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Monitoring the thickness of sea ice is an important tool in assessing the impact of global warming on

Earth’s polar regions, and most methods of measuring ice thickness depend on detailed knowledge of its

electrical properties. We develop a network model for the electrical conductivity of sea ice, which

incorporates statistical measurements of the brine microstructure. The numerical simulations are in

close agreement with direct measurements we made in Antarctica on the vertical conductivity of first

year sea ice.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Sea ice is a critical component of Earth’s climate system as well
as a sensitive indicator of climate change. Determining the
thickness distribution of the polar sea ice packs is a central
problem in monitoring the impact of global warming. However,
there is significant uncertainty in our knowledge of the ice
thickness distribution and how it is changing. Not only does this
uncertainty affect assessments of how the changing climate is
impacting the polar regions, but it also affects predictions of
global climate models, where accurate knowledge of sea ice initial
conditions is essential for long term simulations.

Most methods of measuring sea ice thickness, and interpreta-
tion of the data obtained, depend on detailed knowledge of the
electrical properties of the ice. Since sea ice is a composite of pure
ice with brine inclusions [21,3], whose volume fraction and
geometry depend strongly on temperature, understanding its
electrical properties is a challenging problem in the theory of
inhomogeneous materials. While the electrical conductivity of
pure ice is negligible for most purposes, the electrical conductivity
of brine can be substantial. Here we develop a network model for
the electrical conductivity of sea ice, and compare the results with
direct measurements of the vertical conductivity of first year sea
ice we made during the 2007 Sea Ice Physics and Ecosystem
eXperiment (SIPEX) expedition off the coast of East Antarctica,
from the Australian icebreaker Aurora Australis [9].

Early DC resistivity measurements on sea ice were aimed at
determining ice thickness [5,19,20]. Initially all these studies
employed surface soundings using 4 electrodes in either the
Wenner or Schlumberger configurations, although Thyssen et al.

[19] later used vertically arranged electrodes in the side of an ice
pit. Later measurements in the Antarctic were also reported [2].
The anisotropic nature of the resistivity of sea ice, due to the
preferential vertical alignment and connectivity of brine pores,
leads to such measurements significantly underestimating the ice
thickness.

More promising determinations of sea ice thickness have been
achieved using low frequency electromagnetic (EM) techniques
[14,11,13,22,17]. The technique relies on a time varying primary
magnetic field (generated by a transmitter coil) inducing eddy
currents in the seawater beneath the comparatively resistive ice.
The secondary magnetic field produced is sensed by a receiver
coil, determining an apparent conductivity which results essen-
tially from an integration over the vertical distance between the
instrument and induced currents. The thickness is found using
empirical relationships [12], with good results for smooth ice and
underestimates near ridges [12]. The technique is adaptable to
continuous measurements being made either from a helicopter or
ship [11].

Previous measurements of the conductivity of sea ice relied
almost exclusively on indirect methods which mix the horizontal
and vertical components. Moreover, these indirect means make it
difficult to accurately recover the dependence of the conductivity
on the properties of the brine microstructure, namely, its brine
volume fraction f, which depends on the temperature T and
salinity S of the ice [4,21,3]. During the 2007 Australian SIPEX
expedition, Golden and Gully extracted cylindrical cores of sea ice
and made vertical conductivity measurements along these cores
using metal probes attached to a Yew Earth Resistance Tester, as
described in Ref. [9]. We also measured salinity and temperature
along each core in order to relate the electrical measurements to
microstructural data [15,7,8,16], such as the brine volume
fraction.

Part of our motivation for focusing on the vertical component
of the electrical conductivity is that it is closely related to the
vertical component of the fluid permeability of sea ice. Fluid
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transport in sea ice mediates a broad range of processes such as
the growth and decay of seasonal ice, the evolution of melt ponds
which determine ice pack albedo, and biomass build-up [8,6]. Our
work here will help lay the foundation for electrically monitoring
fluid transport in sea ice. In fact, the random resistor network
model we develop here is based on the random pipe network we
used previously to model the fluid permeability of sea ice [23].
Statistical information about the brine microstructure [15,7,8,16]
is used to determine the statistical distributions of the resistors in
the electrical network.

2. The network model for the effective conductivity of sea ice

In this model, we consider a piece of sea ice with brine
inclusions specified by a brine volume fraction f and other
statistical assumptions, and focus on the effect of the brine
structure on electrical conduction in the material. More specifi-
cally, we study the behavior of the effective vertical conductivity
and its dependence on the brine inclusions. Let F be the electric
potential, and r the local conductivity tensor, which depends on
the brine volume fraction. Since the current density J is related to
the electric potential through J¼�rrF, and assuming the
material is free of electric charge, the equation for electrical
conduction is

r � rrF¼ 0: ð1Þ

This is similar to the incompressible fluid permeability equation
for the pressure from Darcy’s law,

r � krp¼ 0; ð2Þ

where p is the incompressible fluid pressure and k is the
permeability tensor.

Here we define the effective conductivity s�v of the sea ice
structure in the vertical direction through

Jz ¼�s�v
DF
Dz

ð3Þ

for the current density Jz in z direction, and the potential
difference DF over a thickness Dz.

To simulate the electric field through the conducting micro-
structure of sea ice, consider an ice sheet of depth D, similar to the
structure used in Ref. [23]. Take a thin vertical slice of horizontal
thickness h and length span L. We model this ice sheet by a two
dimensional lattice of nodes connected by conducting tubes, as
shown in Fig. 1. The slice has a rectangular L� D vertical cross
section, which is divided into a grid with m equally spaced
sections in the horizontal direction and n equally spaced sections

in the vertical direction, so that L=m¼D=n¼ h, for some large
integers m and n. The model parameter h can be viewed as the
dimension of a cell in which a typical brine inclusion is contained.
In this network model, h will be chosen according to the sea ice
we simulate, its brine volume fraction, and our computing
capacities. The tubes are assumed to have circular shapes with
different radii, and the current through the medium is induced by
an electric potential drop DF¼Ft�Fb, where Fb and Ft are the
potentials at the bottom and the top of the sea ice sample, with
the assumption that Fb4Ft so there is an upward current flow in
the medium. The cross sectional areas of the tubes chosen below
generate fluid pores comparable to the brine inclusions found in
young sea ice. The lattice nodes are the vertices ði; jÞ,
0r irm;0r jrn, of a rectangular grid, as in Fig. 1(a). Nearest
neighbors are connected by vertical and horizontal tubes, with a
potential Fi;j defined at each node ði; jÞ. To each node ði; jÞ with
0r irm�1;0r jrn�1, the horizontal tube to the right of ði; jÞ
has radius R¼ Rh

i;j, and the vertical tube on top of ði; jÞ has radius
R¼ Rv

i;j, as shown in Fig. 1(b).
Since the brine conductivity is substantially higher than the

conductivity of the surrounding ice (on the order of 108), we can
assume that electrical conduction takes place mostly through the
brine tubes. The effect of negligible conduction through pure ice
will be modeled by adding a simple conducting component to the
system. Unlike the permeability model, where the fluid flux
depends only on the brine geometry, electrical conduction in the
microstructure includes a temperature dependent local conduc-
tivity. For each tube of radius R connecting two nodes with a
uniform conductivity stube, the electric current through the tube
can be established based on the voltage drop and the cross
sectional area A as follows:

I¼ stubeAE¼�stubepR2rF; ð4Þ

where F is the electric potential, E is the electric field and R is the
radius of the tube. For each tube connecting two neighboring
nodes, the potential gradient can be well approximated by the
potential drop divided by the spacing h. Given the potentials at
neighboring nodes, different currents converging to the node ði; jÞ
can be easily computed, and they must balance due to Kirkoff’s
law. Let sh

i;j and sv
i;j denote the brine conductivity for the tubes to

the right and on the top of node ði; jÞ, respectively. This leads to the
following equations,

sv
i;jðR

v
i;jÞ

2
ðFi;jþ1�Fi;jÞþsv

i;j�1ðR
v
i;j�1Þ

2
ðFi;j�1�Fi;jÞ

þsh
i;jðR

h
i;jÞ

2
ðFiþ1;j�Fi;jÞþsh

i�1;jðR
h
i�1;jÞ

2
ðFi�1;j�Fi;jÞ ¼ 0; ð5Þ

for i¼ 1; . . . ;m�1, and j¼ 1; . . . ;n�1, with appropriate modifica-
tions on the edges of the lattice. Notice that this equation is
similar to the equation derived for the fluid permeability model
[23]:

ðRv
i;jÞ

4
ðpi;jþ1�pi;jÞþðR

v
i;j�1Þ

4
ðpi;j�1�pi;jÞ

þðRh
i;jÞ

4
ðpiþ1;j�pi;jÞþðR

h
i�1;jÞ

4
ðpi�1;j�pi;jÞ ¼ 0; ð6Þ

where pi;j is the pressure at node ði; jÞ. We remark that in the
conductivity model the coefficients depend on the radius (� R2)
not as strongly as in the permeability case (� R4). On the other
hand, here the local brine conductivity depends on temperature
and salinity, and it could have spatial variations once we allow the
temperature and salinity to be spatially non-uniform.

The boundary conditions for F are prescribed so that F is
periodic in the horizontal direction with period L, and it satisfies
Dirichlet conditions at the top and bottom of the region as

Fi;n ¼Ft ; Fi;0 ¼Fb: ð7Þ

R

R

R

v

v

h

i,j

i,j-1

i-1,j

Rh
i,j

(i,j)

Fig. 1. (a) Random resistor network and (b) close-up of a node and adjoining

conducting elements.
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The total current through the brine network system can be
obtained by adding currents through all the branches of the top
layer,

Ibrine ¼ p
Xm

i ¼ 0

sv
i;n�1ðR

v
i;n�1Þ

2 Fi;n�1�Ft

h
: ð8Þ

The small effect of additional conduction through pure ice can
be modeled as a current flow through another medium in parallel
to the brine network,

Ipure ice ¼ siceLhð1�bÞ
Fb�Ft

D
: ð9Þ

Here we introduce a coefficient b that models the loss of ice
surface/volume for conduction due to the brine inclusions. It
should be pointed out that due to the small ratio sice=sb and the
fact that sice has a non-negligible temperature dependence,
modifications due to b can be ignored in our study of the effective
vertical conductivity.

With the introduction of the effective vertical conductivity for
this composite in Eq. (3), and the relation between the current and
current density,

Jz ¼ s�v
Fb�Ft

D
¼

Ibrineþ Ipure ice

Lh
; ð10Þ

we have the effective conductivity

s�v ¼
pD

Lh2

Xm

i ¼ 0

sv
i;n�1ðR

v
i;n�1Þ

2 Fi;n�1�Ft

Fb�Ft
þð1�bÞsice: ð11Þ

The effect of b is ignored by setting it to zero in this study.
The multigrid algorithm to solve the system of equations (6)

can be modified to solve the system of equations (5), and the
numerical convergence is faster due to the coefficient dependence
change from R4 to R2.

3. Sea ice microstructure and numerical results

In this work, the microstructure of the sea ice slice is described
as a collection of tubes with cross sectional areas sampled from a
lognormal distribution that subsequently lead to a specified
average brine volume fraction f, with parameters based on
measurements of brine inclusions in first year sea ice [15,1].
Specifically, we sample the radius R so that log A¼ logðpR2Þ is
normally distributed with mean m and variance a2. We also
assume that all the random radii are independent from each
other. Given a particular sample of the tube radii, the brine
volume fraction f of the slice can be readily computed by

f¼
p

LD

Xm�1;n

i ¼ 0;j ¼ 0

ðRh
i;jÞ

2
þ

Xm;n�1

i ¼ 0;j ¼ 0

ðRv
i;jÞ

2

0
@

1
A: ð12Þ

The brine conductivity for each tube is determined by the
temperature and the salinity of the sample under consideration,
and it is assumed to remain the same value sb for all tubes in the
sample for this model. The goal of this study is to investigate the
dependence of the effective vertical conductivity s�v, and the form
factor s�v=sb, on the porosity f, which is connected to the
microstructure through Eq. (12). For consistency, it is necessary to
choose the parameters m and a such that the desired volume
fraction is obtained, and that the statistical properties of the
actual sea ice are reasonably matched. To this end, we first notice
that given our assumption about the distribution of log A, the
expected value of the cross sectional area

E½A� ¼ emþ1=2a2

: ð13Þ

This should be matched to an interpolation of measured averages
for the cross sectional area A as a function of brine volume

fraction f [10],

/AS¼ yðfÞ ¼ pð7� 10�5
þ1:6� 10�4fÞ2 m2: ð14Þ

This function approximates the dependence of the mean cross
sectional area on the brine volume fraction f observed by
Perovich and Gow [15] in horizontal thin sections of young,
primarily columnar sea ice. It is also observed that a¼ 1 gives a
good fit for the range of volume fractions covered here, and
consequently we use this value for all the numerical calculations
in this work. Once a is determined, the other parameter m
is solved by the matching condition E½A� ¼/AS as above.
Throughout this study n¼m¼ 1024.

Also as observed in Refs. [7,8,16], brine inclusions in columnar
sea ice become connected on macroscopic scales only when the
brine volume fraction exceeds around 5%. To reflect this behavior,
we allow some randomly selected tubes to be disconnected from
the system in an effort to simulate the disconnection of brine
inclusions. Since the dominant conduction direction is the vertical
direction, we introduce a probability of disconnection for vertical
tubes only, consistent with the X-ray tomographic data and pore
structure analysis in Refs. [8,16], and this constitutes an
additional input to the model.

We proceed to perform numerical simulations for s�v with
several situations described by the brine volume fraction, and the
corresponding microstructure summarized from our data. For
each value of f, we choose an appropriate probability of
disconnection to differentiate the microstructure from the others.
The brine conductivity sb in fact depends on the temperature and
the salinity of the sea ice, which characterize the state of the sea
ice at the particular level of brine volume fraction. For this study,
in order to focus on the effects of the brine volume fraction, we
assume a fixed value for the salinity S¼ 7 ppt. We then invert the
Frankenstein–Garner relation [4] to obtain

T ¼�
49:185

1000f
S
�0:532

; ð15Þ

which is then substituted in the Stogryn–Desargant relation [18]

sb ¼�T � e0:5193þ0:08755T ; TZ�22:9 3C; ð16Þ

to determine the brine conductivity for the sea ice at a particular
brine volume fraction f. The values of temperature and brine
conductivity, as well as the probabilities of disconnection that
describe one important aspect of the microstructure, are listed in
Table 1 for selected values of the brine volume fraction for which
we perform numerical simulations in this work. We also use an
average pure ice conductivity value of sice ¼ 1:1� 10�8 at a
temperature T ¼�10 3C. Here all the conductivity quantities have
the unit Ohm�1 m�1.

In Fig. 2, we plot the values of the effective vertical
conductivity s�v and form factor s�v=sb from our measured data
sets and compare with the results of the network model. First we
note that our assumption sv

i;j ¼ s
h
i;j ¼ sb simplifies Eq. (5) such that

the solution F is independent of sb. This allows us to separate the
effects of decreasing sb and increasing s�v as f increases. As we
see from the graphs for both the effective vertical conductivity
and the form factor, our results show close agreement with the
measurements. In Fig. 2(a), the simulated curve is consistent with

Table 1
Numerical parameters used in simulation.

f ð%Þ 2.5 5.0 7.5 10.0 12.5

Pdisconnect 0.9 0.7 0.5 0.25 0

T ð3CÞ �16.18 �7.44 �4.83 �3.58 �2.84

sb (Ohm-1 m-1) 6.596 6.519 5.319 4.395 3.722
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critical behavior in a finite volume. For the form factor
comparison in Fig. 2(b), we choose a log–log scale to detect any
linear behavior, which would suggest Archie’s law behavior. As
demonstrated in this log–log graph, such a power law could also
be developed from this network model. These results are
consistent with the behavior found for the fluid permeability in
Ref. [8]. In Ref. [9] we use percolation theory and other methods
to analyze our vertical conductivity data.

4. Conclusions

We have developed a network model for the vertical
conductivity of sea ice. The model incorporates statistical
information about the brine microstructure, through a lognormal
distribution describing the temperature dependence of the
inclusion sizes, and connectivity information obtained from
X-ray CT data. The model agrees well with field data for Antarctic
sea ice. Our work will aid in measurements of sea ice thickness
which depend on knowledge of its electrical properties.
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Fig. 2. (a) Data on the vertical conductivity of first year Antarctic sea ice is compared with the results of numerical simulations and (b) data on the form factor is compared

with numerical results from the network model, and displayed on a logarithmic scale.
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