The Basic Trial Solution Method. Outlined here is the method for a second order differential equation ay''+by'+cy = f(x). The method applies unchanged for *n*th order equations.

- Step 1. Repeatedly differentiate the atoms of f(x) until no new atoms appear. Collect the distinct atoms so found into a list of k atoms. Multiply these atoms by **undetermined coefficients** d_1, d_2, \ldots, d_k , then add, defining **trial solution** y.
- Step 2. Substitute *y* into the differential equation.

Fixup Rule I. If some variable d_p is missing in the equation, then step 2 fails. Correct the trial solution as follows. Variable d_p appears in y as term d_pA , where A is an atom. Multiply A and all its related atoms B by x. The modified expression y is called a **corrected trial solution**. Repeat step 2 until the equation contains all k variables.

- Step 3. Match coefficients of atoms left and right to write out linear algebraic equations for d_1, d_2, \ldots, d_k . Solve the equations for the unique solution.
- Step 4. The corrected trial solution y with evaluated coefficients d_1, d_2, \ldots, d_k becomes the particular solution y_p .

Symbols. The symbols c_1 , c_2 are reserved for use as arbitrary constants in the general solution y_h of the homogeneous equation. Symbols d_1 , d_2 , d_3 , ... are reserved for use in the trial solution y of the non-homogeneous equation. Abbreviations: c = constant, d = determined.

Superposition. The relation $y = y_h + y_p$ suggests solving ay'' + by' + cy = f(x) in two stages:

- (a) Apply the linear equation recipe to find y_h .
- (b) Apply the basic trial solution method to find y_p .

We expect to find two arbitrary constants c_1 , c_2 in the solution y_h , but in contrast, no arbitrary constants appear in y_p . Calling d_1 , d_2 , d_3 , ... undetermined coefficients is misleading, because in fact they are eventually determined.

Fixup rule II. The rule predicts the corrected trial solution y without having to substitute y into the differential equation.

- Write down y_h , the general solution of homogeneous equation ay'' + by' + cy = 0, having arbitrary constants c_1 , c_2 . Create the corrected trial solution y iteratively, as follows.
- Cycle through each term d_pA , where A is a atom. If A is also an atom appearing in y_h , then multiply d_pA and each **related atom** term d_qB by x. Other terms appearing in y are unchanged.
- Repeat until each term d_pA has atom A distinct from all atoms appearing in homogeneous solution y_h. The modified expression y is called the corrected trial solution.

Fixup rule III. The rule predicts the corrected trial solution y without substituting it into the differential equation. This iterative algebraic method uses the roots of the characteristic equation to create y.

- Write down the roots of the characteristic equation. Let *L* denote the list of distinct atoms for these roots.
- Cycle through each term d_pA, where A is a atom. If A appears in list L, then multiply d_pA and each related atom term d_qB by x. Other terms appearing in y are unchanged.
- Repeat until the atom A in an arbitrary term d_pA of y does not appear in list L.* The modified expression y is called the corrected trial solution.

*The number s of repeats for initial term d_pA equals the multiplicity of the root r which created atom A in list L.