The Basic Trial Solution Method. Outlined here is the method for a second order differential equation $ay'' + by' + cy = f(x)$. The method applies unchanged for nth order equations.

Step 1. Repeatedly differentiate the atoms of $f(x)$ until no new atoms appear. Collect the distinct atoms so found into a list of k atoms. Multiply these atoms by undetermined coefficients d_1, d_2, \ldots, d_k, then add, defining trial solution y.

Step 2. Substitute y into the differential equation.

Fixup Rule I. If some variable d_p is missing in the equation, then step 2 fails. Correct the trial solution as follows. Variable d_p appears in y as term d_pA, where A is an atom. Multiply A and all its related atoms B by x. The modified expression y is called a corrected trial solution. Repeat step 2 until the equation contains all k variables.

Step 3. Match coefficients of atoms left and right to write out linear algebraic equations for d_1, d_2, \ldots, d_k. Solve the equations for the unique solution.

Step 4. The corrected trial solution y with evaluated coefficients d_1, d_2, \ldots, d_k becomes the particular solution y_p.

26
Symbols. The symbols c_1, c_2 are reserved for use as arbitrary constants in the general solution y_h of the homogeneous equation. Symbols d_1, d_2, d_3, ... are reserved for use in the trial solution y of the non-homogeneous equation. Abbreviations: $c = \text{constant}$, $d = \text{determined}$.

Superposition. The relation $y = y_h + y_p$ suggests solving $ay'' + by' + cy = f(x)$ in two stages:

(a) Apply the linear equation recipe to find y_h.

(b) Apply the basic trial solution method to find y_p.

We expect to find two arbitrary constants c_1, c_2 in the solution y_h, but in contrast, no arbitrary constants appear in y_p. Calling d_1, d_2, d_3, ... undetermined coefficients is misleading, because in fact they are eventually determined.
Fixup rule II. The rule predicts the corrected trial solution y without having to substitute y into the differential equation.

- Write down y_h, the general solution of homogeneous equation $ay'' + by' + cy = 0$, having arbitrary constants c_1, c_2. Create the corrected trial solution y iteratively, as follows.

- Cycle through each term $d_p A$, where A is an atom. If A is also an atom appearing in y_h, then multiply $d_p A$ and each related atom term $d_q B$ by x. Other terms appearing in y are unchanged.

- Repeat until each term $d_p A$ has atom A distinct from all atoms appearing in homogeneous solution y_h. The modified expression y is called the *corrected trial solution*.
Fixup rule III. The rule predicts the corrected trial solution y without substituting it into the differential equation. This iterative algebraic method uses the roots of the characteristic equation to create y.

- Write down the roots of the characteristic equation. Let L denote the list of distinct atoms for these roots.

- Cycle through each term d_pA, where A is a atom. If A appears in list L, then multiply d_pA and each related atom term d_qB by x. Other terms appearing in y are unchanged.

- Repeat until the atom A in an arbitrary term d_pA of y does not appear in list L.* The modified expression y is called the corrected trial solution.

*The number s of repeats for initial term d_pA equals the multiplicity of the root r which created atom A in list L.