5.5 Undetermined Coefficients

The method of undetermined coefficients applies to solve differential equations

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=r(x) . \tag{1}
\end{equation*}
$$

It finds a particular solution y_{p} without the integration steps present in variation of parameters. The method's importance is argued from its direct applicability to second order differential equations in mechanics and circuit theory. The requirements and limitations:

1. The coefficients a, b, c in (1) are constant.
2. The function $r(x)$ is a sum of constants times atoms.

Atoms. An atom is a term having one of the forms

$$
x^{m}, x^{m} e^{a x}, x^{m} \cos b x, x^{m} \sin b x, x^{m} e^{a x} \cos b x \quad \text { or } \quad x^{m} e^{a x} \sin b x .
$$

The symbols a and b are real constants, with $b>0$. Symbol $m \geq 0$ is an integer. The terms $x^{3}, x \cos 2 x, \sin x, e^{-x}, x^{6} e^{-\pi x}$ are atoms. Conversely, given $r(x)=4 \sin x+5 x e^{x}$, then the atoms of $r(x)$ are $\sin x$ and $x e^{x}$: split the sum into terms and drop the coefficients 4 and 5 to identify atoms. Included as possible functions $r(x)$ in (1) are $\sinh x$ and $\cos ^{3} x$, due to identities from algebra and trigonometry. Specifically excluded are $\ln |x|,|x|, e^{x^{2}}$ and fractions like $x /\left(1+x^{2}\right)$.
Atoms A and B are called related atoms if their successive derivative formulae contain a common atom. A simple test for non-trigonometric atoms is $A / B=x^{p}$ for some integer $p(p=0, p>0, p<0$ allowed). For instance, $e^{x}, x e^{x}$ and $x^{3} e^{x}$ are related atoms of $x^{2} e^{x}$.

The Basic Trial Solution Method

1. Repeatedly differentiate the atoms of $r(x)$ until no new atoms appear. Multiply the distinct atoms so found by undetermined coefficients $d_{1}, d_{2}, \ldots, d_{k}$, then add to define a trial solution y.
2. Fixup rule: if the homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ has solution y_{h} containing an atom A which appears in the trial solution y, then replace each related atom B in y by $x B$ (other atoms appearing in y are unchanged). Repeat the fixup rule until y contains no atom of y_{h}. The modified expression y is called the corrected trial solution.
3. Substitute y into the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=r(x)$. Match atoms left and right to write out linear algebraic equations for the undetermined coefficients $d_{1}, d_{2}, \ldots, d_{k}$.
4. Solve the equations. The trial solution y with evaluated coefficients $d_{1}, d_{2}, \ldots, d_{k}$ becomes the particular solution y_{p}.

Superposition. The relation $y=y_{h}+y_{p}$ suggests solving equation (1) in two stages: (a) Apply the linear equation recipe to find y_{h}; (b) Apply the basic trial solution method to find y_{p}. We expect to find two arbitrary constants c_{1}, c_{2} in the solution y_{h}, but in contrast, no arbitrary constants appear in y_{p}. Calling $d_{1}, d_{2}, d_{3}, \ldots$ undetermined coefficients is misleading, because in fact they are eventually determined.
Background. The basic trial solution method requires background in the solution of simultaneous linear algebraic equations, as is often taught in college algebra. Readers with linear algebra background will have an easier time with the details. Literature normally omits details of the basic trial solution method, referencing only the method of undetermined coefficients.

Further study. The basic trial solution method is enriched by developing a library of special methods for finding y_{p}, which includes Kümmer's method; see page 256 . The library provides a justification of the basic trial solution method. The only background required is college algebra and polynomial calculus. The trademark of the library method is the absence of linear algebra, tables or special cases, that can be found in other literature on the subject.

Illustration. Let's solve $y^{\prime \prime}-y=x+x e^{x}$, verifying that $y_{h}=c_{1} e^{x}+$ $c_{2} e^{-x}$ and $y_{p}=-x-\frac{1}{4} x e^{x}+\frac{1}{4} x^{2} e^{x}$.

Solution:

Homogeneous solution. The characteristic equation $r^{2}-1=0$ has roots $r= \pm 1$. Recipe case 1 implies $y_{h}=c_{1} e^{x}+c_{2} e^{-x}$.
Initial trial solution. The atoms of $r(x)=x+x e^{x}$ are x and $x e^{x}$. Differentiation of the atoms gives a new list of distinct atoms $1, x, e^{x}, x e^{x}$. The undetermined coefficients are given symbols $d_{1}, d_{2}, d_{3}, d_{4}$. Then the initial trial solution is

$$
y=d_{1}+d_{2} x+d_{3} e^{x}+d_{4} e^{x}
$$

Fixup rule. The atoms of y_{h} are e^{x} and e^{-x}. Atom $A=e^{x}$ appears in the trial solution y. The related atoms of y are e^{x} and $x e^{x}$, which are replaced in y by $x\left(e^{x}\right)$ and $x\left(x e^{x}\right)$, respectively. Then the final trial solution is (the atoms 1 and x were unaffected by the fixup rule):

$$
y=d_{1}+d_{2} x+d_{3} x e^{x}+d_{4} x^{2} e^{x}
$$

Substitute and find the equations. The details:

$$
\begin{array}{rlrl}
\text { LHS }= & y^{\prime \prime}-y & & \text { Left side of the equation. } \\
= & {\left[y_{1}^{\prime \prime}-y_{1}\right]+\left[y_{2}^{\prime \prime}-y_{2}\right]} & & \text { Define } y_{1}=d_{1}+d_{2} x, y_{2}=d_{3} x e^{x}+ \\
= & & {\left[0-y_{1}\right]+} & \\
d_{4} x^{2} e^{x}, \text { then let } y=y_{1}+y_{2} . \\
= & & \text { Use } y_{1}^{\prime \prime}=0 \text { and } y_{2}^{\prime \prime}=2 d_{3} e^{x}+2 d_{4} e^{x}+ \\
& -d_{1}-d_{2} x+ & \left.\left(2 d_{4}+2 d_{4}\right) e^{x}+4 d_{4} x e^{x}\right] & \\
4 d_{4} x e^{x}+y_{2} .
\end{array}
$$

Because LHS $=$ RHS and RHS $=x+x e^{x}$, the above gives the relation

$$
-d_{1}-d_{2} x+\left(2 d_{3}+2 d_{4}\right) e^{x}+4 d_{4} x e^{x}=x+x e^{x}
$$

Equate coefficients of matching atoms left and right to give the system of equations

$$
\begin{aligned}
& 0=-d_{1} \\
& 1=-d_{2} \\
& 0=2 d_{3}+2 d_{4}, \\
& 1=4 d_{4}
\end{aligned}
$$

Solve the equations. Solving by back-substitution gives $d_{1}=0, d_{2}=-1$, $d_{4}=1 / 4, d_{3}=-1 / 4$. The trial solution with determined coefficients d_{1}, d_{2}, d_{3}, d_{4} becomes the particular solution

$$
y_{p}=-x-\frac{1}{4} x e^{x}+\frac{1}{4} x^{2} e^{x} .
$$

Report $y=y_{h}+y_{p}$. From above, $y_{h}=c_{1} e^{x}+c_{2} e^{-x}$ and $y_{p}=-x-\frac{1}{4} x e^{x}+$ $\frac{1}{4} x^{2} e^{x}$. Then $y=y_{h}+y_{p}$ is given by

$$
y=c_{1} e^{x}+c^{2} e^{-x}-x-\frac{1}{4} x e^{x}+\frac{1}{4} x^{2} e^{x} .
$$

Answer check. Computer algebra system maple is used.

```
yh:=c1*exp(x)+c2*exp(-x);
yp:=-x-(1/4)*x*exp (x)+(1/4)*x^2*exp (x);
de:=diff(y(x),x,x)-y(x)=x+x*exp(x):
odetest(y(x)=yh+yp,de); # Success for a report of zero.
```

9 Example (Sine-Cosine Trial solution) Verify for $y^{\prime \prime}+4 y=\sin x-\cos x$ that $y_{p}(x)=5 \cos x+3 \sin x$, by using the trial solution $y=A \cos x+$ $B \sin x$.

Solution: Substitute $y=A \cos x+B \sin x$ into the differential equation and use $u^{\prime \prime}=-u$ for $u=\sin x$ or $u=\cos x$ to obtain the relation

$$
\begin{aligned}
\sin x-\cos x & =y^{\prime \prime}+4 y \\
& =(-A+4) \cos x+(-B+4) \sin x
\end{aligned}
$$

Comparing sides, matching sine and cosine terms, gives

$$
\begin{aligned}
& -A+4= \\
& -B+4=1
\end{aligned}
$$

Solving, $A=5$ and $B=3$. The trial solution $y=A \cos x+B \sin x$ becomes $y_{p}(x)=5 \cos x+3 \sin x$. Generally, this method produces linear algebraic equations that must be solved by linear algebra techniques.

10 Example (Basic Trial Solution Method: I)

Solve for y_{p} in $y^{\prime \prime}=2-x+x^{3}$ using the basic trial solution method, verifying $y_{p}=x^{2}-x^{3} / 6+x^{5} / 20$.

Solution:

Homogeneous solution. The equation $y^{\prime \prime}=0$ has characteristic equation $r^{2}=0$ and therefore $y_{h}=c_{1}+c_{2} x$.
Initial trial solution. The right side $r(x)=2-x+x^{3}$ has atoms $1, x, x^{3}$. Repeated differentiation of the atoms gives the new list of atoms $1, x, x^{2}, x^{3}$. Then the initial trial solution is

$$
y=d_{1}+d_{2} x+d_{3} x^{2}+d_{4} x^{3} .
$$

Fixup rule and final trial solution. The homogeneous solution $y_{h}=c_{1}+$ $c_{2} x$ has atoms $1, x$. Each of these atoms appears in the initial trial solution. Multiply each related atom in y by x. Repeat the process again to eliminate all duplications. Then the final trial solution is

$$
y=x^{2}\left(d_{1}+d_{2} x+d_{3} x^{2}+d_{4} x^{3}\right) .
$$

Substitute and find the equations. The details:

$$
\begin{aligned}
2-x+x^{3} & =y^{\prime \prime} & & \text { Reverse sides. } \\
& =2 d_{1}+6 d_{2} x+12 d_{3} x^{2}+20 d_{4} x^{3} & & \begin{array}{l}
\text { Substitute the final trial } \\
\text { solution. }
\end{array}
\end{aligned}
$$

Equate coefficients of atoms on each side of the equal sign to obtain the system

$$
\begin{aligned}
2 d_{1} & =2 \\
6 d_{2} & =-1 \\
12 d_{3} & =0, \\
20 d_{4} & =1
\end{aligned}
$$

Solve the equations. This is a triangular system of linear equations for unknowns $d_{1}, d_{2}, d_{3}, d_{4}$. Solving gives $d_{1}=1, d_{2}=-1 / 6, d_{3}=0, d_{4}=1 / 20$.
Report y_{p}. The expression $y=x^{2}\left(d_{1}+d_{2} x+d_{3} x^{2}+d_{4} x^{3}\right)$ after substitution of the values found gives

$$
y=x^{2}\left(1-x / 6+x^{3} / 20\right) .
$$

11 Example (Basic Trial Solution Method: II)

Solve $y^{\prime \prime}+y=2+e^{x}+\sin (x)$ by the basic trial solution method, verifying $y=c_{1} \cos (x)+c_{2} \sin (x)+2+\frac{1}{2} e^{x}-\frac{1}{2} \sin x$.

Solution:

Homogeneous solution. The characteristic equation $r^{2}+1=0$ has roots $r= \pm i$. The recipe Case $\mathbf{3}$ implies

$$
y_{h}=c_{1} \cos x+c_{2} \sin x,
$$

where c_{1} and c_{2} are arbitrary constants. The atoms of y_{h} are $\cos x, \sin x$.

Initial trial solution. The atoms of $r(x)=2+e^{x}+\sin x$ are $1, e^{x}$ and $\sin x$. The derivatives of the atoms contain the list of distinct atoms $1, e^{x}, \cos x, \sin x$. An initial trial solution is

$$
y=d_{1}+d_{2} e^{x}+d_{3} \cos x+d_{4} \sin x
$$

Fixup rule. The atoms of y_{h} appear in the trial solution y. Replace the related atoms $\cos x, \sin x$ in y by $x \cos x, x \sin x$. Then (atoms $1, e^{x}$ are unchanged)

$$
y=d_{1}+d_{2} e^{x}+d_{3} x \cos x+d_{4} x \sin x
$$

This trial solution has no atoms matching atoms of y_{h}, therefore the fixup rule finishes with the final trial solution y defined as above.

Substitute and find equations.

$$
\begin{aligned}
\text { LHS } & =y^{\prime \prime}+y & & \text { Left side of the equation } \\
& =y_{1}+2 d_{2} e^{\prime \prime}-2 d_{3} \sin (x)+2 d_{4} \cos (x) & & \text { Substitute trial solution } y
\end{aligned}
$$

The relation LHS $=$ RHS becomes

$$
d_{1}+2 d_{2} e^{x}-2 d_{3} \sin (x)+2 d_{4} \cos (x)=2+e^{x}+\sin (x)
$$

Equating coefficients of atoms left and right gives the equations

$$
\begin{aligned}
d_{1} & =2 \\
2 d_{2} & =1 \\
-2 d_{3} & =1 \\
2 d_{4} & =0
\end{aligned}
$$

Solve the equations. There are no details, because the answers are already displayed above as $d_{1}=2, d_{2}=1 / 2, d_{3}=-1 / 2, d_{4}=0$.
Solution y_{p}. The particular solution is obtained from the trial solution y by replacing the undetermined coefficients by their values determined above:

$$
y_{p}=2+\frac{1}{2} e^{x}-\frac{1}{2} \sin x .
$$

General Solution. Add y_{h} and y_{p} to obtain the general solution

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+2+\frac{1}{2} e^{x}-\frac{1}{2} \sin x
$$

Answer check. Computer algebra system maple checks the answer as follows.

```
dsolve(diff(y(x),x,x)+y(x)=2+exp(x)+\operatorname{sin}(\textrm{x}),\textrm{y}(\textrm{x}))
# y(x) = 2+1/2*exp(x)-1/2*\operatorname{cos}(x)*x+_C1*\operatorname{cos}(x)+_C2*sin(x)
```


12 Example (Basic Trial Solution Method: III)

Solve for y_{p} in $y^{\prime \prime}-2 y^{\prime}+y=\left(1+x-x^{2}\right) e^{x}$ by the basic trial solution method, verifying that $y_{p}=\left(x^{2} / 2+x^{3} / 6-x^{4} / 12\right) e^{x}$.

Solution:

Homogeneous solution. The characteristic equation $r^{2}-2 r+1=0$ for $y^{\prime \prime}-2 y^{\prime}+y=0$ has a double root $r=1$. The recipe Case 2 implies $y_{h}=$ $c_{1} e^{x}+c_{2} x e^{x}$, where c_{1} and c_{2} are arbitrary constants. The atoms of y_{h} are e^{x} and $x e^{x}$.
Initial trial solution. The derivatives of $r(x)=\left(1+x-x^{2}\right) e^{x}$ use the list of distinct atoms $e^{x}, x e^{x}, x^{2} e^{x}$. An initial trial solution is

$$
y=\left(d_{1}+d_{2} x+d_{3} x^{2}\right) e^{x}
$$

Fixup rule and final trial solution. The atoms of y_{h} appear in the initial trial solution y. The fixup rule implies y should be multiplied twice by x to obtain the final trial solution

$$
y=x^{2}\left(d_{1}+d_{2} x+d_{3} x^{2}\right) e^{x} .
$$

Substitute and find the equations. Substitute the final trial y solution into $y^{\prime \prime}-2 y^{\prime}+y=\left(1+x-x^{2}\right) e^{x}$, in order to find the undetermined coefficients d_{1}, d_{2}, d_{3}. To present the details, let $q(x)=x^{2}\left(d_{1}+d_{2} x+d_{3} x^{2}\right)$, then $y=q(x) e^{x}$ implies

$$
\begin{aligned}
\text { LHS } & =y^{\prime \prime}-2 y^{\prime}+y \\
& =\left[q(x) e^{x}\right]^{\prime \prime}-2\left[q(x) e^{x}\right]^{\prime}+q(x) e^{x} \\
& =q(x) e^{x}+2 q^{\prime}(x) e^{x}+q^{\prime \prime}(x) e^{x}-2 q^{\prime}(x) e^{x}-2 q(x) e^{x}+q(x) e^{x} \\
& =q^{\prime \prime}(x) e^{x} \\
& =\left[2 d_{1}+6 d_{2} x+12 d_{2} x^{2}\right] e^{x} .
\end{aligned}
$$

Matching coefficients of atoms left and right gives the equations

$$
\begin{aligned}
2 d_{1} & =1, \\
6 d_{2} & =1, \\
12 d_{3} & =-1 .
\end{aligned}
$$

Solve the equations. The above system needs no further analysis: $d_{1}=1 / 6$, $d_{2}=1 / 6, d_{3}=-1 / 12$.
Report y_{h}. The trial solution with evaluated coefficients becomes

$$
y_{p}=x^{2}\left(1 / 2+x / 6-x^{2} / 12\right) e^{x} .
$$

General solution. The relation $y=y_{h}+y_{p}$ becomes

$$
y=c_{1} e^{x}+c_{2} x e^{x}+x^{2}\left(1 / 2+x / 6-x^{2} / 12\right) e^{x} .
$$

Answer check. The maple code:

```
de:= diff (y(x),x,x)-2*diff (y(x),x)+y(x)=(1+x-x^2)*exp(x);
dsolve(de,y(x));
# y(x) =1/2*exp(x)*x^2 + 1/6*exp(x)*x^3 -
# 1/12*exp(x)*x^4+_C1*exp (x)+_C2*exp (x)*x
```


Exercises 5.5

Polynomial Solutions. Determine a polynomial solution y_{p} for the given differential equation.

1. $y^{\prime \prime}=x$
2. $y^{\prime \prime}=x-1$
3. $y^{\prime \prime}=x^{2}-x$
4. $y^{\prime \prime}=x^{2}+x-1$
5. $y^{\prime \prime}-y^{\prime}=1$
6. $y^{\prime \prime}-5 y^{\prime}=10$
7. $y^{\prime \prime}-y^{\prime}=x$
8. $y^{\prime \prime}-y^{\prime}=x-1$
9. $y^{\prime \prime}-y^{\prime}+y=1$
10. $y^{\prime \prime}-y^{\prime}+y=-2$
11. $y^{\prime \prime}+y=1-x$
12. $y^{\prime \prime}+y=2+x$
13. $y^{\prime \prime}-y=x^{2}$
14. $y^{\prime \prime}-y=x^{3}$

Polynomial-Exponential Solutions. Determine a solution y_{p} for the given differential equation.
15. $y^{\prime \prime}+y=e^{x}$
16. $y^{\prime \prime}+y=e^{-x}$
17. $y^{\prime \prime}=e^{2 x}$
18. $y^{\prime \prime}=e^{-2 x}$
19. $y^{\prime \prime}-y=(x+1) e^{2 x}$
20. $y^{\prime \prime}-y=(x-1) e^{-2 x}$
21. $y^{\prime \prime}-y^{\prime}=(x+3) e^{2 x}$
22. $y^{\prime \prime}-y^{\prime}=(x-2) e^{-2 x}$
23. $y^{\prime \prime}-3 y^{\prime}+2 y=\left(x^{2}+3\right) e^{3 x}$
24. $y^{\prime \prime}-3 y^{\prime}+2 y=\left(x^{2}-2\right) e^{-3 x}$

Sine and Cosine Solutions. Determine a solution y_{p} for the given differential equation.
25. $y^{\prime \prime}=\sin (x)$
26. $y^{\prime \prime}=\cos (x)$
27. $y^{\prime \prime}+y=\sin (x)$
28. $y^{\prime \prime}+y=\cos (x)$
29. $y^{\prime \prime}=(x+1) \sin (x)$
30. $y^{\prime \prime}=(x+1) \cos (x)$
31. $y^{\prime \prime}-y=(x+1) e^{x} \sin (2 x)$
32. $y^{\prime \prime}-y=(x+1) e^{x} \cos (2 x)$
33. $y^{\prime \prime}-y^{\prime}-y=\left(x^{2}+x\right) e^{x} \sin (2 x)$
34. $y^{\prime \prime}-y^{\prime}-y=\left(x^{2}+x\right) e^{x} \cos (2 x)$

Undetermined Coefficients Algorithm. Determine a solution y_{p} for the given differential equation. These exercises require decomposition into easily-solved equations.
35. $y^{\prime \prime}=x+\sin (x)$
36. $y^{\prime \prime}=1+x+\cos (x)$
37. $y^{\prime \prime}+y=x+\sin (x)$
38. $y^{\prime \prime}+y=1+x+\cos (x)$
39. $y^{\prime \prime}+y=\sin (x)+\cos (x)$
40. $y^{\prime \prime}+y=\sin (x)-\cos (x)$
41. $y^{\prime \prime}=x+x e^{x}+\sin (x)$
42. $y^{\prime \prime}=x-x e^{x}+\cos (x)$
43. $y^{\prime \prime}-y=\sinh (x)+\cos ^{2}(x)$
44. $y^{\prime \prime}-y=\cosh (x)+\sin ^{2}(x)$
45. $y^{\prime \prime}+y^{\prime}-y=x^{2} e^{x}+x e^{x} \cos (2 x)$
46. $y^{\prime \prime}+y^{\prime}-y=x^{2} e^{-x}+x e^{x} \sin (2 x)$

