Calculus III 2210-4
Final Exam
Monday 12 December 2005

Instructions: This in-class exam is 120 minutes. No calculators, notes, tables or books. No answer
check is expected. Details count 75%. The answer counts 25%. Mostly blank solutions will count 40%
of their assigned vaiue.
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1. (Derivatives) Complete the following.
(a) [50%)] Find fyy for f(z,y) = (* + y?)(z — y)*.
(b) [50%)] Find the gradient of f(z,y,2) = (2z + 3y + 42)?** W at z =y =0, z = 1.
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Use this page to start your solution. Attach extra pages as needed, then staple.
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2. (Chain rule) Complete the following. Leave answers with symbols and don’t expand.
(a) [50%)] Let w = zysin(z +y), z = 2¢, y = 3t*, z = 4t. Find dw/dt.
(b) [50%)] Let w = u*v, u = z? + 2zy, v = zyz. Find the partials of w in variables z, y,
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Use this page to start your solution. Attach extra pages as needed, then staple
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3. (Gradient) Complete the following.
(a) [30%] Find the directional derivative of f(z,y, 2) = 2%y* — zy2® at (-2,1,0) in the direction

of i+ 2j+k.
(b) [70%] Find a point on the surface z?+2y?+32° = 12 where the tangent plane is perpendicular

to the line through (1, 3,2) with direction 2i 4 8j — 6k.
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Use this page to start your solution. Attach extra pages as needed, then staple.



4. (Maxima and Minima) Complete one of the following.
(a) [50%] Find the global maximum and global miiuinum of f(z,y) = z® + y* on the rectangle
~1<2<3, -1<y<4

(b) [50%)] Find the maximum of f(z,y) = 4z% — 4zy + y* on the circle z° +y* = 1.
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5. (Double Integrals) Complete the following.
(a) [50%)] Let f(z,y) =1 on Ry, f(z,y) = 3 on Ry, where R; and R; are two regions that don’t
intersect. Suppose each region has area 2. Let R be the region consisting of R; and R,;. Find
(b) [50%] Let R be the rectangle defined by 0 < z < 2, 1 < y < 3. Divide R into 4 equal
sub-rectangles Ry, Ry, R3, R4. Write out explicitly the Riemann sum for this subdivision of R,
corresponding to the integral [ [, g(z,y)dA. Use symbols to save time. Draw a figure showing

the sub-rectangles. Explain all symbols used.
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Use this page to start your solution. Attach extra pages as needed, then staple.
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6. (Double Integrals) Complete one of the following.

(a) [100%] Find the volume of the solid in the first octant bounded by the surface z = e*7Y, the
plane z + y = 1 and the coordinate planes.

(b) [100%] Let R be the planar zy-region described by 0 < 2z <1, 0 <y < v/1—22 Let
f(z,y) = 1//4 — 22 — y2. Evaluate [ [ f(z,y)dA using polar coordinates.
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7. (Surface Area)

Find the area of the part of the conical surface 22 + y? = 22 that is directly above the zy-plane
triangle with vertices (0,0), (4,0) and (0,4)
g

Display all integration steps and include a figure
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Use this page to start your solution. Attach extra pages as needed, then staple
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8. (Triple Integrals) Complete one of the following.

(a) [100%] Evaluate [2, [Z4! [V 2l 3ryzdzdydz.

(b) [100%)] Find by using triple integration the volume of the solid in the first octant bounded
by y = 2z° and y + 4z = 8. Draw a figure. Display all steps.
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Use this page to start your solution. Attach extra pages as needed, then staple.
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9. (Line Integrals)
(a) [25%)] Define work using line integrals. Explain how a line integral equals an ordinary calculus

I integral.
(b) [75%] Find the work done by vector force F = (2z — y)i+ (22)j + (y — 2)k where path C' is

the line segment from (0,0,0) to (1,1, 1).
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Use this page to start your solution. Attach extra pages as needed, then staple.
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10. (Divergence and Curl) Complete the following.

(a) [25%] Define divergence and curl.
(b) [25%] Compute the divergence of the vector function F = zyzi + z2j + zyk.

(c) [40%] Compute the curl of the vector function F = (y + 2)i+ (z + 2)j + (z + y)k.
(d) [10%)] What does divergence measure, in the case of a vector field F which represents the

velocity field of a fluid?
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Use this page to start your solution. Attach extra pages as needed, then staple.
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