Instructions: This in-class exam is 120 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%. Mostly blank solutions will count 40% of their assigned value.
1. (Derivatives) Complete the following.
 (a) [50%] Find f_{xy} for $f(x, y) = (x^3 + y^2)(x - y)^2$.
 (b) [50%] Find the gradient of $f(x, y, z) = (2x + 3y + 4z)^2e^{3x+4y+5z}$ at $x = y = 0, z = 1$.

 (a) $f_x = 3x^2(x-y)^2 + 2(x^2+y^2)(x-y)$

 $f_{xy} = 3x^2(2(x-y)(-1) + 4y(x-y) + 2(x^2+y^2)(-1)$

 (b) $\nabla f = \begin{pmatrix} 2(2x+3y+4z)(2)e^{3x+4y+5z}\frac{\partial}{\partial x} + 3f \\ 2(2x+3y+4z)(3)e^{3x+4y+5z}\frac{\partial}{\partial y} + 4f \\ 2(2x+3y+4z)(4)e^{3x+4y+5z}\frac{\partial}{\partial z} + 5f \end{pmatrix}$

 $= \begin{pmatrix} 16e^5 + 48e^5 \\ 24e^5 + 64e^5 \\ 32e^5 + 80e^5 \end{pmatrix} = \begin{pmatrix} 64 \\ 88 \\ 112 \end{pmatrix}e^5$
2. (Chain rule) Complete the following. Leave answers with symbols and don’t expand.
 (a) [50%] Let \(w = xy \sin(x + y) \), \(x = 2t \), \(y = 3t^2 \), \(z = 4t \). Find \(\frac{dw}{dt} \).
 (b) [50%] Let \(w = u^2v \), \(u = x^2 + 2xy \), \(v = xyz \). Find the partials of \(w \) in variables \(x \), \(y \), \(z \).

\[
\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}
\]

\[
= \left[y \sin(x+y) + xy \cos(x+y) \right] (2t) + \left[x \sin(x+y) + xy \cos(x+y) \right] (6t) + 0
\]

Also, \(\frac{dw}{dt} = 18t^2 \sin(x) + 12t^2 \cos(y) + 36ty \cos(x) \sin(y) \) \(u = 2t + 2t^2 \)

\[
\frac{\partial w}{\partial x} = \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial x}
\]

\[
= 2uv (2x + 2y) + u^2 y z
\]

\[
\frac{\partial w}{\partial y} = \begin{pmatrix} 2uv \\ u^2 \end{pmatrix} \begin{pmatrix} 2x \\ xy \end{pmatrix}
\]

\[
= 4uvx + u^2 x z
\]

\[
\frac{\partial w}{\partial z} = \begin{pmatrix} 2uv \\ u^2 \end{pmatrix} \begin{pmatrix} 0 \\ z \end{pmatrix}
\]

\[
= u^2 xy
\]

Use this page to start your solution. Attach extra pages as needed, then staple.
3. (Gradient) Complete the following.
 (a) [30%] Find the directional derivative of \(f(x, y, z) = x^2y^3 - xyz^2 \) at \((-2, 1, 0)\) in the direction of \(i + 2j + k\).
 (b) [70%] Find a point on the surface \(x^2 + 2y^2 + 3z^2 = 12 \) where the tangent plane is perpendicular to the line through \((1, 3, 2)\) with direction \(2i + 8j - 6k\).

\[
\text{grad}(f) = \begin{pmatrix} 2xy^3 - yz^2 \\ 3x^2y^2 - xz^2 \\ -2xyz \end{pmatrix} = \begin{pmatrix} -4 \\ 12 \\ 0 \end{pmatrix}
\]

\[
\mathbf{u} = \left(\frac{1}{2}, \frac{1}{2} \right), \quad \frac{1}{\sqrt{6}} \quad \text{a unit vector}
\]

\[
D \cdot D = \text{grad}(f) \cdot \mathbf{u} = \frac{20}{\sqrt{6}}
\]

(b) Surface is \(F = x^2 + 2y^2 + 12z^2 - 12 = 0 \); \(\text{grad}(F) = \begin{pmatrix} 2x \\ 4y \\ 6z \end{pmatrix} \)

Line tangent is \(\begin{pmatrix} \frac{2}{8} \\ \frac{8}{8} \\ -6 \end{pmatrix} \).

Want \(\text{grad}(F) \) parallel to the line tangent.

An easy choice is \(\text{grad}(F) = \begin{pmatrix} \frac{2}{8} \\ \frac{8}{8} \\ -6 \end{pmatrix} \) which gives

Point \(= (1, 2, -1) \)
4. (Maxima and Minima) Complete one of the following:
 (a) [50%] Find the global maximum and global minimum of \(f(x, y) = x^2 + y^2 \) on the rectangle
 \(-1 \leq x \leq 3, -1 \leq y \leq 4\).
 (b) [50%] Find the maximum of \(f(x, y) = 4x^2 - 4xy + y^2 \) on the circle \(x^2 + y^2 = 1 \).

(a) \[\text{Global min. = 0 at (0, 0)} \]

along edges,
\[
\begin{align*}
x = -1, & \quad f = 1 + y^2, \quad \text{max is 17} \\
x = 3, & \quad f = 9 + y^2, \quad \text{max is 25} \\
y = -1, & \quad f = x^2 + 1, \quad \text{max is 10} \\
y = 4, & \quad f = x^2 + 16, \quad \text{max is 25} \\
\end{align*}
\]

at interior, \(\nabla f = (0) \) gives local extrema
\[
\begin{pmatrix}
8x-4y \\
-4x+2y
\end{pmatrix} = (0)
\]
\[y = 2x \quad \text{is only condition, but} \]
\[f = x^2 + 4x^2 = 5x^2 \]
\[\text{max on } -\frac{1}{2} \leq x \leq 2 \]
\[\text{is 20} \]

\[\text{Global max = 25 on boundary} \]

(b) \[f = 4x^2 - 4xy + y^2 \]
 \[\nabla f = \lambda \nabla g \]

\[g = x^2 + y^2 - 1 \]

\[\nabla f = \begin{pmatrix} 8x - 4y \\ -4x + 2y \end{pmatrix} \]

\[\nabla g = \begin{pmatrix} 2x \\ 2y \end{pmatrix} \]

\[\begin{align*}
8x - 4y &= 2x \\
-4x + 2y &= 2y \\
\end{align*} \]

\[6x = 4 \lambda y \]

\[\lambda (2x + 4y) = 0 \]

Either \(\lambda = 0 \) or \(x = -2y \)

\[\begin{align*}
\text{Case 1: } & \quad x = -2y \\
& \quad x^2 + y^2 = 1 \\
& \quad 5y^2 = 1 \\
& \quad \frac{y}{\sqrt{5}} = 1 \\
\end{align*} \]

\[\nabla f = 3x^2 + 8y^2 + 1 \quad \text{at } \left(\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right) \]

\[= 5 \]

Use this page to start your solution. Attach extra pages as needed, then staple.
5. (Double Integrals) Complete the following.
(a) [50%] Let \(f(x, y) = 1 \) on \(R_1 \), \(f(x, y) = 3 \) on \(R_2 \), where \(R_1 \) and \(R_2 \) are two regions that don't intersect. Suppose each region has area 2. Let \(R \) be the region consisting of \(R_1 \) and \(R_2 \). Find \(\int \int_R (2f(x, y) + \ln(f(x, y))) \, dA \).
(b) [50%] Let \(R \) be the rectangle defined by \(0 \leq x \leq 2 \), \(1 \leq y \leq 3 \). Divide \(R \) into 4 equal sub-rectangles \(R_1, R_2, R_3, R_4 \). Write out explicitly the Riemann sum for this subdivision of \(R \), corresponding to the integral \(\int \int_R g(x, y) \, dA \). Use symbols to save time. Draw a figure showing the sub-rectangles. Explain all symbols used.

\[\int \int_R f(x, y) \, dA = \int \int_{R_1} f(x, y) \, dA + \int \int_{R_2} f(x, y) \, dA \]

\[= F_1 \text{area}(R_1) + F_2 \text{area}(R_2) \]

\[= 2(F_1 + F_2) \]

\[= 2(8 + \ln 3) \]

where \(F_1, F_2 \) are constants

\[F_1 = 2 + \ln 1 = 2 \]

\[F_2 = 6 + \ln 3 \]

\[R.S. = g(c_1) \text{area}(R_1) + g(c_2) \text{area}(R_2) + \cdots \]

\[= g(c_1) + g(c_2) + g(c_3) + g(c_4) \]

where \(c_1, c_2, c_3, c_4 \) are the centers of the rectangles

Use this page to start your solution. Attach extra pages as needed, then staple.
6. (Double Integrals) Complete one of the following.

(a) [100%] Find the volume of the solid in the first octant bounded by the surface \(z = e^{x-y} \), the plane \(x + y = 1 \) and the coordinate planes.

(b) [100%] Let \(R \) be the planar \(xy \)-region described by \(0 \leq x \leq 1, \ 0 \leq y \leq \sqrt{1-x^2} \). Let \(f(x, y) = \frac{1}{\sqrt{4 - x^2 - y^2}} \). Evaluate \(\iint_R f(x, y) \, dA \) using polar coordinates.

\[\text{Vol} = \iint_R e^{x-y} \, dA \]
\[R = \left\{ (x, y) : \ 0 \leq x \leq 1, \ 0 \leq y \leq 1-x \right\} \]

\[\begin{align*}
\text{Vol} &= \int_0^1 \int_0^{1-x} e^{x-y} \, dy \, dx \\
&= \int_0^1 \left[-e^{x-y} \right]_{y=0}^{y=1-x} \, dx \\
&= \int_0^1 (-e^{x-1+x} + e^x) \, dx \\
&= \left[-\frac{e^{2x-1}}{2} + e^x \right]_0^1 \\
&= -\frac{e}{2} + e + \frac{e-1}{2} \\
&= \frac{e}{2} + \frac{e-1}{2} \\
\end{align*} \]

\[\begin{align*}
\text{Vol} &= \iint_R \frac{1}{\sqrt{4 - x^2 - y^2}} \, dA \\
R &= \left\{ (r, \theta) : \ 0 \leq \theta \leq \frac{\pi}{2}, \ 0 \leq r \leq 1 \right\} \\
\int_0^1 \int_{\sqrt{4-r^2}}^{\sqrt{1}} r \, dr \, d\theta \\
&= \frac{\pi}{2} \int_0^1 \left[-\frac{u^{1/2}}{1/2} \right]_{u=4-r^2}^{u=1} \, dr \\
&= \frac{\pi}{2} \left[\left(\frac{1^{1/2}}{1/2} \right) - \left(\frac{4-r^2}{1/2} \right) \right]_0^1 \\
&= \pi \left(\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{3}} \right) \\
\end{align*} \]

Use this page to start your solution. Attach extra pages as needed, then staple.
7. (Surface Area)
Find the area of the part of the conical surface $x^2 + y^2 = z^2$ that is directly above the xy-plane triangle with vertices $(0, 0)$, $(4, 0)$ and $(0, 4)$. Display all integration steps and include a figure.

$$\text{area} = \int_S ds$$

$$= \int_R \sqrt{f_x^2 + f_y^2 + 1} \, dA$$

$$= \int_0^4 \int_0^{4-x} \sqrt{2} \, dy \, dx$$

$$= \int_0^4 \sqrt{2(4-y)} \, dx$$

$$= -\sqrt{2} \left(\frac{4-x^2}{2} \right) \bigg|_0^4$$

$$= 8\sqrt{2}$$

$z = f(x, y)$

$$= \frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2 + 1}}$$

$R = \text{triangle}$

$R = \int_0^4 \int_0^{4-y} \sqrt{2} \, dx \, dy$

$\frac{\delta x}{\delta y} = \frac{x}{y}$

$\sqrt{f_x^2 + f_y^2 + 1} = \sqrt{\frac{x^2 + y^2}{2} + 1}$
8. (Triple Integrals) Complete one of the following.

(a) [100%] Evaluate \(\int_{-2}^{2} \int_{x-1}^{x+1} \int_{0}^{\sqrt{2y^2/x}} 3xyz dz dy dx\).

(b) [100%] Find by using triple integration the volume of the solid in the first octant bounded by \(y = 2x^2\) and \(y + 4z = 8\). Draw a figure. Display all steps.

\[
\begin{align*}
V &= \{ (x,y,z) : 0 \leq x \leq 2, 2x^2 \leq y \leq 8, \quad 0 \leq z \leq (8-y)/4 \} \\
\text{vol} &= \iiint dV \\
&= \int_{0}^{2} \int_{2x^2}^{8} \int_{0}^{(8-y)/4} dz dy dx \\
&= \int_{0}^{2} \int_{2x^2}^{8} \left[\left. z \right|_{0}^{(8-y)/4} \right] dy dx \\
&= \int_{0}^{2} \int_{2x^2}^{8} \left[\frac{8-y}{4} \right] dy dx \\
&= \int_{0}^{2} \left[\frac{-y^2}{8} \right]_{2x^2}^{8} dx \\
&= \int_{0}^{2} \left[\frac{16 - y^2}{8} - \frac{y^2}{8}
ight]_{2x^2}^{8} dx \\
&= \int_{0}^{2} \left[16 - \frac{25y^2}{8} - 4x^2 + \frac{4y^4}{8} \right] dx \\
&= \int_{0}^{2} \left(16 - \frac{25y^2}{8} - 4x^2 + \frac{4y^4}{8} \right) dx \\
&= \left[16 - \frac{25y^2}{8} - \frac{4x^3}{3} + \frac{32y^4}{10} \right]_{0}^{2} \\
&= \left[16 - \frac{32}{3} + \frac{32}{10} \right] \\
&= 156
\end{align*}
\]

Use this page to start your solution. Attach extra pages as needed, then staple.
9. (Line Integrals)
(a) [25%] Define work using line integrals. Explain how a line integral equals an ordinary calculus I integral.
(b) [75%] Find the work done by vector force \(\mathbf{F} = (2x - y)\mathbf{i} + (2z)\mathbf{j} + (y - z)\mathbf{k} \) where path \(C \) is the line segment from \((0, 0, 0)\) to \((1, 1, 1)\).

\[\text{Work done by variable force } \mathbf{F} \text{ along path } C \text{ is} \]
\[\text{work} = \int_C \mathbf{F} \cdot d\mathbf{r} \]

Here, \(\mathbf{r}(t) \) is a parameterization of curve \(C \), \(a \leq t \leq b \).

In terms of ordinary integrals of calculus I,
\[\text{work} = \int_a^b (\mathbf{F}(\mathbf{r}(t))) \cdot \mathbf{r}'(t) dt \]

\[\mathbf{r}(t) = \left(\begin{array}{c} t \\ t \\ t \end{array} \right) \quad 0 \leq t \leq 1 \]

\[= \int_0^1 \left(\begin{array}{c} 2t \\ 2t \\ 2t \end{array} \right) \cdot \left(\begin{array}{c} t \\ t \\ t \end{array} \right) dt \]
\[= \int_0^1 (2t)^2 dt \]
\[= \int_0^1 2t^2 dt \]
\[= \frac{3}{2} t^2 \bigg|_0^1 \]
\[= \frac{3}{2} \]

Use this page to start your solution. Attach extra pages as needed, then staple.
10. (Divergence and Curl) Complete the following.
 (a) [25%] Define divergence and curl.
 (b) [25%] Compute the divergence of the vector function \(\mathbf{F} = xyz \mathbf{i} + xz \mathbf{j} + xy \mathbf{k} \).
 (c) [40%] Compute the curl of the vector function \(\mathbf{F} = (y + z) \mathbf{i} + (x + z) \mathbf{j} + (x + y) \mathbf{k} \).
 (d) [10%] What does divergence measure, in the case of a vector field \(\mathbf{F} \) which represents the velocity field of a fluid?

\[\text{Div} \left(\mathbf{F} \right) = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} \]

\[\text{Curl} \left(\mathbf{F} \right) = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{array} \right| \]

3 min

\[\text{Div} \left(\mathbf{F} \right) = yz + 0 + 0 = \left(yz \right) \]

\[\text{Curl} \left(\mathbf{F} \right) = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y+z & x+z & x+y \end{array} \right| \]

\[= \left(\begin{array}{c} 1-1 \\ -(1-1) \\ 1-1 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \]

\[\text{It measures the rate of creation and destruction of fluid.} \]