Calculus III 2210-4
Sample Midterm Exam 3
Exam Date: 2 December 2005

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

1. (ch15) Complete two of the following.
 (a) Find the directional derivative of \(f(x, y, z) = x^3y - y^2z^2 \) at \((-2, 1, 3)\) in the direction of \(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k} \). See 15.5-7.
 (b) Let \(w = f(x, y, z) \) and \(x = r - s, y = s - t, z = t - r \). Derive from the chain rule that \(\frac{\partial}{\partial r} w + \frac{\partial}{\partial s} w + \frac{\partial}{\partial t} w = 0 \). See 15.6-30.
 (c) Find all points on the surface \(z = x^2 - 2xy - y^2 - 8x + 4y \) where the tangent plane is parallel to the \(xy \)-plane. See 15.7-13.
 (d) Find a point \((x_0, y_0, z_0)\) where surfaces \(z = x^2y \) and \(y = \frac{1}{4}x^2 + \frac{3}{4} \) intersect and such that the tangent planes at \((x_0, y_0, z_0)\) are perpendicular. See 15.7-16.

2. (Maxima and Minima) Complete two of the following.
 (a) State the critical point theorem and the second partials test. See 15.8.
 (b) Find the global maximum of \(f(x, y) = 3x + 4y \) on the rectangle \(0 \leq x \leq 1, |y| \leq 1 \). See 15.8-11.
 (c) Find the minimum distance between the two lines with vector equations \(\mathbf{r}_1(t) = \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \) and \(\mathbf{r}_2(t) = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} + t \begin{pmatrix} 3 \\ 1 \end{pmatrix} \). See 15.8-24.
 (d) Find the maximum of \(f(x, y) = xy \) subject to \(4x^2 + 9y^2 = 36 \). See 15.9-2 or convert it to a one-variable max problem by solving for \(y \) in terms of \(x \).

3. (Double Integrals) Complete two of the following.
 (a) Define the double integral of \(f(x, y) \) over a rectangle \(Q \). See 16.1.
 (b) Let \(f(x, y) = 1 \) on \(R_1 \), \(f(x, y) = 3 \) on \(R_2 \), \(f(x, y) = 5 \) on \(R_3 \) and let \(R \) be the union of the three rectangles \(R_1, R_2, R_3 \). Suppose each rectangle has area 4. Find \(\int_R f(x, y) \, dA \).
 (c) Let \(R \) be defined by \(0 \leq x \leq \pi/2, 0 \leq y \leq \pi/2 \). Evaluate \(\int_R \sin(x + y) \, dA \).
 (d) Evaluate \(\int_0^3 \int_0^1 \frac{8x}{(x^2 + y + 2 + 1)^2} \, dy \, dx \). See 16.2-32.
 (e) Find the volume of the solid in the first octant bounded by the surface \(9z = 36 - 9x^2 - 4y^2 \) and the coordinate planes. See 16.3-29.
 (f) Let \(R \) be the region in quadrant one bounded by \(x^2 + y^2 = 4 \) and the lines \(y = 0 \) and \(y = x \). Evaluate \(\int_R f(x, y) \, dA \) using polar coordinates, given \(f(x, y) = 1/(4 + x^2 + y^2) \). See 16.4-13.
4. (Surface Area) Complete two of the following.
 (a) Find the area of the part of the surface \(z = \sqrt{4-y^2} \) directly above the \(xy \)-plane square \(1 \leq x \leq 2, 0 \leq y \leq 1 \). See 16.6-3.
 (b) Find the area of the part of the paraboloid \(z = x^2 + y^2 \) that is cut off by the plane \(z = 4 \). See 16.6-6 and example 2 page 712.
 (c) Find the center of mass of the homogeneous sphere \(x^2 + y^2 + z^2 = a^2 \) bewteen the planes \(z = a/2 \) and \(z = a/4 \) (\(a > 0 \) assumed). See 16.6-15.

5. (Triple Integrals) Complete two of the following.
 (a) Evaluate \(\int_0^2 \int_1^z \int_0^{\sqrt{x/z}} 2xyz \, dy \, dx \, dz \). See 16.7-5.
 (b) Evaluate \(\int \int \int_S dx \, dy \, dz \) where \(S \) is the tetrahedron with vertices \((0,0,0)\), \((3,2,0)\), \((0,3,0)\), \((0,0,2)\). See 16.7-15.
 (c) Find the volume of the solid in the first octant bounded by the 3D surfaces \(x^2 = y \) and \(z^2 = y \) and \(y = 1 \). See 16.7-21.
 (d) Find the center of mass of the homogeneous solid bounded above by \(z = 12 - 2x^2 - 2y^2 \) and below by \(z = x^2 + y^2 \). See 16.8-5.