Calculus III 2210-4 Final Exam Monday 12 December 2005

Instructions: This in-class exam is 120 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%. Mostly blank solutions will count 40% of their assigned value.

- 1. (Derivatives) Complete the following.

 - (a) [50%] Find f_{xy} for $f(x,y) = (x^3 + y^2)(x y)^2$. (b) [50%] Find the gradient of $f(x,y,z) = (2x + 3y + 4z)^2 e^{3x + 4y + 5z}$ at x = y = 0, z = 1.

(b)
$$grad(f) = \begin{pmatrix} 2(2x+3y+42)(2)e^{3x+4y+5} & 2 + 3f \\ 2(2x+3y+42)(3)e^{3x+4y+5} & 2(2x+3y+42)(4)e^{3x+4y+5} & 4 + 4f \\ 2(2x+3y+42)(4)e^{3x+4y+5} & 4 + 5f \end{pmatrix}$$

$$= \begin{pmatrix} 16e^5 + 48e^5 \\ 24e^5 + 64e^5 \\ 32e^5 + 80e^5 \end{pmatrix} = \begin{pmatrix} 64 \\ 88 \\ 112 \end{pmatrix} e^5$$

- 2. (Chain rule) Complete the following. Leave answers with symbols and don't expand.
 - (a) [50%] Let $w = xy \sin(x+y)$, x = 2t, $y = 3t^2$, z = 4t. Find dw/dt.
 - (b) [50%] Let $w = u^2v$, $u = x^2 + 2xy$, v = xyz. Find the partials of w in variables x, y, z.

$$\begin{array}{ll}
\textcircled{9} & \frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt} \\
&= \left[y \sin(x+y) + xy \cos(x+y) \right](2) + \left[x \sin(x+y) + xy \cos(x+y) \right](6t) + 0 \\
&= also ok
\end{aligned}$$

$$\begin{array}{ll}
also ok \\
&= 2 \left[3t^2 \sin(2t+3t^2) + 6t^3 \cos(2t+3t^2) \right] + \left[\frac{dw}{dt} = 18t^2 \sin(2t) + 12t^3 \cos(t) + 12t^3 \cos(t)$$

$$\begin{array}{lll}
\boxed{D} & \frac{\partial w}{\partial x} = \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial x} \\
&= 2uv \left(2x + 2y\right) + u^2 y^2 \\
\frac{\partial w}{\partial y} = \left(2uv\right) \cdot \left(2x\right) \\
&= 4uvx + u^2x^2 \\
\frac{\partial w}{\partial z} = \left(2uv\right) \cdot \left(2x\right) \\
&= 4uvx + u^2x^2 \\
&= u^2xy
\end{array}$$

3. (Gradient) Complete the following.

- (a) [30%] Find the directional derivative of $f(x, y, z) = x^2y^3 xyz^2$ at (-2, 1, 0) in the direction of $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$.
- (b) [70%] Find a point on the surface $x^2+2y^2+3z^2=12$ where the tangent plane is perpendicular to the line through (1,3,2) with direction $2\mathbf{i}+8\mathbf{j}-6\mathbf{k}$.

(a)
$$qrad(f) = \begin{pmatrix} 2 \times y^3 - y \neq 2 \\ 3 \times 2y^2 - x \neq 2 \end{pmatrix} = \begin{pmatrix} -4 \\ 12 \\ 0 \end{pmatrix}$$

$$\vec{q} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \vec{b} \quad \text{a unit vector} \qquad D.D = grad(f) \cdot \vec{u} = \begin{bmatrix} 20 \\ 16 \end{bmatrix}$$

(b) Surface is
$$F = x^2 + 2y^2 + 12 + 2^2 - 12 = 0$$
; $Grad(F) = \begin{pmatrix} 2x \\ 4y \\ 62 \end{pmatrix}$
Line tangert is $\begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$.

Want $Grad(F)$ parallel to Pe line tangert.

An easy choice is $grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$ which $Grad(F) = \begin{pmatrix} 2 \\ 8 \\ -6 \end{pmatrix}$

4. (Maxima and Minima) Complete one of the following.

- (a) [50%] Find the global maximum and global minimum of $f(x,y) = x^2 + y^2$ on the rectangle $-1 \le x \le 3, -1 \le y \le 4.$
- (b) [50%] Find the maximum of $f(x, y) = 4x^2 4xy + y^2$ on the circle $x^2 + y^2 = 1$.

Global man = 0 at (0,0)

Amir
along edges, x=1, $f=1+y^2$ max is x=3, f=9+yz max is 25 y=-1, $f=x^2+16$ max is 10 y=-1, $f=x^2+16$ max is 35

an interior, grad (+) = (0) gives been extrema

$$\begin{pmatrix}
8x-4y \\
-4x+2y
\end{pmatrix} = \begin{pmatrix} 0 \\
0 \end{pmatrix}$$

$$y = 2x \text{ is only condition, but} \quad -1 \le x \le 3 \text{ and } -1 \le y \le 4$$

$$f = x^2 + 4x^2$$

$$= 5x^2$$

$$max on $-\frac{1}{2}x \le 2$

$$-1 -\frac{1}{2}x \le 2$$$$

Global max = 25 on boundary

 $f = 4x^{2} - 4xy + y^{2}$ $g = x^{2} + y^{2} - 1$ $\nabla f = \begin{pmatrix} 8 \times -49 \\ -4 \times +29 \end{pmatrix}$ $\nabla g = \begin{pmatrix} 2 \times \\ 29 \end{pmatrix}$

$$\nabla f = \lambda \nabla g$$

$$\begin{cases} 8x - 4y = 2\lambda x \\ -4x + 2y = 2\lambda y \end{cases} \Leftrightarrow \begin{cases} 4(2x - y) = 2\lambda x \\ 2(-2x + y) = 2\lambda y \end{cases}$$

$$2\lambda X = -4\lambda y$$

 $\lambda(2X + 41) = 0$
Either $\lambda = 0$ or else $x = -2y$
If $\lambda = 0$, $\lambda = -2x^2 + 4$

$$\sqrt{f} = 3x^2 + 8y^2 + 1$$

= 20y2 + 1
= 5

5. (Double Integrals) Complete the following.

(a) [50%] Let f(x,y) = 1 on R_1 , f(x,y) = 3 on R_2 , where R_1 and R_2 are two regions that don't intersect. Suppose each region has area 2. Let R be the region consisting of R_1 and R_2 . Find $\int_{R} (2f(x,y) + \ln(f(x,y))) dA$.

(b) [50%] Let R be the rectangle defined by $0 \le x \le 2$, $1 \le y \le 3$. Divide R into 4 equal sub-rectangles R_1 , R_2 , R_3 , R_4 . Write out explicitly the Riemann sum for this subdivision of R, corresponding to the integral $\int \int_R g(x,y) dA$. Use symbols to save time. Draw a figure showing the sub-rectangles. Explain all symbols used.

(9) $\iint_{R} FdA = \iint_{R} FdA + \iint_{R} FdA$ $= F_{1} \operatorname{area}(R_{1}) + F_{2} \operatorname{area}(R_{2})$ $= 2(F_{1} + F_{2})$ = [2(8 + ln 3)]

where F_1 , F_2 are constand $F_1 = 2 + \ln 1$ = 2 $F_2 = 6 + \ln 3$

3 min (92) R_1 R_2 (2,3) (2,3) (2,3) (2,3) (2,2) (2,1)

2 mm

 $R.S. = g(c_1) \operatorname{aven}(R_1) + g(c_2) \operatorname{avea}(R_1) + \cdots$ $= g(c_1) + g(c_2) + g(c_3) + g(c_4)$ where C_1, C_2, C_3, C_4 are The centers of The rectingles

Name. KEY

- 6. (Double Integrals) Complete one of the following.
 - (a) [100%] Find the volume of the solid in the first octant bounded by the surface $z = e^{x-y}$, the plane x + y = 1 and the coordinate planes.
- (b) [100%] Let R be the planar xy-region described by $0 \le x \le 1$, $0 \le y \le \sqrt{1-x^2}$. Let $f(x,y) = 1/\sqrt{4-x^2-y^2}$. Evaluate $\int \int_R f(x,y) dA$ using polar coordinates.

$$vol = SS e^{x-y} dA$$

$$R = \{(x,y) : 0 \le x \le 1, 0 \le y \le 1-x\}$$

$$Vol = \begin{cases} \int_{0}^{1-x} e^{x-y} dy dx \\ = \int_{0}^{1} -e^{x-y} |_{y=0}^{y=1-x} dx \\ = \int_{0}^{1} (-e^{x-1+x} + e^{x}) dx \\ = -e^{2x-1} + e^{x} |_{x=0}^{x=1} \\ = -e^{2x-1} + e^{x} |_{x=0}^{x=1} \\ = -e^{2x-1} + e^{x} |_{x=0}^{x=1}$$

6 min

 $R \times 24y^2 = 1$ $R = \{(\eta, \theta); 0 \leq \theta \leq \frac{\pi}{2}, 0 \leq r \leq 1\}$

$$SSFRA = SSFrdrdo$$

$$= S' \int_0^{T/2} \frac{V}{(4-r^2)} V_2 d\theta dr$$

$$= \frac{T}{2} \int_0^1 \frac{V}{(4-r^2)} V_2 d\theta dr$$

7. (Surface Area)

Find the area of the part of the conical surface $x^2 + y^2 = z^2$ that is directly above the xy-plane triangle with vertices (0,0), (4,0) and (0,4). Display all integration steps and include a figure.

$$4 \text{ min}$$

$$area = \int \int ds$$

$$= \int \int \sqrt{f_x^2 + f_y^2 + 1} \, dA$$

area =
$$\int_{0}^{4} \int_{0}^{4-x} \sqrt{2} \, dy \, dx$$

= $\int_{0}^{4} \sqrt{2} (4-x) \, dx$
= $-\sqrt{2} \frac{(4-x)^{2}}{2} \Big|_{0}^{4}$
= $\left| 8\sqrt{2} \right|$

$$Z = f(x,y)$$

$$= \sqrt{x^{2}+y^{2}} \qquad (0,y)$$

$$R = \frac{1}{(x,y)} \qquad 0 \le x \le 4, \quad 0 \le y \le 4-x$$

$$f_{x} = \frac{1}{2} (x^{2}+y^{2})^{1/2} (2x)$$

$$= \frac{x}{4}$$

$$f_{y} = \frac{y}{4}$$

$$\sqrt{x^{2}+4} = \sqrt{x^{2}+y^{2}}$$

8. (Triple Integrals) Complete one of the following.

(a) [100%] Evaluate ∫₋₂⁴ ∫_{x-1}^{x+1} ∫₀^{√2y/x} 3xyzdzdydx.
(b) [100%] Find by using triple integration the volume of the solid in the first octant bounded by $y = 2x^2$ and y + 4z = 8. Draw a figure. Display all steps.

(a)
$$\int_{-2}^{4} \int_{x-1}^{x+1} 3xy(\frac{z^{2}}{z}) \Big|_{z=0}^{2} \frac{1}{x} dy dx$$

$$= \int_{-2}^{4} \int_{x-1}^{x+1} \frac{3}{2} xy(\frac{2y}{x}) dy dx$$

$$= \int_{-2}^{4} \int_{x-1}^{x+1} 3y^{2} dy dx$$

$$= \int_{-2}^{4} \left(\frac{y^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2} + y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}}{y^{2}} \right) dx$$

$$= \int_{-2}^{4} \left(\frac{(x+1)^{3} - (x-1)^{3}$$

$$V = \{(x,y,z): 0 \le x \le 2, 2x^2 \le y \le 8, \}$$

 $0 \le z \le (8-y)/4$

$$Vol = \iiint d \frac{1}{2} dy dx$$

$$= \int_{0}^{2} \int_{2x^{2}}^{8} \int_{0}^{2-\frac{1}{2}} dy dx$$

$$= \int_{0}^{2} \int_{2x^{2}}^{8} \left(2 - \frac{y}{4}\right) dy dx$$

$$= \int_{0}^{2} \left(2y - \frac{y^{2}}{8}\right) \begin{vmatrix} 8 \\ 2x^{2} \end{vmatrix}$$

$$= \int_{0}^{2} \left(16 - \frac{64}{8} - 4x^{2} + \frac{4x^{4}}{8}\right) dx$$

$$= \int_{0}^{2} \left(8 - 4x^{2} + \frac{x^{4}}{2}\right) dx$$

$$= \left(8x - \frac{24x^{3}}{3} + \frac{x^{5}}{10}\right) \begin{vmatrix} 2 \\ 3 \end{vmatrix}$$

$$= \left(16 - \frac{32}{3} + \frac{32}{10}\right)$$

9. (Line Integrals)

(a) [25%] Define work using line integrals. Explain how a line integral equals an ordinary calculus I integral.

(b) [75%] Find the work done by vector force $\mathbf{F} = (2x - y)\mathbf{i} + (2z)\mathbf{j} + (y - z)\mathbf{k}$ where path C is the line segment from (0,0,0) to (1,1,1).

a min
$$\Theta$$
 work done by variable force \overrightarrow{F} along path C is $\operatorname{work} = \int_{C} \overrightarrow{F} \cdot d\overrightarrow{r}$ Here, $\overrightarrow{r}(t)$ is a parameterization of curve C , a set c b. In terms of ordinary integrals of Calculus T , $\operatorname{work} = \int_{C} \overleftarrow{F}(\overrightarrow{r}(t)) \cdot \overrightarrow{r}'(t) dt$

$$F(t) = \begin{cases} \vec{F} \cdot d\vec{r} \\ = \int_{0}^{1} {2x - y \choose y - t} \cdot {1 \choose t} dt \\ = \int_{0}^{1} {2t \choose y - t} \cdot {1 \choose t} dt \\ = \int_{0}^{1} {3t dt} \\ = \frac{3}{2} t^{2} \Big|_{0}^{1}$$

10. (Divergence and Curl) Complete the following.

- (a) [25%] Define divergence and curl.
- (b) [25%] Compute the divergence of the vector function $\mathbf{F} = xyz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$.
- (c) [40%] Compute the curl of the vector function $\mathbf{F} = (y+z)\mathbf{i} + (x+z)\mathbf{j} + (x+y)\mathbf{k}$.
- (d) [10%] What does divergence measure, in the case of a vector field **F** which represents the velocity field of a fluid?

3 Min

(a)
$$div(\vec{F}) = 0$$
, $F_1 + 0$, $f_2 + 0$, $f_3 = 0$ where $\vec{F} = (\frac{F_2}{F_3})$ cance $\vec{F} = (\frac{F_3}{F_3})$

$$\begin{array}{ll}
\text{D} & \text{div}(\vec{F}) = \mathbf{y} \neq + 0 + 0 \\
&= |\vec{y}| \\
\end{array}$$