Math 2200 Homework 9 Proofs

Degree and Simple Graphs

Exercise 1. Prove the following theorem:

Theorem. Let $G = (V, E, \phi)$ be a graph. Then the sum of the degrees of all vertices in G is equal to twice the number of edges of G, namely

$$
\sum_{v \in V} \deg(v) = 2 \cdot |E|.
$$

Proof. Let $e \in E$ be any edge. If e is a loop, then e contributes 2 to the degree of its only endpoint. If e is not a loop, then e contributes 1 to the degree of each of its two endpoints. In either case, e contributes 2 to the sum of the degrees of all the vertices. Since this is true for every edge e, we see that

$$
\sum_{v \in V} \deg(v) = 2 \cdot |E|.
$$

\[\square\]

Exercise 2. Prove the following theorem:

Theorem. Let $G = (V, E, \phi)$ be a simple graph and let $n = |V|$ be the number of vertices of G. Then $|E|$, the number of edges of G, satisfies the inequality

$$
|E| \leq \binom{n}{2}.
$$

Proof. Since G is simple, G contains no loops or multiple edges. Thus every edge of G has two distinct endpoints, and there is at most one edge between every pair of distinct vertices. So the most edges G can have is one for every pair of distinct vertices in G. Since there are $\binom{n}{2}$ pairs of distinct vertices in G, we obtain the inequality

$$
|E| \leq \binom{n}{2}.
$$

\[\square\]

Connectivity

Exercise 3. Prove the following theorem:

Theorem. Let H_1, H_2 be connected subgraphs of a graph G and suppose H_1 and H_2 have a common vertex. Then $H_1 \cup H_2$ is connected.

Proof. By assumption, there is a vertex $v \in V_{H_1} \cap V_{H_2}$. Let u, w be any two vertices in $H_1 \cup H_2$. If u, w are both in H_1, then since H_1 is connected, there is a walk in H_1 from u to w, and this walk is also in $H_1 \cup H_2$ since H_1 is a subgraph of $H_1 \cup H_2$. A similar argument works when u, w are both in H_2. The last case to consider is when u is in H_1, while w is in H_2. Since H_1 is connected, there is a walk $(u, e_1, v_1, \ldots, e_n, v)$ in
Exercise 4. Prove the following theorem:

Theorem. Let \(H_1, H_2 \) be connected subgraphs of a graph \(G \). Then \(H_1 \cap H_2 \) is connected.

This theorem is false! (Therefore it does not deserve to be called a theorem.) Here is the smallest counterexample:

\[
G = \begin{array}{c}
\bullet & e & w \\
f & \text{..} & \\
\bullet & w
\end{array} \\
H_1 = \begin{array}{c}
\bullet & e & w \\
\text{..} & \text{..} & \\
\bullet & w
\end{array} \\
H_2 = \begin{array}{c}
\bullet & f & w \\
\text{..} & \text{..} & \\
\bullet & w
\end{array}
\]

Clearly \(H_1 \) and \(H_2 \) are connected subgraphs of \(G \), but \(H_1 \cap H_2 = \begin{array}{c}
\bullet & w \\
\text{..} & \text{..} & \\
\bullet & w
\end{array} \), which is not a connected subgraph of \(G \).

Comment: It is tempting to think that this theorem can be proven, because you can find walks in both \(H_1 \) and \(H_2 \) between any two vertices of \(H_1 \cap H_2 \). The trouble is that these two walks can be very different, and there is no way to combine them into a walk in \(H_1 \cap H_2 \). For instance, in the counterexample above, \((v, e, w)\) is a walk in \(H_1 \) from \(v \) to \(w \), and \((v, f, w)\) is a walk in \(H_2 \) from \(v \) to \(w \), but there is no way to combine these two walks into a walk in \(H_1 \cap H_2 \).