Three Examples. It is possible to solve a variety of differential equations without reading a differential equations textbook:

Growth-Decay
$$\frac{dA}{dt} = kA(t), \ A(0) = A_0$$

$$A(t) = A_0 e^{t\cdot t}$$
 Newton Cooling
$$\frac{du}{dt} = -h(u(t) - u_1), \ u(0) = u_0$$

$$u(t) = u_1 + (u_0 - u_1)e^{-ht}$$

$$\frac{dP}{dt} = (a - bP(t))P(t), \ P(0) = P_0$$

$$P(t) = \frac{aP_0}{bP_0 + (a - bP_0)e^{-at}}$$

Like the multiplication tables in elementary school, these models and their solution formulas should be *memorized*, in order to form a foundation of intuition for all differential equation theory. The last two solutions are derived from the growth-decay equation by variable changes: $A(t) = u(t) - u_1$ and A(t) = P(t)/(a - bP(t)).

Fundamental Theorem of Calculus

(a)
$$\int_{a}^{b} f'(x)dx = f(b) - f(a)$$

(b)
$$\left(\int_{a}^{x} g(t)dt\right)' = g(x)$$

Isaac Newton found Nese Formulus in an effort To extend the formula D=RT to the lase of instantaneous vates.

The Method of Quadrature

- · Applies to equations like y'= 2x
- · Uses Re fundamental Theorem of calculus
- only produces a cardidate solution it does not verify the solution.

Solution:

$$\int y' dx = \int 2x dx$$

$$y(x) + C_1 = x^2 + C_2$$

$$y(x) = x^2 + C$$

Apply fund. Thm. Calc.
Collect constants.
Candid to found.

1 Example (Decay Law Derivation) Derive the decay law $\frac{dA}{dt}=kA(t)$ from the sentence

Radioactive material decays at a rate proportional to the amount present.

Solution: The sentence is first dissected into English phrases 1 to 4.

1: Radioactive material The phrase causes the in-

vention of a symbol A for the amount present at

time t.

cay. Then A changes. Calculus conventions imply the rate of change is

dA/dt.

3: proportional to Literally, it means equal

to a constant multiple of. Let k be the proportional-

ity constant.

4: the amount present The amount of radioac-

tive material present is

A(t).

Solution: Continued . . .

The four phrases are translated into mathematical notation as follows.

Phrases 1 and 2 Symbol dA/dt.

Phrase 3

Equal sign '=' and a constant k.

Phrase 4

Symbol A(t).

Let A(t) be the amount present at time t. The translation is $\frac{dA}{dt} = \mathbf{k}A(t)$.

Background

In e	x =	x,	$e^{\ln y}$	_	\boldsymbol{y}
0		~,	•		J

In words, the exponential and the logarithm are inverses. The domains are $-\infty < x < \infty$, $0 < y < \infty$.

$$e^0 = 1$$
, $\ln(1) = 0$

Special values, usually memorized.

$$e^{a+b} = e^a e^b$$

In words, the exponential of a sum of terms is the product of the exponentials of the terms.

$$(e^a)^b = e^{ab}$$

Negatives are allowed, e.g., $(e^a)^{-1} = e^{-a}$.

$$\left(e^{u(t)}\right)' = u'(t)e^{u(t)}$$

The *chain rule* of calculus implies this formula from the identity $(e^x)' = e^x$.

 $\ln AB = \ln A + \ln B$

In words, the logarithm of a product of factors is the sum of the logarithms of the factors.

$$B\ln(A) = \ln\left(A^B\right)$$

Negatives are allowed, e.g., $-\ln A = \ln \frac{1}{A}$.

$$(\ln|u(t)|)' = \frac{u'(t)}{u(t)}$$

The identity $(\ln(x))' = 1/x$ implies this general version by the *chain rule*.