1 Classification

Given a degree sequence d_1, \ldots, d_n, let N_{d_1, \ldots, d_n} denote the number of isomorphism classes of graphs with that degree sequence. Find a formula for N_{d_1, \ldots, d_n}. Find an algorithm that computes a graph in each isomorphism class.

Example. In the case of the degree sequence 2, 2, 2, 2, 2, 2, 2, 2, 2, the four different isomorphism classes are drawn at the top of page 65. We could write this as $N_{2^9} = 4$. Similarly, if you solve Exercise 3.16, you should realize that $N_{6^9} = 4$ (hint: use Theorem 3.1). What is the symmetry at work here? Can you generalize this to get an identity for N_{d_1, \ldots, d_n}?

Remarks.

- Start with simple degree sequences! For example, compute N_{1^n} and N_{2^n}.
- Solving this problem for N_{r^n} (r-regular graphs with n vertices) would already be extremely interesting.
- Ideally, you would find a closed formula for N_{d_1, \ldots, d_n} in terms of the variables d_1, \ldots, d_n. If a closed formula proves to be elusive, it may be possible to show that the numbers N_{d_1, \ldots, d_n} for various choices of degree sequences can be assembled into a nice structure, such as a power series that has a nice factorization.
- One approach to computing N_{d_1, \ldots, d_n} is to find relationships between these numbers as you vary the degree sequences. For instance, you could investigate how the number changes when you subtract 1 from d_1.
- Sometimes small changes to a counting problem can lead to a much nicer formula. For instance, counting all pseudographs with a given degree sequence or counting only connected graphs with a given degree sequence may be easier.

2 Checking isomorphism

Devise an efficient algorithm to determine whether two graphs are isomorphic.
Remarks. • The brute-force algorithm we saw in class takes $n!$ time, which is considered to be extremely bad. You should aim for a polynomial-time algorithm (e.g. n^3).

• Once again, restricting to a special class of graphs (such as r-regular graphs or connected graphs) may make this problem more tractable.

3 Graphical degree sequences

Devise a list of conditions for degree sequences such that every degree sequence satisfying those conditions is graphical.

Remark. We already have an efficient (linear time) algorithm for determining whether a sequence is graphical. You could try to use this algorithm to help you devise the list of conditions.

4 Properties of a graph and its adjacency matrix

How are properties of a graph (such as the degree sequence, connectedness, bipartiteness, etc.) reflected in the adjacency matrix? Conversely, how are properties of the adjacency matrix (such as invertibility, eigenvalues, eigenvectors, etc.) reflected in the associated graph?

5 Graceful trees

Does every tree have a graceful labeling? (For the definition of graceful labeling, see Section 8.3.)

6 Partitioning edge-connectivity

Let $G = (V, E)$ be an $(a + b + 2)$-edge-connected graph. Does there exist a partition of E into sets A, B so that the subgraph (V, A) is a-edge-connected and the subgraph (V, B) is b-edge-connected?

(This problem was submitted to the Open Problem Garden by Matt Devos.)

Example. K_5 is $(1+1+2)$-edge-connected. Letting A be the edges in any 5-cycle in K_5, the remaining edges of K_5 also form a 5-cycle. Cycles are 1-edge-connected (which just means connected), so the partition in the question does exist for K_5.

7 Decomposing an Eulerian graph into cycles

Is it true that every (simple) Eulerian graph of order n can be decomposed into $\leq \frac{n-1}{2}$ cycles?

(In the Open Problem Garden, this problem is attributed to György Hajós.)

Example. A complete graph of odd order ($n = 2k + 1$) can be decomposed into exactly $k = \frac{n-1}{2}$ cycles.
8 Hamiltonian cycles

Devise a polynomial time algorithm for determining whether a graph has a Hamiltonian cycle.

Remark. This is an extremely hard problem in general. As usual, it could be helpful to restrict to an interesting class of graphs instead of general graphs.

9 Generalizing the Four Color Theorem

Is there statement for a genus k surface analogous to the Four Color Theorem?

Remark. Recall that the Four Color Theorem states that if G is planar, then $\chi(G) \leq 4$. The question is asking whether there are numbers n_k such that for all G that are embeddable in S_k, $\chi(G) \leq n_k$. Ideally, these numbers n_k should be sharp, namely as small as possible, but even a result analogous to the Five Color Theorem for planar graphs could be interesting. To start, focus on $k = 1$. How many colors are necessary to color a graph that is embeddable on the torus?