Chapter 6

Topics in Linear Differential Equations

Developed here is the theory for higher order linear constant-coefficient differential equations. Besides a basic recipe for the solution of such equations, extensions are developed for the topics of variation of parameters and undetermined coefficients.

Enrichment topics include the Cauchy-Euler differential equation, the Cauchy kernel for second order linear differential equations, and a library of special methods for undetermined coefficients methods, the latter having prerequisites of only basic calculus and college algebra. Developed with the library methods is a verification of the method of undetermined coefficients, via Kümmer's method.

6.1 Higher Order Linear Equations

Developed here is the recipe for higher order linear differential equations with constant coefficients

$$
\begin{equation*}
y^{n}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=0 . \tag{1}
\end{equation*}
$$

The variation of parameters formula and the method of undetermined coefficients are discussed for the associated forced equation

$$
\begin{equation*}
y^{n}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=r(x) . \tag{2}
\end{equation*}
$$

A Recipe for Higher Order Equations

Consider equation (1) with real coefficients. The characteristic equation of (1) is the polynomial equation

$$
\begin{equation*}
r^{n}+a_{n-1} r^{n-1}+\cdots+a_{0}=0 . \tag{3}
\end{equation*}
$$

The general solution y of (1) is constructed as follows.

Higher Order Recipe Stage 1.

Repeat (I) below for all distinct real roots $r=a$ of the characteristic equation (3). Symbol k is the maximum power such that $(r-a)^{k}$ divides the characteristic polynomial, which means that k equals the algebraic multiplicity of the root $r=a$.
(I) The equation $r-a=0$ is the characteristic equation of $u^{\prime}-a u=0$, having general solution

$$
u=u_{0} e^{a x} .
$$

Replace u_{0} by a polynomial in x with k arbitrary coefficients. Add the modified expression u to the general solution y.

Higher Order Recipe Stage 2.

Repeat (II) below for all distinct complex roots $z=a+i b, b>0$, of the characteristic equation (3). Symbol k is the maximum power such that $(r-z)^{k}$ divides the characteristic polynomial, which means that k equals the algebraic multiplicity of the root $r=z$.
(II) The equation $(r-z)(r-\bar{z})=0$ is the characteristic equation of a second order differential equation whose Case 3 recipe solution is

$$
u=u_{1} e^{a x} \cos b x+u_{2} e^{a x} \sin b x .
$$

Replace the constants u_{1}, u_{2} by polynomials in x with k arbitrary coefficients, a total of $2 k$ coefficients. Add the modified expression u to the general solution y.

Exponential Solutions. Characteristic equation (3) is formally obtained from the differential equation by replacing $y^{(k)}$ by r^{k}. This device for remembering how to form the characteristic equation is attributed to Euler, because of the following fact.

Theorem 1 (Euler's Exponential Substitution)

Let w be a real or complex number. The function $y(x)=e^{w x}$ is a solution of (1) if and only if $r=w$ is a root of the characteristic equation (3).

Factorization. According to the fundamental theorem of algebra, equation (3) has exactly n roots, counted according to multiplicity. Some number of the roots are real and the remaining roots appear in complex conjugate pairs. This implies that every characteristic equation has a factored form

$$
\left(r-a_{1}\right)^{k_{1}} \cdots\left(r-a_{q}\right)^{k_{q}} Q_{1}(r)^{m_{1}} \cdots Q_{p}(r)^{m_{p}}=0
$$

where a_{1}, \ldots, a_{q} are the distinct real roots of the characteristic equation of algebraic multiplicities k_{1}, \ldots, k_{q}, respectively, and $Q_{1}(r), \ldots$, $Q_{p}(r)$ are the distinct real quadratic factors of the form $(r-z)(r-\bar{z})$, where z exhausts the distinct complex roots $z=a+i b$ with $b>0$, having corresponding multiplicities m_{1}, \ldots, m_{p}.
Some Recipe Details. Recipe Stage 1 loops on the distinct linear factors while recipe Stage 2 loops on the distinct real quadratic factors. The y-differential equation can be expressed in D-operator notation as

$$
\left(\left(D-a_{1}\right)^{k_{1}} \cdots\left(D-a_{q}\right)^{k_{q}} Q_{1}(D)^{m_{1}} \cdots Q_{p}(D)^{m_{p}}\right) y=0
$$

The recipe is based upon the fact that the general solution y is the sum of general solution expressions obtained from each distinct factor in this operator form. Specifically, the general solution of

$$
(D-a)^{k+1} y=0
$$

is a polynomial $u=c_{0}+c_{1} x+\cdots+c_{k} x^{k}$ with $k+1$ terms times $e^{a x}$. This fact is proved by the change of variable $y=e^{a x} u$, which finds an equivalent equation $D^{k+1} u=0$, solvable by quadrature.

An Illustration of the Higher Order Recipe.

Consider the problem of solving a constant coefficient linear differential equation (1) of order 11 having factored characteristic equation

$$
(r-2)^{3}(r+1)^{2}\left(r^{2}+4\right)^{2}\left(r^{2}+4 r+5\right)=0 .
$$

To be applied is the recipe for higher order equations. Then Stage 1 loops on the two linear factors $r-2$ and $r+1$, while Stage 2 loops on the two real quadratic factors $r^{2}+4$ and $r^{2}+4 r+5$.
Hand solutions can be organized by a tabular method for generating the general solution y.

Factor	$(r-2)^{3}$	$(r+1)^{2}$	$\left(r^{2}+4\right)^{2}$	$\left(r^{2}+4 r+5\right)$
Multiplicity	3	2	2	1
Base Root	$r=2$	$r=-1$	$r=0+2 i$	$r=-2+i$
Base Solution	$u_{0} e^{2 x}$	$u_{0}^{*} e^{-x}$	$u_{1} \cos 2 x$ $+u_{2} \sin 2 x$	$u_{1}^{*} e^{-2 x} \cos x$ $+u_{2}^{*} e^{-2 x} \sin x$

Symbols c_{1}, \ldots, c_{11} will represent arbitrary constants in the general solution y. Symbols $u_{0}, u_{0}^{*}, u_{1}, u_{2}, u_{1}^{*}, u_{2}^{*}$ initially represent constants, but they will be assigned polynomial expressions, according to root multi-
plicity, as follows.

Root	Multiplicity	Polynomial Assigned
$r=2$	3	$u_{0}=c_{1}+c_{2} x+c_{3} x^{2}$
$r=-1$	2	$u_{0}^{*}=c_{4}+c_{5} x$
$r=0+2 i$	2	$u_{1}=c_{6}+c_{7} x$
$r=-2+i$	1	$u_{2}=c_{8}+c_{9} x$ $u_{1}^{*}=c_{10}$ $u_{2}^{*}=c_{11}$

The recipe Stage 1 and Stage 2 solutions are added to y, giving

$$
\begin{aligned}
y= & u_{0} e^{2 x}+u_{0}^{*} e^{-x}+u_{1} \cos 2 x+u_{2} \sin 2 x \\
& +u_{1}^{*} e^{-2 x} \cos x+u_{2}^{*} e^{-2 x} \sin x \\
= & \left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{2 x} \\
& +\left(c_{4}+c_{5} x\right) e^{-x} \\
& +\left(c_{6}+c_{7} x\right) \cos 2 x+\left(c_{8}+c_{9} x\right) \sin 2 x \\
& +c_{10} e^{-2 x} \cos x+c_{11} e^{-2 x} \sin x .
\end{aligned}
$$

Computer Algebra System Solution. The system maple can symbolically solve a higher order equation. Below, © is the function composition operator, @@ is the repeated composition operator and D is the differentiation operator. The coding writes the factors of $(r-2)^{3}(r+$ $1)^{2}\left(D^{2}+4\right)^{2}\left(D^{2}+4 D+5\right)$ as differential operators $(D-2)^{3},(D+1)^{2}$, $\left(D^{2}+4\right)^{2}, D^{2}+4 D+5$. Then the differential equation is the composition of the component factors.

```
id:=x->x;
F1:=(D-2*id) @@ 3;
F2:=(D+id) @@ 2;
F3:=(D@D+4*id) @@ 2;
F4:=D@D+4*D+5*id;
de:=(F1@F2@F3@F4)(y)(x)=0 :
dsolve({de},y(x));
```


Variation of Parameters Formula

The Picard-Lindelöf theorem implies a unique solution defined on $(-\infty, \infty)$ for the initial value problem

$$
\begin{align*}
& y^{n}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=0, \\
& y(0)=\cdots=y^{(n-2)}(0)=0, \quad y^{(n-1)}(0)=1 . \tag{4}
\end{align*}
$$

The unique solution is called Cauchy's kernel, written $\mathcal{K}(x)$.
To illustrate, Cauchy's kernel $\mathcal{K}(x)$ for $y^{\prime \prime \prime}-y^{\prime \prime}=0$ is obtained from its general solution $y=c_{1}+c_{2} x+c_{3} e^{x}$ by computing the values of the
constants from initial conditions $y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=1$, giving $\mathcal{K}(x)=e^{x}-x-1$.

Theorem 2 (Higher Order Variation of Parameters)

Let $y^{n}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=r(x)$ have constant coefficients a_{0}, \ldots, a_{n-1} and continuous forcing term $r(x)$. Denote by $\mathcal{K}(x)$ Cauchy's kernel for the homogeneous differential equation. Then a particular solution is given by the variation of parameters formula

$$
\begin{equation*}
y_{p}(x)=\int_{0}^{x} \mathcal{K}(x-u) r(u) d u . \tag{5}
\end{equation*}
$$

This solution has zero initial conditions $y(0)=\cdots=y^{(n-1)}(0)=0$.
Proof: Define $y(x)=\int_{0}^{x} \mathcal{K}(x-u) r(u) d u$. Compute by the 2 -variable chain rule applied to $F(x, y)=\int_{0}^{x} \mathcal{K}(y-u) r(u) d u$ the formulae

$$
\begin{aligned}
y(x) & =F(x, x) \\
& =\int_{0}^{x} \mathcal{K}(x-u) r(u) d u \\
y^{\prime}(x) & =F_{x}(x, x,)+F_{y}(x, x) \\
& =\mathcal{K}(x-x) r(x)+\int_{0}^{x} \mathcal{K}^{\prime}(x-u) r(u) d u \\
& =0+\int_{0}^{x} \mathcal{K}^{\prime}(x-u) r(u) d u
\end{aligned}
$$

The process can be continued to obtain for $0 \leq p<n-1$ the general relation

$$
y^{(p)}(x)=\int_{0}^{x} \mathcal{K}^{(p)} r(u) d u .
$$

The relation justifies the initial conditions $y(0)=\cdots=y^{(n-1)}(0)=0$, because each integral is zero at $x=0$. Take $p=n-1$ and differentiate once again to give

$$
y^{(n)}(x)=\mathcal{K}^{(n-1)}(x-x) r(x)+\int_{0}^{x} \mathcal{K}^{(n)} r(u) d u .
$$

Because $\mathcal{K}^{(n-1)}(0)=1$, this relation implies

$$
y^{(n)}+\sum_{p=0}^{n-1} a_{p} y^{(p)}=r(x)+\int_{0}^{x}\left(\mathcal{K}^{(n)}(x-u)+\sum_{p=0}^{n-1} a_{p} \mathcal{K}^{(p)}(x-u)\right) r(u) d u .
$$

The sum under the integrand on the right is zero, because Cauchy's kernel satisfies the homogeneous differential equation. This proves $y(x)$ satisfies the nonhomogeneous differential equation. The proof is complete.

Undetermined Coefficients Method

The method applies to higher order nonhomogeneous differential equations

$$
\begin{equation*}
y^{\prime}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=r(x) . \tag{6}
\end{equation*}
$$

It finds a particular solution y_{p} of (6) without the integration steps present in variation of parameters. The requirements and limitations:

1. The coefficients on the left side of (6) are constant.
2. The function $r(x)$ is a sum of constants times atoms.

An atom is a term having one of the forms

$$
x^{m}, x^{m} e^{a x}, x^{m} \cos b x, x^{m} \sin b x, x^{m} e^{a x} \cos b x \text { or } x^{m} e^{a x} \sin b x .
$$

The symbols a and b are real constants, with $b>0$. Symbol $m \geq 0$ is an integer. Atoms A and B are called related atoms if their successive derivative formulae contain a common atom.

Higher Order Basic Trial Solution Method

1. Repeatedly differentiate the atoms of $r(x)$ until no new atoms appear. Multiply the distinct atoms so found by undetermined coefficients $d_{1}, d_{2}, \ldots, d_{k}$, then add to define a trial solution y.
2. Fixup rule: if the homogeneous equation $y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+$ $a_{0} y=0$ has solution y_{h} containing an atom A which appears in the trial solution y, then replace each related atom B in y by $x B$ (other atoms appearing in y are unchanged). Repeat the fixup rule until y contains no atom of y_{h}. The modified expression y is called the corrected trial solution.
3. Substitute y into the differential equation $y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+$ $a_{0} y=r(x)$. Match atoms left and right to write out linear algebraic equations for the undetermined coefficients $d_{1}, d_{2}, \ldots, d_{k}$.
4. Solve the equations. The trial solution y with evaluated coefficients $d_{1}, d_{2}, \ldots, d_{k}$ becomes the particular solution y_{p}.

Higher Order Undetermined Coefficients Illustration.

We will solve

$$
y^{\prime \prime \prime}-y^{\prime \prime}=x e^{x}+2 x+1+3 \sin x
$$

verifying

$$
y_{p}(x)=-\frac{3}{2} x^{2}-\frac{1}{3} x^{3}-2 x e^{x}+\frac{1}{2} x^{2} e^{x}+\frac{3}{2} \cos x+\frac{3}{2} \sin x .
$$

Solution:

Test Applicability. The right side $r(x)=x e^{x}+2 x+1+3 \sin x$ is a sum of terms constructed from the atoms $x e^{x}, x, 1, \sin x$. The left side has constant coefficients. Therefore, the method of undetermined coefficients applies to find a particular solution y_{p}.
Trial Solution. The atoms of $r(x)$ are subjected to differentiation. The distinct atoms so found are $1, x, e^{x}, x e^{x}, \cos x, \sin x$ (drop coefficients to identify new atoms). The initial trial solution is the expression

$$
y=d_{1}(1)+d_{2}(x)+d_{3}\left(e^{x}\right)+d_{4}\left(x e^{x}\right)+d_{5}(\cos x)+d_{6}(\sin x) .
$$

The general solution $y_{h}=c_{1}+c_{2} x+c_{3} e^{x}$ of $y^{\prime \prime \prime}-y^{\prime \prime}=0$ has atoms $1, x, e^{x}$, all of which appear in the trial solution y. Multiply related atoms $1, x$ in y by x^{2} to eliminate duplicate atoms $1, x$ which appear in y_{h}. Then multiply related atoms $e^{x}, x e^{x}$ in y by x to eliminate the duplicate atom e^{x} which appears in y_{h}. The other atoms $\cos x, \sin x$ in y are unaffected by the fixup rule, because they are unrelated to atoms of y_{h}. The final trial solution is

$$
y=d_{1}\left(x^{2}\right)+d_{2}\left(x^{3}\right)+d_{3}\left(x e^{x}\right)+d_{4}\left(x^{2} e^{x}\right)+d_{5}(\cos x)+d_{6}(\sin x)
$$

Equations. To substitute the trial solution y into $y^{\prime \prime \prime}-y^{\prime \prime}$ requires formulae for $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}$:

$$
\begin{aligned}
y^{\prime}= & 2 d_{1} x+3 d_{2} x^{2}+d_{3} e^{x} x+d_{3} e^{x}+2 d_{4} x e^{x}+d_{4} x^{2} e^{x} \\
& -d_{5} \sin (x)+d_{6} \cos (x), \\
y^{\prime \prime}= & 2 d_{1}+6 d_{2} x+d_{3} e^{x} x+2 d_{3} e^{x}+2 d_{4} e^{x}+4 d_{4} x e^{x}+d_{4} x^{2} e^{x} \\
& -d_{5} \cos (x)-d_{6} \sin (x), \\
y^{\prime \prime \prime}= & 6 d_{2}+d_{3} e^{x} x+3 d_{3} e^{x}+6 d_{4} e^{x}+6 d_{4} x e^{x}+d_{4} x^{2} e^{x} \\
& +d_{5} \sin (x)-d_{6} \cos (x)
\end{aligned}
$$

Then

$$
\begin{aligned}
r(x)= & y^{\prime \prime \prime}-y^{\prime \prime} & & \text { The given equation. } \\
= & 6 d_{2}-2 d_{1}-6 d_{2} x+\left(d_{3}+4 d_{4}\right) e^{x}+2 d_{4} x e^{x} & & \text { Substitute, then } \\
& +\left(d_{5}-d_{6}\right) \cos (x)+\left(d_{5}+d_{6}\right) \sin (x) & & \text { collect like terms. }
\end{aligned}
$$

Also, $r(x) \equiv 1+2 x+x e^{x}+3 \sin x$. Coefficients of atoms on the left and right must match. Writing out the matches gives the equations

$$
\begin{aligned}
-2 d_{1}+6 d_{2} & =1, \\
-6 d_{2} & =2, \\
d_{3}+4 d_{4} & =0, \\
2 d_{4} & =1, \\
d_{5}-d_{6} & =0, \\
d_{5}+d_{6} & =3 .
\end{aligned}
$$

Solve. The first four equations can be solved by back-substitution to give $d_{2}=-1 / 3, d_{1}=-3 / 2, d_{4}=1 / 2, d_{3}=-2$. The last two equations are solved by elimination or Cramer's rule to give $d_{5}=3 / 2, d_{6}=3 / 2$.

Report y_{p}. The trial solution y with evaluated coefficients d_{1}, \ldots, d_{6} becomes

$$
y_{p}(x)=-\frac{3}{2} x^{2}-\frac{1}{3} x^{3}-2 x e^{x}+\frac{1}{2} x^{2} e^{x}+\frac{3}{2} \cos x+\frac{3}{2} \sin x .
$$

Exercises 6.1

Higher Order Recipe Factored.
Solve the higher order equation with the given characteristic equation. Use the higher order recipe and display a table of distinct roots, multiplicities and base solutions. Verify the gen-
eral solution y with a computer algebra system, if possible.

1. $(r-1)(r+2)(r-3)^{2}=0$
2. $(r-1)^{2}(r+2)(r+3)=0$
3. $(r-1)^{3}(r+2)^{2} r^{4}=0$
4. $(r-1)^{2}(r+2)^{3} r^{5}=0$
5. $r^{2}(r-1)^{2}\left(r^{2}+4 r+6\right)=0$
6. $r^{3}(r-1)\left(r^{2}+4 r+6\right)^{2}=0$
7. $(r-1)(r+2)\left(r^{2}+1\right)^{2}=0$
8. $(r-1)^{2}(r+2)\left(r^{2}+1\right)=0$
9. $(r-1)^{3}(r+2)^{2}\left(r^{2}+4\right)=0$
10. $(r-1)^{4}(r+2)\left(r^{2}+4\right)^{2}=0$

Higher Order Recipe Unfactored.

 Completely factor the given characteristic equation, then report the general solution according to the higher order recipe. Check the answer in a computer algebra system, if possible.11. $(r-1)\left(r^{2}-1\right)^{2}\left(r^{2}+1\right)^{3}=0$
12. $(r+1)^{2}\left(r^{2}-1\right)^{2}\left(r^{2}+1\right)^{2}=0$
13. $(r+2)^{2}\left(r^{2}-4\right)^{2}\left(r^{2}+16\right)^{2}=0$
14. $(r+2)^{3}\left(r^{2}-4\right)^{4}\left(r^{2}+5\right)^{2}=0$
15. $\left(r^{3}-1\right)^{2}(r-1)^{2}\left(r^{2}-1\right)=0$
16. $\left(r^{3}-8\right)^{2}(r-2)^{2}\left(r^{2}-4\right)=0$
17. $\left(r^{2}-4\right)^{3}\left(r^{4}-16\right)^{2}=0$
18. $\left(r^{2}+8\right)\left(r^{4}-64\right)^{2}=0$
19. $\left(r^{2}-r+1\right)\left(r^{3}+1\right)^{2}=0$
20. $\left(r^{2}+r+1\right)^{2}\left(r^{3}-1\right)=0$

Atoms and Higher Order Equations.
21. Explain why the derivatives of atom $x^{3} e^{x}$ satisfy a higher order equation with characteristic equation $(r-1)^{4}=0$.
22. Explain why the derivatives of atom $x^{3} \sin x$ satisfy a higher order equation with characteristic equation $\left(r^{2}+1\right)^{4}=0$.
23. Consider a fourth order equation with characteristic equation $(r-$ $a)^{4}=0$ and general solution y. Define $y=u e^{a x}$. Find the differential equation for u.
24. A polynomial $u=c_{0}+c_{1} x+c_{2} x^{2}$ satisfies $u^{\prime \prime \prime}=0$. Define $y=u e^{a x}$. Prove that y satisfies a third order equation and determine its characteristic equation.
25. Let y be a solution of a higher order constant-coefficient linear equation. Prove that the derivatives of y satisfy the same differential equation.
26. Let y be a solution of a differential equation with characteristic equation $(r-1)^{3}(r+2)^{6}\left(r^{2}+4\right)^{5}=0$. Explain why $y^{\prime \prime \prime}$ is a solution of a differential equation with characteristic equation $(r-1)^{3}(r+$ $2)^{6}\left(r^{2}+4\right)^{5} r^{3}=0$.
27. Let atom $A=x^{2} \cos x$ appear in the general solution of a linear higher order equation. What atoms related to A must also appear in the general solution?
28. Let atom $A=x e^{x} \cos 2 x$ appear in the general solution of a linear higher order equation. What atoms related to A must also appear in the general solution?
29. Let a higher order equation have characteristic equation $(r-9)^{3}(r-$ $5)^{2}\left(r^{2}+4\right)^{5}=0$. Explain why the general solution is a sum of constants times atoms.
30. Explain why a higher order equation has general solution a sum of constants times atoms.

Variation of Parameters.

Solve the higher order equation given by its characteristic equation and right side $r(x)$. Display the Cauchy kernel $\mathcal{K}(x)$ and a particular solution $y_{p}(x)$ with fewest terms. Use a computer algebra system to evaluate integrals, if possible.
31. $(r-1)(r+2)(r-3)^{2}=0$, $r(x)=e^{x}$
32. $(r-1)^{2}(r+2)(r+3)=0$, $r(x)=e^{x}$
33. $(r-1)^{3}(r+2)^{2} r^{4}=0$, $r(x)=x+e^{-2 x}$
34. $(r-1)^{2}(r+2)^{3} r^{5}=0$, $r(x)=x+e^{-2 x}$
35. $r^{2}(r-1)^{2}\left(r^{2}+4 r+6\right)=0$, $r(x)=x+e^{x}$
36. $r^{3}(r-1)\left(r^{2}+4 r+6\right)^{2}=0$, $r(x)=x^{2}+e^{x}$
37. $(r-1)(r+2)\left(r^{2}+1\right)^{2}=0$, $r(x)=\cos x+e^{-2 x}$
38. $(r-1)^{2}(r+2)\left(r^{2}+1\right)=0$, $r(x)=\sin x+e^{-2 x}$
39. $(r-1)^{3}(r+2)^{2}\left(r^{2}+4\right)=0$, $r(x)=\cos 2 x+e^{x}$
40. $(r-1)^{4}(r+2)\left(r^{2}+4\right)^{2}=0$, $r(x)=\sin 2 x+e^{x}$

Undetermined Coefficient Method.

A higher order equation is given by its characteristic equation and right side $r(x)$. Display (a) a trial solution, (b) a system of equations for the undetermined coefficients, and (c) a particular solution $y_{p}(x)$ with fewest terms. Use a computer algebra system to solve for undetermined coefficients, if possible.
41. $(r-1)(r+2)(r-3)^{2}=0$, $r(x)=e^{x}$
42. $(r-1)^{2}(r+2)(r+3)=0$, $r(x)=e^{x}$
43. $(r-1)^{3}(r+2)^{2} r^{4}=0$, $r(x)=x+e^{-2 x}$
44. $(r-1)^{2}(r+2)^{3} r^{5}=0$, $r(x)=x+e^{-2 x}$
45. $r^{2}(r-1)^{2}\left(r^{2}+4 r+6\right)=0$, $r(x)=x+e^{x}$
46. $r^{3}(r-1)\left(r^{2}+4 r+6\right)^{2}=0$, $r(x)=x^{2}+e^{x}$
47. $(r-1)(r+2)\left(r^{2}+1\right)^{2}=0$, $r(x)=\cos x+e^{-2 x}$
48. $(r-1)^{2}(r+2)\left(r^{2}+1\right)=0$, $r(x)=\sin x+e^{-2 x}$
49. $(r-1)^{3}(r+2)^{2}\left(r^{2}+4\right)=0$, $r(x)=\cos 2 x+e^{x}$
50. $(r-1)^{4}(r+2)\left(r^{2}+4\right)^{2}=0$, $r(x)=\sin 2 x+e^{x}$

