the answer. Solution U must be $U(x) = Ay_1(x) + By_2(x)$ for some constants A, B, determined by the conditions U(0) = 0, U'(0) = 1. The resulting equations for A, B are A + B = 0, -A/2 + B = 1. Solving gives -A = B = 2/3 and then $U(x) = \frac{2}{3}(e^x - e^{-x/2})$. The kernel is $\mathcal{K}(x,t) = U(x-t) = \frac{2}{3}(e^{x-t} - e^{-(x-t)/2})$.

23 Example (Variation of Parameters) Solve y'' = |x| by Cauchy kernel methods, verifying $y = c_1 + c_2 x + |x|^3/6$.

Solution: First, an independent method will be described, in order to provide a check on the solution. The method involves splitting the equation into two problems y'' = x and y'' = -x. The two polynomial answers $y = x^3/6$ on x > 0 and $y = -x^3/6$ on x < 0, obtained by quadrature, are re-assembled to obtain a single formula $y_p(x) = |x|^3/6$ valid on $-\infty < x < \infty$.

The Cauchy kernel method will be applied to verify the general solution $y = c_1 + c_2 x + |x|^3/6$.

Homogeneous solution. The *recipe* for constant equations, applied to y'' = 0, gives $y_h = c_1 + c_2 x$. Suitable independent solutions are $y_1(x) = 1$, $y_2(x) = x$.

Cauchy kernel for y'' = 0. It is computed by formula, $\mathcal{K}(x,t) = ((1)(x) - (t)(1))/(1)$ or $\mathcal{K}(x,t) = x - t$.

Variation of parameters. The solution is $y_p(x) = |x|^3/6$, by Theorem ??, details below.

$$\begin{split} y_p(x) &= \int_0^x \mathcal{K}(x,t)|t|dt & \text{Theorem ??, page ??.} \\ &= \int_0^x (x-t)tdt & \text{Substitute } \mathcal{K} = x-t \text{ and } |t| = t \text{ for } x > 0. \\ &= x \int_0^x tdt - \int_0^x t^2dt & \text{Split into two integrals.} \\ &= x^3/6 & \text{Evaluate for } x > 0. \end{split}$$

If x < 0, then the evaluation differs only by |t| = -t in the integrand. This gives $y_p(x) = -x^3/6$ for x < 0. The two formulas can be combined into $y_p(x) = |x|^3/6$, valid for $-\infty < x < \infty$.

24 Example (Two Methods) Solve $y'' - y = e^x$ by undetermined coefficients and by variation of parameters. Explain any differences in the answers.

Solution:

Homogeneous solution. The characteristic equation $r^2 - 1 = 0$ for y'' - y = 0 has roots ± 1 . The homogeneous solution is $y_h = c_1 e^x + c_2 e^{-x}$.

Undetermined Coefficients Summary. The general solution is reported to be $y = y_h + y_p = c_1 e^x + c_2 e^{-x} + x e^x/2$.

Kümmer's polynomial × exponential method applies to give $y = e^x Y$ and $[(D+1)^2-1]Y = 1$. The latter simplifies to Y''+2Y'=1, which has polynomial solution Y = x/2. Then $y_p = xe^x/2$.

Variation of Parameters Summary. The homogeneous solution $y_h = c_1 e^x + c_2 e^{-x}$ found above implies $y_1 = e^x$, $y_2 = e^{-x}$ is a suitable independent pair of solutions, because their Wronskian is W = -2

The Cauchy kernel is given by $\mathcal{K}(x,t)=\frac{1}{2}(e^{x-t}-e^{t-x})$, details below. The shortcut Theorem ?? also applies with $U(x)=\sinh(x)=(e^x-e^{-x})/2$. The variation of parameters formula is applied from Theorem ??: $y_p(x)=\int_0^x \mathcal{K}(x,t)e^tdt$. It evaluates to $y_p(x)=xe^x/2-(e^x-e^{-x})/4$, details below.

Differences. The two methods give respectively $y_p = xe^x/2$, and $y_p = xe^x/2 - (e^x - e^{-x})/4$. The solutions $y_p = xe^x/2$ and $y_p = xe^x/2 - (e^x - e^{-x})/4$ differ by the homogeneous solution $(e^x - e^{-x})/4$. In both cases, the general solution is

$$y = c_1 e^x + c_2 e^{-x} + \frac{1}{2} x e^x,$$

because terms of the homogeneous solution can be absorbed into the arbitrary constants c_1 , c_2 .

Computational Details.

$$\mathcal{K}(x,t) = \frac{y_1(t)y_2(x) - y_1(x)y_2(t)}{y_1(t)y_2'(t) - y_1'(t)y_2(t)} \qquad \text{Definition page ??.}$$

$$= \frac{e^t e^{-x} - e^x e^{-t}}{e^t(-e^{-t}) - e^t e^{-t}} \qquad \text{Substitute.}$$

$$= \frac{1}{2}(e^{x-t} - e^{t-x}) \qquad \text{Cauchy kernel found.}$$

$$y_p(x) = \int_0^x \mathcal{K}(x,t)e^t dt \qquad \text{Theorem ??, page ??.}$$

$$= \frac{1}{2} \int_0^x (e^{x-t} - e^{t-x})e^t dt \qquad \text{Substitute } \mathcal{K} = \frac{1}{2}(e^{x-t} - e^{t-x}).$$

$$= \frac{1}{2}e^x \int_0^x dt - \frac{1}{2} \int_0^x e^{2t-x} dt \qquad \text{Split into two integrals.}$$

$$= \frac{1}{2}xe^x - \frac{1}{4}(e^x - e^{-x}) \qquad \text{Evaluation completed.}$$

Proofs of Cauchy Kernel Properties. The equation $\mathcal{K}(x,t) = C_1(t)y_1(x) + C_2(t)y_2(x)$ is an algebraic identity, using the definitions of C_1 and C_2 . Then $\mathcal{K}(x,x)$ is a fraction with numerator $y_1(x)y_2(x) - y_1(x)y_2(x) = 0$, giving the second identity $\mathcal{K}(x,x) = 0$.

The partial derivative formula $\mathcal{K}_x(x,t) = C_1(t)y_1'(x) + C_2(t)y_2'(x)$ is obtained by ordinary differentiation on x in the previous identity. Then $\mathcal{K}_x(x,x)$ is a fraction with numerator $y_1(x)y_2'(x) - y_1'(x)y_2(x)$, which exactly cancels the denominator, giving the identity $\mathcal{K}_x(x,x) = 1$.

The second derivative formula $\mathcal{K}_{xx}(x,t) = C_1(t)y_1''(x) + C_2(t)y_2''(x)$ results by ordinary differentiation on x in the formula for \mathcal{K}_x . The differential equation $a\mathcal{K}_{xx} + b\mathcal{K}_x + c\mathcal{K} = 0$ is satisfied, because \mathcal{K} in the variable x is a linear combination of y_1 and y_2 , which are given to be solutions.

Proof of Theorem ??: Let $y(x) = \mathcal{K}(x,t) - U(x-t)$ for fixed t. It will be shown that y is a solution and y(t) = y'(t) = 0. Already known from page ?? is the relation $a\mathcal{K}_{xx}(x,t) + b\mathcal{K}_x(x,t) + c\mathcal{K}(x,t) = 0$. By assumption, aU''(x-t)+bU'(x-t)+cU(x-t)=0. By the chain rule, both terms in y satisfy the differential equation, hence y is a solution. At x=t, $y(t)=\mathcal{K}(t,t)-U(0)=0$ and $y'(t)=K_x(t,t)-U'(0)=0$ (see page ??). Then y is a solution of the homogeneous equation with zero initial conditions. By uniqueness, $y(x)\equiv 0$, which proves $\mathcal{K}(x,t)=U(x-t)$.

Proof of Theorem ??: Let F(t) = f(t)/a(t). It will be shown that y_p as given has two continuous derivatives given by the integral formulas

$$y'_p(x) = \int_{x_0}^x \mathcal{K}_x(x,t)F(t)dt, \quad y''_p(x) = \int_{x_0}^x \mathcal{K}_{xx}(x,t)F(t)dt + F(x).$$

Then

$$ay_p'' + by_p' + cy_p = \int_{x_0}^x (a\mathcal{K}_{xx} + b\mathcal{K}_x + c\mathcal{K})F(t)dt + aF.$$

The equation $a\mathcal{K}_{xx} + b\mathcal{K}_x + c\mathcal{K} = 0$, page ??, shows the integrand on the right is zero. Therefore $ay_p'' + by_p' + cy_p = f(x)$, which would complete the proof.

Needed for the calculation of the derivative formulas is the fundamental theorem of calculus relation $\left(\int_{x_0}^x G(t)dt\right)' = G(x)$, valid for continuous G. The product rule from calculus can be applied directly, because y_p is a sum of products:

$$y_p' = \left(y_1(x) \int_{x_0}^x C_1 F dt + y_2(x) \int_{x_0}^x C_2 F dt\right)'$$

$$= y_1' \int_{x_0}^x C_1 F dt + y_2' \int_{x_0}^x C_2 F dt + y_1(x) C_1(x) F(x) + y_2(x) C_2(x) F(x)$$

$$= y_1' \int_{x_0}^x C_1 F dt + y_2' \int_{x_0}^x C_2 F dt + \mathcal{K}(x, x) F(x)$$

$$= \int_{x_0}^x \mathcal{K}_x(x, t) F(t) dt$$

The terms contributed by differentiation of the integrals add to zero because $\mathcal{K}(x,x)=0$ (page ??).

$$y_p'' = \left(y_1'(x) \int_{x_0}^x C_1 F dt + y_2'(x) \int_{x_0}^x C_2 F dt\right)'$$

$$= y_1'' \int_{x_0}^x C_1 F dt + y_2'' \int_{x_0}^x C_2 F dt + y_1'(x) C_1(x) F(x) + y_2'(x) C_2(x) F(x)$$

$$= y_1'' \int_{x_0}^x C_1 F dt + y_2'' \int_{x_0}^x C_2 F dt + \mathcal{K}_x(x, x) F(x)$$

$$= \int_{x_0}^x \mathcal{K}_{xx}(x, t) F(t) dt + F(x)$$

The terms contributed by differentiation of the integrals add to F(x) because $\mathcal{K}_x(x,x) = 1$ (page ??).

Exercises 4.7

Cauchy Kernel. Find the Cauchy kernel $\mathcal{K}(x,t)$ for the given homogeneous differential equation.

23.
$$y'' - y = 0$$

24.
$$y'' - 4y = 0$$

25.
$$y'' + y = 0$$

26.
$$y'' + 4y = 0$$

27.
$$4y'' + y' = 0$$

28.
$$y'' + y' = 0$$

29.
$$y'' + y' + y = 0$$

30.
$$y'' - y' + y = 0$$

Variation of Parameters. Find the general solution $y_h + y_p$ by applying a variation of parameters formula.

35.
$$y'' = x^2$$

36.
$$y'' = x^3$$

37.
$$y'' + y = \sin x$$

38.
$$y'' + y = \cos x$$

39.
$$y'' + y' = \ln|x|$$

40.
$$y'' + y' = -\ln|x|$$

40.
$$y'' + y' = -\ln|x|$$

41. $y'' + 2y' + y = e^{-x}$
42. $y'' - 2y' + y = e^{x}$

42.
$$u'' - 2u' + u = e^x$$