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a b s t r a c t

During the 2007 SIPEX expedition in pack ice off the coast of East Antarctica, we measured the electrical

conductivity of sea ice via surface impedance tomography. Resistance data from classical four-probe

Wenner arrays on the surfaces of ice floes were used to indirectly reconstruct the conductivity profiles

with depth, involving both the horizontal and vertical components. A common problem with these

reconstructions is the lack of uniqueness of the inversions, which worsens as the number of layers in

the model increases. In the past, three layer inversions have been used to help avoid non-uniqueness.

However, this approach assumes that the conductivity profile of sea ice does not change very much

with depth. In order to investigate the conductivity profiles one needs to use more layers in the

reconstruction. A reasonable starting model is a useful tool that can be used to regularize the inverse

problem, allowing a reconstruction that not only matches the Wenner impedance data but the actual

profile. Using measurements of brine volume fraction for 10 cm sections of ice cores taken at the

Wenner array site, and various models relating brine volume fraction to conductivity, we compare the

predicted conductivity profiles based on the models to the reconstructions from the tomographic

measurements. We note the close agreement with the actual data for some models and the inadequacy

of others. Such models could be useful in finding a reasonable starting point for regularizing inversions,

and using n-layer models to reconstruct accurate conductivity profiles. Our results help to provide a

rigorous basis for electromagnetic methods of obtaining sea ice thickness data, a key gauge of the

impact of climate change in the polar regions.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The polar sea ice packs play a fundamental role in Earth’s
climate system, and are leading indicators of climate change
(Thomas and Dieckmann, 2003; Serreze et al., 2007). They also
host extensive algal and bacterial communities which sustain life
in the polar oceans (Thomas and Dieckmann, 2003; Fritsen et al.,
1994). Refining predictions of climate change and the future
trajectory of the polar ice packs depends on accurate knowledge
of their thickness distribution. Not only is this knowledge impor-
tant in comparing model predictions to observed behavior, but in
specifying the initial conditions necessary to study the time
evolution of these nonlinear systems. Determining the thickness
distribution, however, remains an elusive problem. Due to the
vast extent of the polar sea ice packs, it is impractical of course to
drill the millions of holes or more that would be needed to
accurately assess the thickness distribution over a particular
region or time period. Thus, other methods have been and are
being developed, many of which use electromagnetic techniques,

such as electromagnetic induction (EMI) devices (Haas et al.,
1997; Haas, 1998, 2004; Worby et al., 1999; Reid et al., 2006)
mounted on ships, planes or helicopters. Electromagnetic techni-
ques, in general, rely on some knowledge of the effective
electrical properties of sea ice and how they vary with depth,
temperature, salinity, ice type, etc. in the analysis of the data to
obtain thickness information.

The electrical conductivity of sea ice is also closely related to its
fluid transport properties. Fluid flow through sea ice mediates a
broad range of processes which are important in climatological and
biological studies. These include the evolution of melt ponds in the
Arctic, surface flooding and snow-ice formation in the Antarctic, the
evolution of salinity profiles, convection-enhanced thermal trans-
port, CO2 fluxes, and nutrient replenishment for microbial commu-
nities. In (Golden et al., in preparation) we found the electrical
signature of the rule of fives (Golden et al., 1998a, 2007; Pringle et al.,
2009), where columnar sea ice is effectively impermeable for brine
volume fractions below about 5% and increasingly permeable above
this threshold. Relating fluid and electrical transport properties in
this way lays the foundation for electromagnetic monitoring of the
above processes.

Early DC resistivity measurements of sea ice were aimed
at determining ice thickness (Fujino and Suzuki, 1963;
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Thyssen et al., 1974; Timco, 1979). These studies employed
surface soundings using 4 electrodes in either the Wenner or
Schlumberger configurations. Thyssen et al. (1974) also made
in situ measurements of sea ice resistivity using electrodes
inserted into the vertical face of a pit that was dug in the unrafted
ice near one of their sites. The apparent resistivity was measured
perpendicular and parallel to the ice surface, and this data was
analyzed further by Timco (1979). He attempted to interpret
sounding results in terms of the sea ice microstructure, and it was
also possible to see changes in the resistivity structure during
spring warming. Nevertheless, such measurements have been
somewhat unfruitful as a means of investigating either ice
thickness or microstructural detail. Later measurements in the
Antarctic were also reported (Buckley et al., 1986). The aniso-
tropic nature of the resistivity of sea ice leads to measurements
significantly underestimating the ice thickness (Reid et al., 2006)
by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r�v=r�h

q
, where r�v and r�h are, respectively, the vertical

and horizontal components of the bulk resistivity (Bhattacharya
and Patra, 1968), with s�v ¼ 1=r�v and s�h ¼ 1=r�h, the vertical and
horizontal components of the bulk conductivity. Surface measure-
ments also lead only to an estimate of the geometric mean
resistivity

ffiffiffiffiffiffiffiffiffiffiffi
r�vr�h

p
.

More promising determinations of sea ice thickness have been
achieved using low frequency electromagnetic induction (EMI)
techniques (Haas et al., 1997; Haas, 1998, 2004; Worby et al.,
1999; Reid et al., 2006). The technique relies on a time varying
primary magnetic field generated by a transmitter coil. The
measured secondary magnetic fields are due to the currents
induced within a volume of the subsurface (i.e., the footprint)
by the EMI system. The measured secondary fields at the receiver
are a weighted average of the response due to all the currents
within the footprint. The thickness has been found using empiri-
cal relationships (Haas, 2003), with good results for smooth ice
and underestimates near ridges (Haas, 2003). However, theore-
tical approaches (Kovacs and Holladay, 1990; Prinsenberg et al.,
2002) have also been used, where the measured secondary fields
are inverted for sea ice thickness (and hopefully, the sea water
conductivity and horizontal sea ice conductivity). The inversion
approach assumes very accurate calibration of the EMI system.
The EMI technique is adaptable to continuous measurements
being made either from a helicopter or ship (Haas, 1998; Reid
et al., 2006; Kovacs and Holladay, 1990; Prinsenberg et al., 2002).
Theoretical modeling of electromagnetic measurements suggests
a sea ice resistivity of some 10’s of O m (Haas et al., 1997; Reid
et al., 2006) — in broad agreement with DC resistivity determina-
tions of

ffiffiffiffiffiffiffiffiffiffiffi
r�vr�h

p
, although electromagnetic measurements as yet

have been unable to provide any microstructural information.
Moreover, theoretical results which accurately relate effective
electrical properties of sea ice to key parameters characterizing
the brine phase have been lacking.

As a step toward providing a deeper understanding of the
electrical properties of sea ice, and in particular how they depend
on the brine microstructure and vary with depth, we made
measurements of these properties in the Antarctic. During Sep-
tember and October of 2007, two of us (K.M.G. and A.G.)
measured the electrical conductivity of first year Antarctic pack
ice as participants in the Australian Sea Ice Physics and Ecosystem
eXperiment (SIPEX), aboard the icebreaker Aurora Australis. The
study area was located off the coast of East Antarctica, between
1151 E and 1301 E, and 641 S and 661 S. At 12 of the 15 ice stations
along the cruise track of the Aurora, we conducted electrical
soundings using a Wenner array with probes inserted into the
surface of the ice over a range of spacings (Fig. 1). The separation
of the probes ranged from 5 cm to 5 m. We also extracted full ice
cores at each site and took temperature and salinity profiles for
each core in order to obtain a brine volume profile for the ice

where we measured electrical properties. Using an inversion
scheme, we reconstructed information about the conductivity
profile with depth. In (Golden et al., in preparation) we report on
direct measurements of the vertical conductivity of the ice, and
theoretical models relating sea ice electrical properties to the
characteristics of the brine microstructure. We use the theoretical
results here to help constrain the inversion scheme.

2. The bulk conductivity of sea ice

Sea ice is a complex, high contrast composite material of pure
ice with brine and air inclusions. What determines the response of
an ice floe in a Wenner sounding is the effective or bulk con-
ductivity of the sea ice and its variation with depth. Predicting the
effective electromagnetic properties of sea ice, such as its electrical
conductivity, is a challenging theoretical problem. While pure ice
and air are essentially electrical insulators, the brine phase is highly
conducting. The relative volume fraction f of brine, the geometry of
the inclusions, and in particular their connectivity, are all highly
dependent on temperature (Perovich and Gow, 1996; Golden et al.,
1998a, 2007; Pringle et al., 2009). The brine inclusions in general
display a preferred elongation in the vertical direction, as does the
brine connectivity (Golden et al., 2007; Pringle et al., 2009). The
conductivity tensor of sea ice is thus anisotropic.

Let us briefly formulate the problem of finding the effective or
bulk conductivity of a two phase composite material (Golden and
Papanicolaou, 1983; Golden et al., 1998b; Gully et al., 2007). For
these considerations we ignore the air phase in sea ice. Let the
local conductivity sðxÞ be a spatially stationary random field in
xAR3, for an appropriate probability space representing the set of
realizations of the random medium. While sea ice may exhibit
significant variations in microstructural properties over its entire
depth, relatively thin layers such as 5 or 10 cm often display only
small variations in these properties. It is then reasonable to
assume that in typical sample sizes on this scale, the statistics
describing the brine microstructure in such a region are repre-
sented by a stationary random function throughout all of R3. We
assume sðxÞ takes the value s1 ¼ sb in the brine phase, which
depends on temperature T via (Stogryn and Desargant, 1985)

sb ¼�Texpð0:5193þ0:08755TÞ O�1 m�1,

TZ�22:9 3C: ð1Þ

Fig. 1. A Wenner electrode array along the surface of Antarctic sea ice, with the

Aurora Australis in the background. A current I is injected through the outer

electrodes C1 and C2. The potential difference DV resulting from the current flow

is measured at the inner electrodes P1 and P2.
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In the ice phase, sðxÞ takes the value s2 ¼ si ¼ 1:1� 10�8 O�1 m�1,
which is the value at T¼�10 1C (Hobbs, 1974). The value in ice is
effectively 0 compared to the values of sb in brine, which lie
between about 3 and 7 O�1 m�1. We write s¼ s1wþs2ð1�wÞ,
where wðxÞ is the characteristic function of the brine phase, with
wðxÞ ¼ 1 for x in the brine and wðxÞ ¼ 0 for x in the ice. The brine
volume fraction f is given by f¼/wS, where / �S means an
ensemble average or spatial average over all of R3, and depends
on temperature T (1C) and salinity S parts per thousand (ppt)
through the Frankenstein–Garner relation (Frankenstein and
Garner, 1967),

f¼
S

1000

49:185

jTj
þ0:532

� �
: ð2Þ

Let E(x) and J(x) be the stationary random electric and current
fields satisfying the constitutive law JðxÞ ¼ sðxÞEðxÞ and the equa-
tions

r � EðxÞ ¼ 0, r � JðxÞ ¼ 0, ð3Þ

with /EðxÞS¼ ek, where ek is a unit vector in the kth direction for
some k¼1, 2, 3. The effective conductivity tensor r� is defined by
(Golden and Papanicolaou, 1983)

/JS¼ r�/ES: ð4Þ

For convenience, we focus on one diagonal coefficient s� ¼ s�kk.
Due to the homogeneity of effective parameters, s�ðls1,ls2Þ ¼

ls�ðs1,s2Þ, where l is any scalar, s� depends only on the ratio
h¼ s1=s2, and we define mðhÞ ¼ s�=s2. The two main properties
of m(h) are that it is analytic off ð�1,0� in the h-plane, and that it
maps the upper half plane to the upper half plane, so that it is an
example of a Herglotz, or Stieltjes function.

An integral representation (Bergman, 1978; Milton, 1980;
Golden and Papanicolaou, 1983; Golden, 1986; Milton and
Golden, 1990) for m(h) which provides an important relationship
between microstructural information and the effective conduc-
tivity is

F ðsÞ ¼ 1�mðhÞ ¼

Z 1

0

dmðzÞ
s�z

, ð5Þ

s¼ 1=ð1�hÞ, s=2½0,1�,

where F ðsÞ is analytic off [0,1], and m is a positive measure on
[0,1]. Formula (5) separates the parameter s from information
about the mixture geometry contained in m, which is a spectral
measure of the operator Gw, where G¼rð�DÞ�1r. Statistical
assumptions about the random medium (via the correlation
functions) are incorporated through the moments mn of m. For
example, m0 ¼

R 1
0 dmðzÞ ¼/wS¼f, the porosity. Rigorous bounds

on s� can be obtained from (5) (Bergman, 1978; Milton, 1980;
Golden and Papanicolaou, 1983; Golden, 1986). Comparisons of
conductivity data with these bounds will be presented elsewhere.

Archie’s law (Archie, 1942) is an empirical equation relating
the bulk conductivity s� of a porous medium to its porosity and
the conductivity sf of the fluid occupying the pore space,

s� ¼ asff
m: ð6Þ

In this relation, f is the relative volume fraction of the fluid, or
porosity, and a is an empirical scaling parameter often taken to be
1, which yields the correct limiting behavior as f-1. In sea ice,
where we expect somewhat different behavior in different
volume fraction regimes, there is no particular reason for a to
be taken to be 1. The exponent m depends on the geometry of the
solid phase of the porous medium, such as the shapes of the
grains in porous rock or sand.

The conductivity sb of brine depends on its temperature
through equation (1). In studying how the vertical conductivity
s�v depends on brine volume fraction f, we note that the brine

conductivity sb changes as a function of temperature, as does
brine volume fraction via equation (2). It is then useful to consider
the vertical formation factor

F ¼
s�v
sb

, ð7Þ

which removes the dependence of the effective parameter on the
changing conductivity of the brine itself, and depends only on the
pore volume fraction and geometry. This parameter is commonly
used in the analysis of other porous media such as brine-filled
rocks and marine sands (Sahimi, 1995; Sen et al., 1981; Jackson
et al., 1978), although the more standard definition is in terms of
resistivity, r�v=rb. Archie’s law in (6) for the vertical formation
factor is then

FðfÞ ¼ afm: ð8Þ

In (Golden et al., in preparation) we use percolation theory to
closely capture vertical conductivity data for Antarctic sea ice,
with a critical threshold of about 5%. From a rigorous standpoint,
the two approaches are inconsistent, in that Archie’s law can be
viewed as describing systems with connectivity all the way down
to f¼ 0. It is nevertheless still useful to analyze the conductivity
of sea ice using Archie’s law, particularly to compare our findings
with previous works (Thyssen et al., 1974; Reid et al., 2006;
Ingham et al., 2008), as well as with previous work on fluid
permeability (Golden et al., 2007). Moreover, Archie’s law pro-
vides a formula for the conductivity below the threshold brine
volume fraction, whereas percolation theory predicts a value of
zero in this regime. By combining critical path analysis, relations
between the electrical conductivity and fluid permeability, and
statistical best fits, in (Golden et al., in preparation) we find the
following model for the formation factor, which also closely
captures vertical conductivity data,

FðfÞ ¼ 8:6f2:75: ð9Þ

We will use this formula here in our inversion analysis of the
Wenner array data. For comparison, we will also use FðfÞ ¼f1:9,
where a is forced to be 1, and the exponent comes from a
statistical best fit, although it is close to the value of 2 arising
from theoretical considerations. This second model underesti-
mates the conductivity above the threshold more than (9), which
provides a better approximation to percolation theory, and is
discussed elsewhere.

3. Surface impedance tomography

3.1. Formulation of the method for the Wenner array

In addition to the direct measurements of the vertical con-
ductivity, Wenner soundings were conducted at 12 of the ice
stations during SIPEX. A Wenner array consists of 4 electrodes
spaced evenly apart, which are inserted into the surface of the sea
ice. Current flows between the two outer electrodes C1 and C2 in
Fig. 2, and a potential difference is measured between the two
inner electrodes P1 and P2. Resistance measurements for the
Wenner electrode array were taken with a Yokogawa Electric
Works (YEW) Specific Earth Resistance Tester operating at 38 Hz.

From the measured potential difference we can obtain an
estimate for the apparent resistivity r�a via the following equation,
where a is the separation distance (Parasnis, 1986),

r�a ¼ 2pa
DV

I
¼ 2paR: ð10Þ

The basic features of the Wenner soundings are as follows: (1) As
the separation distance a is increased, the current penetrates
deeper into the ice. (2) The apparent resistivity r�a changes for

C. Sampson et al. / Deep-Sea Research II 58 (2011) 1149–1157 1151
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each measurement. (3) A curve of the apparent ice resistivities
can be constructed from the measurements. (4) The sounding
curve data can then be inverted to obtain a layered model of
resistivities.

It can be shown (Bhattacharya and Patra, 1968) that for a given
Wenner array spacing a, the apparent resistivity measured at the
surface is

r�a ¼ r
�
1ð1þ4GðaÞ�4Gð2aÞÞ, ð11Þ

where

GðxÞ ¼ 1þ2x

Z 1
0

KðlÞJ0ðlxÞ dl, ð12Þ

J0 is the Bessel function of order zero and KðlÞ is a function
depending on the resistivities and thicknesses of all the layers. An
example of KðlÞ comes from a two layered earth model,

KðlÞ ¼
�k1e�2lh1

1þk1e�2lh1
, k1 ¼

r�1�r�2
r�1þr�2

, ð13Þ

where r�1 and r�2 are the apparent resistivities of the first and
second layer, respectively, h1 is the depth of the first layer, and
the second layer is a homogeneous half-space.

For our measurements the spacing value a ranged initially
from 0.05 m to 20 m with the midpoint of the array at a fixed
position. Above a 5 m spacing, however, the instrument could no
longer give a reading. The lack of a reading at large a is probably
because the potential difference between the receiver electrodes
becomes very small over conductive sea water, and the voltage
resolution limit of the meter has been reached. This behavior was
observed at each ice station. The data from 5 ice stations are
presented in Table 1.

We analyze our Wenner data in two ways. First, we do
preliminary three layer inversions closely following the method
used by Reid et al. (2006). This allows us to get an idea of the
factor of anisotropy. Second, we compare the Wenner data to the

conductivity models discussed above, namely, Archie’s law with
a¼1, m¼1.9 and with a¼8.6, m¼2.75 (which is closer to
percolation theory) by building an n-layer model yielding a
theoretical sounding curve. We compare this to the measured
curve. This comparison is useful, because we will see that for
different ranges of f the differences between percolation theory
vs. Archie’s Law are reflected in the Wenner analysis as well.

3.2. Preliminary three layer inversions

We now present the results of simple three layer inversions of
the Wenner array data obtained during the SIPEX 2007 expedi-
tion. These 3-layer models will become important in the follow-
ing sections and shed light on the anisotropic nature of sea ice
through an estimation of the factor of anisotropy. These results
will allow us to relate our models for the vertical conductivity to
the type of data obtained through Wenner arrays, where vertical
and horizontal components of the electrical properties are mixed.

Since sea ice is horizontally isotropic when there is no
preferred long term current direction (Golden and Ackley,
1981), as was the case during SIPEX, and the vertical conductivity
is higher than the horizontal component, it is ‘‘transversely
isotropic.’’ In fact, at ice station 5 we made Wenner array
measurements in two orthogonal directions, and found no evi-
dence of anisotropy in the horizontal plane. Maillet (1947) has
shown that a transversely isotropic layer of actual thickness tact

with conductivities s�h and s�v yields an identical DC sounding
response to an isotropic layer of thickness

t¼

ffiffiffiffiffiffi
s�h
s�v

s
tact ð14Þ

and conductivity s�m ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
s�h s�v

p
, the geometric mean of s�h and s�v.

When we consider these relations, if we have a direct thickness
measurement tact, say from drilling, then we could use a sounding
curve obtained from the Wenner data and invert for the thickness
of the ice. Using the actual thickness tact and the inverted
thickness t we can calculate the factor of anisotropy f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s�h=s�v

q
for the ice using

f ¼
t

tact
: ð15Þ

The model we use to make the above calculation is a simple
3-layer model consisting of a thin, fairly conductive top layer, a
thicker, less conductive middle layer and a semi-infinite, very
conductive bottom layer representing the sea water.

Reid et al. (2006) have shown that typically the inversions
yield a top layer which is just a few centimeters thick, which
holds up under analysis of equivalent models. In this way the
inverted thickness of the ice can be taken as the thickness of the

V

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

C1 C2P1 P2

Fig. 2. A Wenner array with four evenly spaced electrodes, probing a sea ice floe of

thickness 0.8 m, on top of sea water. The color scale indicates the value of the

vertical conductivity of the sea ice in ðO mÞ�1, calculated from a brine volume

profile we measured in Antarctica, using FðfÞ ¼ 8:6f2:75. The horizontal conduc-

tivity is assumed to be 1/4 the value in the vertical direction. Comsol 3.5a was

used to calculate the electric current streamlines. The conductivity of the sea

water is 4.8 ðO mÞ�1.

Table 1
Five sets of Wenner array data.

a (m) r�a ðO mÞ

Station 5 Station 6 Station 8 Station 13 Station 14

0.05 62.83 7.85 4.62 5.91 5.03

0.08 60.32 9.30 5.83 7.29 6.03

0.125 113.88 11.78 8.01 10.45 6.52

0.2 113.1 15.71 10.3 11.81 8.29

0.32 114.1 20.11 12.87 11.26 10.05

0.5 71 20.42 13.19 8.64 10.68

0.8 25.13 16.08 8.65 4.12 9.7

1.25 5.5 8.64 6.28 1.34 5.97

2.0 0.94 2.58 1.52 0.53 2.34

3.2 0.2 0.8 0.2 0.42 0.92

5.0 0 0 0 0 0

C. Sampson et al. / Deep-Sea Research II 58 (2011) 1149–11571152
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second layer. The benefit of this is that the top layer is often
granular and tends to be more isotropic, as the anisotropy arises
from the preferred vertical orientation of the brine inclusions in
columnar ice, whereas in granular ice any anisotropy is generally
not so pronounced. Thus, from the model thickness of the second
layer and the actual thickness obtained from drilling the ice, we
can find the factor of anisotropy using f ¼ t=tact . We carried out
the inversions using the software IP2WIN, which is used for 1-D
Vertical Electrical Sounding (VES) interpretation and inversion,
from the website http://geophys.geol.msu.ru/ipi2win.htm, V. A.
Shevnin and I. N. Modin, Geological Faculty, Department of
Geophysics, Moscow State University.

A typical 3-layer inversion is illustrated in Fig. 3, while some
values for the inverted thickness and factor of anisotropy are
presented in Table 2. We typically find that the factor of
anisotropy f is reasonably close to 0.5, which can vary with
equivalent models used. Table 2 represents some of the extreme
values away from f¼0.5. A result of f¼0.5 agrees with results
found by Buckley et al. (1986) for undeformed first year Antarctic
sea ice.

3.3. Comparison of Wenner data to conductivity models

For our analysis, four sets of Wenner array measurements are
paired up with brine volume fraction measurements to predict a
sounding curve from our models. Other stations yield good
sounding curves, but do not have corresponding brine volume
fraction measurements with depth. Some stations were left out of
the analysis due to a large shift in the thickness of the ice over the

length of the array, which renders the Wenner technique inaccu-
rate, as uniform thickness is needed. Our general approach is
outlined here:

� First we plot the measured apparent resistivity r�a vs. the
spacing a.
� We then perform a simple 3-layer inversion to obtain the

factor of anisotropy f and estimate the thickness and resistivity
of the first layer.
� Using the factor of anisotropy we relate our models for vertical

conductivity as a function of brine volume fraction f to the
mean resistivity of the sea ice r�m. We also relate the thickness
of directly measured layers to the thicknesses of layers which
would yield an identical sounding curve (t¼ fta) using the
mean resistivity.
� Using our estimate of the thickness and resistivity of the first

layer from the 3-layer inversion, and the thicknesses of all
subsequent layers calculated from our models and f, we build
an n-layer model of the resistivity of sea ice with depth (step
function).
� We then compare the predicted (gray) sounding curves from

these models to the measured (black) curves which connect
the data points.

Given that our theoretical models reasonably represent the
conductivity of sea ice, if we have measurements of the brine
volume fraction f and the conductivity of the brine sb for
different depths of the ice, we should be able to predict an
n-layer model which fits a measured Wenner sounding curve.
However, we must take the anisotropy of the ice into account.
Here we present a general method for making this kind of
prediction using our Archie’s law analysis. Here n is the number
of sections of an ice core for which we have measurements. Most
inversion schemes for Wenner sounding data take resistivity as an
input, thus we can obtain a model using r�v ¼ ðs�vÞ

�1
¼ ðasbf

m
Þ
�1.

Since Wenner arrays do not resolve anisotropy, we must
account for this to predict an accurate sounding curve. As
mentioned before, we can relate the horizontal and vertical
conductivities to an equivalent isotropic conductivity through
their geometric mean, s�m ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
s�h s�v

p
and the factor of anisotropy

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s�h=s�v

q
. Also, as stated before, sea ice is usually transversely

isotropic. In this case (Maillet, 1947) a transversely isotropic layer
with thickness tact and conductivities s�h and s�v yields an identical
DC sounding response to an isotropic layer of thickness

t¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s�h=s�v

q
tact and conductivity sm ¼

ffiffiffiffiffiffiffiffiffiffiffi
s�hs�v

p
. We mention that a

much more detailed analysis of anisotropy and its effect on
resistance measurements in sea ice has been done by Jones
et al. (2010).

If values for a and m are determined for the vertical con-
ductivity in Archie’s law, we can then find the equivalent isotropic
resistivity r�m using the factor of anisotropy since fr�m ¼
f 1
s�m
¼ 1

s�v
¼ r�v. Thus,

r�m ¼
r�v
f
¼

1

fs�v
¼

1

fasbf
m : ð16Þ

If we have measurements for f, sb, and f for a given layer, we can
find the mean resistivity that would fit the Wenner sounding
curve, and then we can build an n-layer model. However, finding
a factor of anisotropy for each measured section is difficult.
Instead we find a factor of anisotropy for the entire sea ice sheet
using a simple 3-layered model inversion and the relation
f ¼ tact=t, where t is the inverted thickness from the model.

From here we can build a profile of the mean resistivities at
different depths given the brine volume fraction using (16). We

Fig. 3. A typical 3-layer inversion, where the black curve connects the measured

data points, the step function represents the 3-layer model, and the gray curve is

the predicted sounding curve from the 3-layer model, which matches the black

curve very closely. The vertical axis represents the apparent mean resistivity

r�a ¼
ffiffiffiffiffiffiffiffiffiffiffi
r�vr�h

p
while the horizontal axis represents the electrode spacing for the

black and gray curves and depth for the step profile. Here the RMS error is 2.94%.

Table 2
The inverted thickness (t), actual thickness (tact), factor of anisotropy f, and height

of the first layer h1 for the Wenner measurements at four different ice stations.

Ice station t (cm) tact (cm) f ¼ t=ta h1 (cm)

5 27.7 69 0.40 2.8

6 25.4 37 0.69 9

13 17.6 41 0.43 5.1

14 48.7 86 0.57 10
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can also calculate the apparent thickness of the layer at that depth
using the known measured thickness of a layer for a given brine
volume fraction and the factor of anisotropy with t¼ ftact. It is
important to note that the first layer of the inversion comes from
granular ice. We allow the 3-layer inversion to predict its
resistivity and thickness because it should be correct for an
isotropic medium. If one does not do this, the resistivity is
typically overestimated.

An overview of the n-layer inversion scheme is as follows:

1. Run a 3-layer inversion to find f and estimate the thickness
and resistivity of the first layer.

2. Compute r�m for the subsequent layers using (16).
3. Compute the thickness the Wenner array ‘‘sees’’ for each layer

with t¼ ftact.
4. Compare the predicted sounding curve with the observed data.

Table 3 shows the results of these calculations for one of the
measured sites, while Fig. 4 illustrates the calculated model.

We present three separate soundings, each from different ice
stations, as well as predicted sounding curves from Archie’s law
with a¼1 and m¼1.9, and with a¼8.6 and m¼2.75. In the first
case we see a similar departure from Archie’s law as mentioned in
the previous section. That is, when we have higher brine volume
fractions (f45%), Archie’s law with a¼1 tends to underestimate
the conductivity and thus overestimate the resistivity. For lower
brine volume fractions we see the predicted curve significantly
underestimate the measured sounding curve. When using a¼8.6,
however, we see a predicted curve which tends to be much closer

to the actual sounding curve determined from the measurements
in both cases.

In Fig. 4, we show the results from station 13 where the brine
volume fraction ranged from f¼ 0:09 to 0.22, all above the
critical threshold. In this case we would expect that when a¼1
and m¼1.9, we should underestimate the conductivity since we
are above the critical threshold, or overestimate the resistivity.
This case is shown on the left where we do in fact see over-
estimation. When we apply Archie’s law with a¼8.6 and m¼2.75,
we do not see the same overestimation and the overall shape of
the predicted curve matches more closely that of the data,
implying that a percolation approach may better represent the
actual vertical conductivity.

In Fig. 5, we show the results from station 5 where the brine
volume fraction ranged from f¼ 0:04 to 0.07, all close to the
critical threshold. In this case, we should expect that when a¼1
and m¼1.9 we would see an overestimation of the conductivity
and thus an underestimation of the resistivity. In fact, in this case
we do see an underestimation of the resistivity as shown on the
left in Fig. 5. When we apply Archie’s law with a¼8.6 and
m¼2.75 we see a much better fit.

In Fig. 6, we show the results from station 6 where the brine
volume fraction ranged from f¼ 0:07 to 0.22. For this we would
expect much the same behavior as for station 13 with a¼1 and
m¼1.9 with overestimation of the resistivity due to the range of
brine volume fractions. However, we see a large underestimation.
This can be understood since the conductivity values for this
station are some of the highest values of the conductivity for
given brine volume fractions. Thus, the associated resistivities are
the lowest, which would give a large underestimation of the
sounding curve. When a¼8.6 and m¼2.75, we do obtain sightly
higher values which put us closer to the actual curve. However,
we still have an underestimation, which may be the result of
granular ice where anisotropy is not as pronounced.

This method for predicting a sounding curve works well
provided that the appropriate value of m is used in Archie’s
Law. The best results are obtained when the value of m used
correlates most closely with percolation theory. The above com-
parison is useful as it allows us to compare our models from our
direct measurements to a different data set. The fact that we see
the same behavior as in the previous sections reinforces our
conclusions.

In the previous sections we have used various models derived
from direct measurements of vertical conductivity (Golden et al.,

Table 3
A six layer model, with the 6th layer being the ocean, where ice resistivity and

layer thickness are calculated from brine volume fraction measurements using the

model FðfÞ ¼ 8:6f2:75 to calculate the mean resistivities as discussed in this

section with f¼0.43. These measurements come from station 13 and are shown in

the left of Fig. 4. � The thickness of the first layer is determined by the preliminary

three layer inversion.

Core section (m) f l (m) f � l (m) r�m ðO mÞ

0-0.05 0.14 0.05 � 4.53

0.05-0.1 0.14 0.05 0.0215 13.2

0.1-0.2 0.09 0.1 0.43 49

0.2-0.3 0.11 0.1 0.43 32

0.3-0.41 0.19 0.1 0.47 9.2

Fig. 4. Ice station 13. Left: predicted curve with a¼1 and m¼1.9 and actual measured curve showing overestimation in the higher brine volume fraction range.

Right: predicted curve with a¼8.6 and m¼2.75 showing close agreement with a slight underestimation.
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in preparation) and brine volume fraction to construct a predic-
tion of what a Wenner sounding curve should look like at a given
site. The close agreement of the predicted curves with actual
soundings suggests that these theoretical curves could serve as a
regularization model to aid in the construction of an n-layer
resistivity profile of sea ice that represents the actual conditions.

Using the predicted model given by F ¼ 8:56f2:75 to regularize
the inversion problem, by least squares methods, we have con-
structed a 6-layer vertical resistivity profile for Ice Station 13. In
the figure the 6th layer is the ocean which is not depicted. In this
particular case we fix the total thickness of the ice as it is known
from a core sample. In a case where the actual thickness was not
known, an estimate can be made using the factor of anisotropy
and the thickness given from the 3-layer inversion as discussed in
the previous sections. Upon completion of the inversion, the
vertical resistivity of each layer can be recovered by multiplying
its apparent resistivity ra by the factor of anisotropy f. The correct

thickness of the layer can be obtained by dividing the inverted
height h by f. Once this is done the actual values can be plotted.

We compare the predicted model with the inverted model in
Fig. 7. It is apparent from the figure that the predicted and
inverted profiles have similar structure suggesting a good esti-
mate by the model. The main difference between the predicted
(dashed) and inverted (solid) profiles is higher resistivity given by
the inversion. This can be related back to Fig. 4, as the model
shown on the left slightly underestimates ra for Station 13.

The 6-layer inversion in Fig. 7 illustrates the subtle changes in
resistivity of ice which go unnoticed in standard 3-layer models.
Understanding how the resistivity changes with depth at a higher
resolution may lead to more accurate models in mounted EM
sounding techniques such as shipborne or airborne EM devices
which currently model sea ice using only 3-layers.

It should be noted that we had available a detailed brine volume
and temperature profile to use with our model. However, in principle

Fig. 5. Ice station 5. Left: predicted curve with a¼1 and m¼1.9 and actual measured curve showing underestimation in the lower brine volume fraction range.

Right: predicted curve with a¼8.6 and m¼2.75, showing closer agreement with the measured curve.

Fig. 6. Ice station 6. Left: predicted curve with a¼1 and m¼1.9 and actual measured curve showing large underestimation in resistivities probably due to the

microstructure of the ice. Right: predicted curve with a¼8.6 and m¼2.75 showing slightly closer agreement. The underestimation may be a result of granular ice.
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one could use a temperature profile to estimate both brine volume
fraction and brine conductivity with depth which can then be used to
generate a regularization model. To illustrate the usefulness of even a
less accurate, but still reasonable, regularization model in producing a
realistic inverted profile, we introduce a 10% random error into the
predicted model and repeat our inversion scheme using this less
accurate model for regularization then compare this to the inversion
result from the original predicted model in Fig. 8. It can be seen from
Fig. 8 that the result, while not exactly the same, is not very different
from that using a more accurate regularization model and shares the
same overall distribution of resistivities. This is in contrast to the
result obtained when not using a reasonable regularization model, i.e.,
a model not based on the actual properties of the ice, which we
illustrate in Fig. 9. The result in Fig. 9 was obtained by dividing the
middle layer from a simple 3-layer inversion into 4 equal pieces in
both depth and resistivity while leaving the top layer and bottom
layer alone, creating a hap-hazard 6-layer model to be used for
regularization. We then invert using this model and compare the
result to that when using the best predicted model. As can be seen in
Fig. 9 the results of the two inversions are completely different, yet
both will produce a forward model which fits the Wenner sounding
curve well. In this way it can be seen how important it is to have a

reasonable regularization model to prevent extraneous solutions
which do not accurately represent the sea ice.

4. Conclusions

We have made indirect measurements of the electrical conduc-
tivity of Antarctic sea ice. We used Wenner array soundings to
measure the apparent conductivity as a function of separation,
yielding information about the conductivity profile with depth. We
developed an n-layer inversion scheme to reconstruct the profiles
from the Wenner array data, which relies on a regularization
technique based on conductivity models for sea ice. Our work helps
to provide a rigorous basis for the interpretation of thickness
soundings, but also yields information about the conductivity of sea
ice with depth. Such information, when combined with other work
relating fluid and electrical transport properties, helps lay the ground-
work for monitoring fluid processes in sea ice which are important in
climate studies.
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