An Incomplete List of

Final Exam-type Questions

1) Sketch a graph of a function \(f \) with all of the following properties:
 (a) The domain of \(f \) is \([-5, 5]\).
 (b) \(f'(x) \) is defined on \((-5, -2), (-2, 1), \) and \((1, 5)\).
 (c) \(f \) is continuous everywhere except at \(x=1 \) in its domain.
 (d) \(\lim_{x \to 1^-} f(x) = f(1) \)
 (e) \(\lim_{x \to -4} f(x) = 0 \)
 (f) \(f'(0) = 0 \)

2) Evaluate: \(\lim_{x \to 5} \frac{\sin(x-5)}{x^2-25} \)

3) Suppose \(g(x) \) is continuous on \([-1, 3]\), and \(g(-1) = 5, \ g(3) = -\frac{1}{2} \). Do we know that \(g \) has a root in the interval \((-1, 3)\)? If so, by what theorem? If not, sketch a graph of such a function that does not have a root here.
4) Evaluate: \[\int \sec x \tan x \, dx \]

5) Evaluate: \[\int \sin x \cos x \, dx \]

6) Evaluate: \[\int \sin y \cos^2 y \, dy \]

7) Approximate \(\sqrt{216} \) (using a derivative).

8) True or False? (True means \textit{always} true.)

 (a) If \(\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) \), then \(f \) is continuous at \(a \).

 (b) If \(f'(b) \) exists, then \(f \) is continuous at \(b \).

 (c) If \(g'(1) = 0 \), then \(g \) has either a local minimum or a local maximum at \(1 \).

 (d) An inflection point of \(f \) is a point at which \(f''(x) = 0 \).

 (e) \(\int_a^b g(x) \, dx \leq \int_a^b f(x) \, dx \) implies that \(g(x) \leq f(x) \) on the interval \((a,b)\).

 (f) \(\int_a^b |h(x)| \, dx = |\int_a^b h(x) \, dx| \)
9) Find the volume of the solid obtained by rotating the shaded region below about:
(a) the x-axis
(b) the y-axis
(c) the line $x = -2$
(d) the line $y = -3$

10) Find the equation of the line tangent to the curve $y^2 + 2yx = x^3$ at the point $(1.6, 1)$. Hint: $(1.6)^2 \approx 2.6$
 $(1.6)^3 \approx 4.1$
 $(1.6)^4 \approx 6.5$

11) Given is the graph of $f(x)$. Sketch a graph of $f'(x)$ on the same axes.