Chapter 6

Topics in Linear Differential Equations

Developed here is the theory for higher order linear constant-coefficient differential equations. Besides a basic recipe for the solution of such equations, extensions are developed for the topics of variation of parameters and undetermined coefficients.

Enrichment topics include the Cauchy-Euler differential equation, the Cauchy kernel for second order linear differential equations, and a library of special methods for undetermined coefficients methods, the latter having prerequisites of only basic calculus and college algebra. Developed with the library methods is a verification of the method of undetermined coefficients, via Kümmer's method.

6.1 Higher Order Linear Equations

Developed here is the recipe for higher order linear differential equations with constant coefficients

(1)
$$y^n + a_{n-1}y^{(n-1)} + \dots + a_0y = 0$$

The variation of parameters formula and the method of undetermined coefficients are discussed for the associated forced equation

(2)
$$y^n + a_{n-1}y^{(n-1)} + \dots + a_0y = r(x).$$

A Recipe for Higher Order Equations

Consider equation (1) with **real** coefficients. The **characteristic equation** of (1) is the polynomial equation

(3)
$$r^n + a_{n-1}r^{n-1} + \dots + a_0 = 0.$$

The general solution y of (1) is constructed as follows.

Higher Order Recipe Stage 1.

Repeat (I) below for all distinct real roots r = a of the characteristic equation (3). Symbol k is the maximum power such that $(r-a)^k$ divides the characteristic polynomial, which means that k equals the algebraic multiplicity of the root r = a.

(I) The equation r-a = 0 is the characteristic equation of u'-au = 0, having general solution

$$u = u_0 e^{ax}$$
.

Replace u_0 by a polynomial in x with k arbitrary coefficients. Add the modified expression u to the general solution y.

Higher Order Recipe Stage 2.

Repeat (II) below for all distinct complex roots z = a + ib, b > 0, of the characteristic equation (3). Symbol k is the maximum power such that $(r-z)^k$ divides the characteristic polynomial, which means that k equals the algebraic multiplicity of the root r = z.

(II) The equation $(r-z)(r-\overline{z}) = 0$ is the characteristic equation of a second order differential equation whose **Case 3** recipe solution is

$$u = u_1 e^{ax} \cos bx + u_2 e^{ax} \sin bx.$$

Replace the constants u_1 , u_2 by polynomials in x with k arbitrary coefficients, a total of 2k coefficients. Add the modified expression u to the general solution y.

Exponential Solutions. Characteristic equation (3) is formally obtained from the differential equation by replacing $y^{(k)}$ by r^k . This device for remembering how to form the characteristic equation is attributed to **Euler**, because of the following fact.

Theorem 1 (Euler's Exponential Substitution)

Let w be a real or complex number. The function $y(x) = e^{wx}$ is a solution of (1) if and only if r = w is a root of the characteristic equation (3).

Factorization. According to the fundamental theorem of algebra, equation (3) has exactly n roots, counted according to multiplicity. Some number of the roots are real and the remaining roots appear in complex conjugate pairs. This implies that every characteristic equation has a **factored form**

$$(r-a_1)^{k_1}\cdots(r-a_q)^{k_q}Q_1(r)^{m_1}\cdots Q_p(r)^{m_p}=0$$

where a_1, \ldots, a_q are the **distinct real roots** of the characteristic equation of algebraic multiplicities k_1, \ldots, k_q , respectively, and $Q_1(r), \ldots, Q_p(r)$ are the distinct real quadratic factors of the form $(r-z)(r-\overline{z})$, where z exhausts the **distinct complex roots** z = a + ib with b > 0, having corresponding multiplicities m_1, \ldots, m_p .

Some Recipe Details. Recipe Stage 1 loops on the distinct linear factors while recipe Stage 2 loops on the distinct real quadratic factors. The y-differential equation can be expressed in D-operator notation as

$$\left((D - a_1)^{k_1} \cdots (D - a_q)^{k_q} Q_1(D)^{m_1} \cdots Q_p(D)^{m_p} \right) y = 0.$$

The recipe is based upon the fact that the general solution y is the sum of general solution expressions obtained from each distinct factor in this operator form. Specifically, the general solution of

$$(D-a)^{k+1}y = 0$$

is a polynomial $u = c_0 + c_1 x + \cdots + c_k x^k$ with k + 1 terms times e^{ax} . This fact is proved by the change of variable $y = e^{ax}u$, which finds an equivalent equation $D^{k+1}u = 0$, solvable by quadrature.

An Illustration of the Higher Order Recipe.

Consider the problem of solving a constant coefficient linear differential equation (1) of order 11 having factored characteristic equation

$$(r-2)^{3}(r+1)^{2}(r^{2}+4)^{2}(r^{2}+4r+5) = 0.$$

To be applied is the recipe for higher order equations. Then **Stage 1** loops on the two linear factors r - 2 and r + 1, while **Stage 2** loops on the two real quadratic factors $r^2 + 4$ and $r^2 + 4r + 5$.

Hand solutions can be organized by a tabular method for generating the general solution y.

Factor	$(r-2)^3$	$(r+1)^2$	$(r^2 + 4)^2$	$(r^2 + 4r + 5)$
Multiplicity	3	2	2	1
Base Root	r=2	r = -1	r = 0 + 2i	r = -2 + i
Base Solution	$u_0 e^{2x}$	$u_0^* e^{-x}$	$u_1 \cos 2x$	$u_1^* e^{-2x} \cos x$
			$+u_2\sin 2x$	$+u_2^*e^{-2x}\sin x$

Symbols c_1, \ldots, c_{11} will represent arbitrary constants in the general solution y. Symbols $u_0, u_0^*, u_1, u_2, u_1^*, u_2^*$ initially represent constants, but they will be assigned polynomial expressions, according to root multi-

Root	Multiplicity	Polynomial Assigned
r = 2	3	$u_0 = c_1 + c_2 x + c_3 x^2$
r = -1	2	$u_0^* = c_4 + c_5 x$
r = 0 + 2i	2	$u_1 = c_6 + c_7 x$
r = -2 + i	1	$u_2 = c_8 + c_9 x$ $u_1^* = c_{10}$ $u_1^* = c_{11}$

plicity, as follows.

The recipe Stage 1 and Stage 2 solutions are added to y, giving

$$y = u_0 e^{2x} + u_0^* e^{-x} + u_1 \cos 2x + u_2 \sin 2x + u_1^* e^{-2x} \cos x + u_2^* e^{-2x} \sin x = (c_1 + c_2 x + c_3 x^2) e^{2x} + (c_4 + c_5 x) e^{-x} + (c_6 + c_7 x) \cos 2x + (c_8 + c_9 x) \sin 2x + c_{10} e^{-2x} \cos x + c_{11} e^{-2x} \sin x.$$

Computer Algebra System Solution. The system maple can symbolically solve a higher order equation. Below, @ is the function composition operator, @@ is the repeated composition operator and D is the differentiation operator. The coding writes the factors of $(r-2)^3(r+1)^2(D^2+4)^2(D^2+4D+5)$ as differential operators $(D-2)^3$, $(D+1)^2$, $(D^2+4)^2$, D^2+4D+5 . Then the differential equation is the composition of the component factors.

id:=x->x; F1:=(D-2*id) @@ 3; F2:=(D+id) @@ 2; F3:=(D@D+4*id) @@ 2; F4:=D@D+4*D+5*id; de:=(F1@F2@F3@F4)(y)(x)=0: dsolve({de},y(x));

Variation of Parameters Formula

The Picard-Lindelöf theorem implies a unique solution defined on $(-\infty,\infty)$ for the initial value problem

(4)
$$y^{n} + a_{n-1}y^{(n-1)} + \dots + a_{0}y = 0, y(0) = \dots = y^{(n-2)}(0) = 0, \quad y^{(n-1)}(0) = 1.$$

The unique solution is called **Cauchy's kernel**, written $\mathcal{K}(x)$.

To illustrate, Cauchy's kernel $\mathcal{K}(x)$ for y''' - y'' = 0 is obtained from its general solution $y = c_1 + c_2 x + c_3 e^x$ by computing the values of the constants from initial conditions y(0) = 0, y'(0) = 0, y''(0) = 1, giving $\mathcal{K}(x) = e^x - x - 1$.

Theorem 2 (Higher Order Variation of Parameters)

Let $y^n + a_{n-1}y^{(n-1)} + \cdots + a_0y = r(x)$ have constant coefficients a_0, \ldots, a_{n-1} and continuous forcing term r(x). Denote by $\mathcal{K}(x)$ Cauchy's kernel for the homogeneous differential equation. Then a particular solution is given by the **variation of parameters formula**

(5)
$$y_p(x) = \int_0^x \mathcal{K}(x-u)r(u)du$$

This solution has zero initial conditions $y(0) = \cdots = y^{(n-1)}(0) = 0$.

Proof: Define $y(x) = \int_0^x \mathcal{K}(x-u)r(u)du$. Compute by the 2-variable chain rule applied to $F(x,y) = \int_0^x \mathcal{K}(y-u)r(u)du$ the formulae

$$\begin{array}{rcl} y(x) &=& F(x,x) \\ &=& \int_0^x \mathcal{K}(x-u) r(u) du, \\ y'(x) &=& F_x(x,x,) + F_y(x,x) \\ &=& \mathcal{K}(x-x) r(x) + \int_0^x \mathcal{K}'(x-u) r(u) du \\ &=& 0 + \int_0^x \mathcal{K}'(x-u) r(u) du. \end{array}$$

The process can be continued to obtain for $0 \le p < n-1$ the general relation

$$y^{(p)}(x) = \int_0^x \mathcal{K}^{(p)} r(u) du.$$

The relation justifies the initial conditions $y(0) = \cdots = y^{(n-1)}(0) = 0$, because each integral is zero at x = 0. Take p = n - 1 and differentiate once again to give

$$y^{(n)}(x) = \mathcal{K}^{(n-1)}(x-x)r(x) + \int_0^x \mathcal{K}^{(n)}r(u)du$$

Because $\mathcal{K}^{(n-1)}(0) = 1$, this relation implies

$$y^{(n)} + \sum_{p=0}^{n-1} a_p y^{(p)} = r(x) + \int_0^x \left(\mathcal{K}^{(n)}(x-u) + \sum_{p=0}^{n-1} a_p \mathcal{K}^{(p)}(x-u) \right) r(u) du.$$

The sum under the integrand on the right is zero, because Cauchy's kernel satisfies the homogeneous differential equation. This proves y(x) satisfies the nonhomogeneous differential equation. The proof is complete.

Undetermined Coefficients Method

The method applies to higher order nonhomogeneous differential equations

(6)
$$y' + a_{n-1}y^{(n-1)} + \dots + a_0y = r(x).$$

It finds a particular solution y_p of (6) without the integration steps present in variation of parameters. The requirements and limitations:

- **1**. The coefficients on the left side of (6) are constant.
- **2**. The function r(x) is a sum of constants times atoms.

An **atom** is a term having one of the forms

 x^m , $x^m e^{ax}$, $x^m \cos bx$, $x^m \sin bx$, $x^m e^{ax} \cos bx$ or $x^m e^{ax} \sin bx$.

The symbols a and b are real constants, with b > 0. Symbol $m \ge 0$ is an integer. Atoms A and B are called **related atoms** if their successive derivative formulae contain a common atom.

Higher Order Basic Trial Solution Method

- 1. Repeatedly differentiate the atoms of r(x) until no new atoms appear. Multiply the distinct atoms so found by **undetermined co-efficients** d_1, d_2, \ldots, d_k , then add to define a **trial solution** y.
- 2. Fixup rule: if the homogeneous equation $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = 0$ has solution y_h containing an atom A which appears in the trial solution y, then replace each related atom B in y by xB (other atoms appearing in y are unchanged). Repeat the fixup rule until y contains no atom of y_h . The modified expression y is called the corrected trial solution.
- **3**. Substitute y into the differential equation $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = r(x)$. Match atoms left and right to write out linear algebraic equations for the undetermined coefficients d_1, d_2, \ldots, d_k .
- **4**. Solve the equations. The trial solution y with evaluated coefficients d_1, d_2, \ldots, d_k becomes the particular solution y_p .

Higher Order Undetermined Coefficients Illustration.

We will solve

$$y''' - y'' = xe^x + 2x + 1 + 3\sin x,$$

verifying

$$y_p(x) = -\frac{3}{2}x^2 - \frac{1}{3}x^3 - 2xe^x + \frac{1}{2}x^2e^x + \frac{3}{2}\cos x + \frac{3}{2}\sin x.$$

Solution:

Test Applicability. The right side $r(x) = xe^x + 2x + 1 + 3 \sin x$ is a sum of terms constructed from the atoms xe^x , x, 1, $\sin x$. The left side has constant coefficients. Therefore, the method of undetermined coefficients applies to find a particular solution y_p .

Trial Solution. The atoms of r(x) are subjected to differentiation. The distinct atoms so found are 1, x, e^x , xe^x , $\cos x$, $\sin x$ (drop coefficients to identify new atoms). The initial trial solution is the expression

$$y = d_1(1) + d_2(x) + d_3(e^x) + d_4(xe^x) + d_5(\cos x) + d_6(\sin x).$$

The general solution $y_h = c_1 + c_2 x + c_3 e^x$ of y''' - y'' = 0 has atoms 1, x, e^x , all of which appear in the trial solution y. Multiply related atoms 1, x in y by x^2 to eliminate duplicate atoms 1, x which appear in y_h . Then multiply related atoms e^x , xe^x in y by x to eliminate the duplicate atom e^x which appears in y_h . The other atoms $\cos x$, $\sin x$ in y are unaffected by the fixup rule, because they are unrelated to atoms of y_h . The final trial solution is

$$y = d_1(x^2) + d_2(x^3) + d_3(xe^x) + d_4(x^2e^x) + d_5(\cos x) + d_6(\sin x).$$

Equations. To substitute the trial solution y into y''' - y'' requires formulae for y', y'', y''':

$$y' = 2 d_1 x + 3 d_2 x^2 + d_3 e^x x + d_3 e^x + 2 d_4 x e^x + d_4 x^2 e^x - d_5 \sin(x) + d_6 \cos(x), y'' = 2 d_1 + 6 d_2 x + d_3 e^x x + 2 d_3 e^x + 2 d_4 e^x + 4 d_4 x e^x + d_4 x^2 e^x - d_5 \cos(x) - d_6 \sin(x), y''' = 6 d_2 + d_3 e^x x + 3 d_3 e^x + 6 d_4 e^x + 6 d_4 x e^x + d_4 x^2 e^x + d_5 \sin(x) - d_6 \cos(x)$$

Then

$$\begin{split} r(x) &= y''' - y'' & \text{The given equation.} \\ &= 6d_2 - 2d_1 - 6d_2x + (d_3 + 4d_4)e^x + 2d_4xe^x & \text{Substitute, then} \\ &+ (d_5 - d_6)\cos(x) + (d_5 + d_6)\sin(x) & \text{collect like terms.} \end{split}$$

Also, $r(x) \equiv 1 + 2x + xe^x + 3\sin x$. Coefficients of atoms on the left and right must match. Writing out the matches gives the equations

$$\begin{array}{rrrr} -2d_1 + & 6d_2 & = 1, \\ & -6d_2 & = 2, \\ & d_3 + 4d_4 & = 0, \\ & 2d_4 & = 1, \\ & d_5 - d_6 = 0, \\ & d_5 + d_6 = 3. \end{array}$$

Solve. The first four equations can be solved by back-substitution to give $d_2 = -1/3$, $d_1 = -3/2$, $d_4 = 1/2$, $d_3 = -2$. The last two equations are solved by elimination or Cramer's rule to give $d_5 = 3/2$, $d_6 = 3/2$.

Report y_p . The trial solution y with evaluated coefficients d_1, \ldots, d_6 becomes

$$y_p(x) = -\frac{3}{2}x^2 - \frac{1}{3}x^3 - 2xe^x + \frac{1}{2}x^2e^x + \frac{3}{2}\cos x + \frac{3}{2}\sin x.$$

Exercises 6.1

Higher Order Recipe Factored. Solve the higher order equation with the given characteristic equation. Use the higher order recipe and display a table of distinct roots, multiplicities and base solutions. Verify the gen-

eral solution y with a computer algebra system, if possible.

1.
$$(r-1)(r+2)(r-3)^2 = 0$$

2. $(r-1)^2(r+2)(r+3) = 0$

- **3.** $(r-1)^3(r+2)^2r^4 = 0$
- 4. $(r-1)^2(r+2)^3r^5 = 0$ 5. $r^2(r-1)^2(r^2+4r+6) = 0$
- 6. $r^{3}(r-1)(r^{2}+4r+6)^{2}=0$
- 7. $(r-1)(r+2)(r^2+1)^2 = 0$
- 8. $(r-1)^2(r+2)(r^2+1) = 0$
- **9.** $(r-1)^3(r+2)^2(r^2+4) = 0$
- **10.** $(r-1)^4(r+2)(r^2+4)^2 = 0$
- Higher Order Recipe Unfactored.

Completely factor the given characteristic equation, then report the general solution according to the higher order recipe. Check the answer in a computer algebra system, if possible.

- **11.** $(r-1)(r^2-1)^2(r^2+1)^3 = 0$
- **12.** $(r+1)^2(r^2-1)^2(r^2+1)^2 = 0$
- **13.** $(r+2)^2(r^2-4)^2(r^2+16)^2=0$
- **14.** $(r+2)^3(r^2-4)^4(r^2+5)^2=0$
- **15.** $(r^3 1)^2(r 1)^2(r^2 1) = 0$
- **16.** $(r^3 8)^2(r 2)^2(r^2 4) = 0$
- **17.** $(r^2 4)^3(r^4 16)^2 = 0$
- **18.** $(r^2 + 8)(r^4 64)^2 = 0$
- **19.** $(r^2 r + 1)(r^3 + 1)^2 = 0$
- **20.** $(r^2 + r + 1)^2(r^3 1) = 0$

Atoms and Higher Order Equations.

- **21.** Explain why the derivatives of atom x^3e^x satisfy a higher order equation with characteristic equation $(r-1)^4 = 0$.
- **22.** Explain why the derivatives of atom $x^3 \sin x$ satisfy a higher order equation with characteristic equation $(r^2 + 1)^4 = 0$.

- **23.** Consider a fourth order equation with characteristic equation $(r - a)^4 = 0$ and general solution y. Define $y = ue^{ax}$. Find the differential equation for u.
- 24. A polynomial $u = c_0 + c_1 x + c_2 x^2$ satisfies u''' = 0. Define $y = ue^{ax}$. Prove that y satisfies a third order equation and determine its characteristic equation.
- **25.** Let y be a solution of a higher order constant-coefficient linear equation. Prove that the derivatives of y satisfy the same differential equation.
- **26.** Let y be a solution of a differential equation with characteristic equation $(r-1)^3(r+2)^6(r^2+4)^5 = 0$. Explain why y''' is a solution of a differential equation with characteristic equation $(r-1)^3(r+2)^6(r^2+4)^5r^3 = 0$.
- **27.** Let atom $A = x^2 \cos x$ appear in the general solution of a linear higher order equation. What atoms related to A must also appear in the general solution?
- **28.** Let atom $A = xe^x \cos 2x$ appear in the general solution of a linear higher order equation. What atoms related to A must also appear in the general solution?
- **29.** Let a higher order equation have characteristic equation $(r-9)^3(r-5)^2(r^2+4)^5 = 0$. Explain why the general solution is a sum of constants times atoms.
- **30.** Explain why a higher order equation has general solution a sum of constants times atoms.

Variation of Parameters.

Solve the higher order equation given by its characteristic equation and right side r(x). Display the Cauchy kernel $\mathcal{K}(x)$ and a particular solution $y_p(x)$ with fewest terms. Use a computer algebra system to evaluate integrals, if possible.

- **31.** $(r-1)(r+2)(r-3)^2 = 0,$ $r(x) = e^x$
- **32.** $(r-1)^2(r+2)(r+3) = 0$, $r(x) = e^x$
- **33.** $(r-1)^3(r+2)^2r^4 = 0,$ $r(x) = x + e^{-2x}$
- **34.** $(r-1)^2(r+2)^3r^5 = 0,$ $r(x) = x + e^{-2x}$
- **35.** $r^2(r-1)^2(r^2+4r+6)=0,$ $r(x)=x+e^x$
- **36.** $r^{3}(r-1)(r^{2}+4r+6)^{2}=0,$ $r(x)=x^{2}+e^{x}$
- **37.** $(r-1)(r+2)(r^2+1)^2 = 0$, $r(x) = \cos x + e^{-2x}$
- **38.** $(r-1)^2(r+2)(r^2+1) = 0,$ $r(x) = \sin x + e^{-2x}$
- **39.** $(r-1)^3(r+2)^2(r^2+4) = 0,$ $r(x) = \cos 2x + e^x$
- **40.** $(r-1)^4(r+2)(r^2+4)^2 = 0,$ $r(x) = \sin 2x + e^x$

Undetermined Coefficient Method. A higher order equation is given by its characteristic equation and right side r(x). Display (a) a trial solution, (b) a system of equations for the undetermined coefficients, and (c) a particular solution $y_p(x)$ with fewest terms. Use

a computer algebra system to solve for

undetermined coefficients, if possible.

- **41.** $(r-1)(r+2)(r-3)^2 = 0,$ $r(x) = e^x$
- **42.** $(r-1)^2(r+2)(r+3) = 0$, $r(x) = e^x$
- **43.** $(r-1)^3(r+2)^2r^4 = 0,$ $r(x) = x + e^{-2x}$
- **44.** $(r-1)^2(r+2)^3r^5 = 0,$ $r(x) = x + e^{-2x}$
- **45.** $r^2(r-1)^2(r^2+4r+6) = 0,$ $r(x) = x + e^x$
- **46.** $r^{3}(r-1)(r^{2}+4r+6)^{2}=0,$ $r(x)=x^{2}+e^{x}$
- **47.** $(r-1)(r+2)(r^2+1)^2 = 0$, $r(x) = \cos x + e^{-2x}$
- **48.** $(r-1)^2(r+2)(r^2+1) = 0,$ $r(x) = \sin x + e^{-2x}$
- **49.** $(r-1)^3(r+2)^2(r^2+4) = 0,$ $r(x) = \cos 2x + e^x$
- **50.** $(r-1)^4(r+2)(r^2+4)^2 = 0,$ $r(x) = \sin 2x + e^x$