
doi: 10.1098/rspa.2011.0527
, 784-809 first published online 16 November 2011468 2012 Proc. R. Soc. A

 
Chris Orum, Elena Cherkaev and Kenneth M. Golden
 
measurements
heterogeneous composites from effective property 
Recovery of inclusion separations in strongly
 
 

Supplementary data

pa.2011.0527.DC1.html 
http://rspa.royalsocietypublishing.org/content/suppl/2011/11/15/rs

 "Data Supplement"

References
ml#ref-list-1
http://rspa.royalsocietypublishing.org/content/468/2139/784.full.ht

 This article cites 38 articles, 1 of which can be accessed free

Subject collections
 (208 articles)applied mathematics   �

 
Articles on similar topics can be found in the following collections

Email alerting service  herethe box at the top right-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in

 http://rspa.royalsocietypublishing.org/subscriptions go to: Proc. R. Soc. ATo subscribe to 

 on April 13, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/content/suppl/2011/11/15/rspa.2011.0527.DC1.html 
http://rspa.royalsocietypublishing.org/content/468/2139/784.full.html#ref-list-1
http://rspa.royalsocietypublishing.org/cgi/collection/applied_mathematics
http://rspa.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royprsa;468/2139/784&return_type=article&return_url=http://rspa.royalsocietypublishing.org/content/468/2139/784.full.pdf?keytype=ref&ijkey=XN1cRnBLsoorSlM
http://rspa.royalsocietypublishing.org/subscriptions
http://rspa.royalsocietypublishing.org/


Proc. R. Soc. A (2012) 468, 784–809
doi:10.1098/rspa.2011.0527

Published online 16 November 2011

Recovery of inclusion separations in strongly
heterogeneous composites from effective

property measurements
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Department of Mathematics, University of Utah, 155 S 1400 E, RM 233,
Salt Lake City, UT 84112-0090 USA

An effective property of a composite material consisting of inclusions within a host matrix
depends on the geometry and connectedness of the inclusions. This dependence may be
quite strong if the constituents have highly contrasting properties. Here, we consider the
inverse problem of using effective property data to obtain information on the geometry
of the microstructure. While previous work has been devoted to recovering the volume
fractions of the constituents, our focus is on their connectedness—a key feature in critical
behaviour and phase transitions. We solve exactly a reduced inverse spectral problem by
bounding the volume fraction of the constituents, an inclusion separation parameter and
the spectral gap of a self-adjoint operator that depends on the geometry of the composite.
We present a new algorithm based on the Möbius transformation structure of the forward
bounds whose output is a set of algebraic curves in parameter space bounding regions
of admissible parameter values. These results advance the development of techniques
for characterizing the microstructure of composite materials. As an example, we obtain
inverse bounds on the volume fraction and separation of the brine inclusions in sea ice
from measurements of its effective complex permittivity.

Keywords: composite materials; effective properties; inclusion separations;
inverse homogenization; sea ice; spectral gap

1. Introduction

We consider the problem of recovering information on the microgeometry
of heterogeneous two-phase media from measurements of its effective
electromagnetic properties. In the case of highly contrasting phases, as addressed
herein, the effective property can depend quite strongly on the connectedness of
one of the phases. This may be seen, for example, in the case that the effective
property is effective conductivity, and one phase is a good conductor and the
other is a good insulator.

Our analysis of this inverse problem is intimately connected with the theory
of forward bounds on the effective properties of composite media. Landmarks
in the forward theory include the arithmetic and harmonic mean bounds
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Recovery of inclusion separations 785

(Wiener 1912), the bounds of Hashin & Shtrikman (1962) and the improved
translation bounds (Cherkaev 2000; Milton 2002). The classical derivation of
these bounds relies on energy variational principles that are not readily extendible
to the interaction of composites with wave fields. If the wavelength of the
electromagnetic field is long compared with the scale of the microstructure,
then material parameters can assume complex values. Cherkaev & Gibiansky
(1994) extended the variationally derived bounds to complex parameters. See
also Cherkaev (2000) and Milton (2002).

An alternative approach pioneered by Bergman (1980) and Milton (1980) and
developed further by Golden & Papanicolaou (1983) uses analytic continuation for
representing and bounding effective properties in the complex case. Analyticity
of m(h), where m = s∗/s2 and h = s1/s2, is exploited to obtain a Stieltjes
integral representation for F(s) = 1 − m(h), where s = 1/(1 − h). The integral
representation involves the spectral measure m of a self-adjoint operator that
depends only on the composite geometry. The support of m lies in the interval
[0, 1]. The mass of m is p1, the volume fraction of medium 1. The analytic
continuation method yields a sequence of increasingly tighter bounds that
include the arithmetic and harmonic mean bounds and the Hashin–Shtrikman
bounds. Information on the geometry of the medium is incorporated into
the bounds through the moments of m.

However, these bounds do not incorporate key information about the
separation of inclusions, which is important in estimating the effective properties
of high-contrast composites. Bruno (1991) advanced the incorporation of
separation information within the analytic continuation approach by introducing
the class of matrix particle composites, and related the separation of the
phases to gaps in the support of the spectral measure m at the ends of the
interval [0, 1].

A matrix particle composite consists of a matrix of conductivity s2 containing
non-touching inclusions of conductivity s1. A particular case of such a composite
is a q-material: spheres or circles of radius r1 filled with material 1 are surrounded
by a corona with outer radius r2 filled with material 2 and q = r1/r2 < 1.
As q → 1, the corona vanishes, and the particles of material 1 are allowed
to touch.

For a q-material in finite rectilinear regions in dimensions 2 and 3, Bruno
found explicit formulae for the endpoints of the interval containing the zeros and
poles of m(h), corresponding to the interval of support of the spectral measure
m. Bruno applied these results with the analytic continuation method to obtain
bounds on the effective conductivity of random matrix particle composites. The
bounds yield good estimates on s∗, even in the limiting high-contrast cases of
h = 0 or h = ∞, and represent improvements on the classical arithmetic and
harmonic mean bounds and the Hashin–Shtrikman bounds. The matrix particle
bounds were subsequently extended to media with complex parameters by Sawicz
& Golden (1995) and Golden (1998) and applied to estimating the effective
complex permittivity of sea ice, extending earlier analysis that made use of
the complex elementary and Hashin–Shtrikman bounds.

The inverse problem of recovering information about the microgeometry of
a composite from measurements of its effective complex permittivity was first
introduced by McPhedran et al. (1982) and McPhedran & Milton (1990) in the
context of estimating the volume fractions in a two-phase mixture. An analytic
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786 C. Orum et al.

approach to bounding microstructural parameters, in particular volume fractions,
was developed in Cherkaeva & Tripp (1996), Tripp et al. (1998) and Cherkaeva &
Golden (1998) and applied to the estimation of brine volume in sea ice in
Cherkaeva & Golden (1998) and Gully et al. (2007).

The problem is a particular case of inverse homogenization: recovery of
structural information through identification of the spectral measure m from
effective property data. Uniqueness of the spectral measure was established in
(Cherkaev 2001) and the theory was further developed in Cherkaev (2003),
Cherkaev & Zhang (2003), Cherkaev & Ou (2008), Bonifasi-Lista & Cherkaev
(2008) and Zhang & Cherkaev (2009).

Here, we consider a reduced inverse spectral problem for matrix particle
composites: recovery of bounds on the spectral gap, and hence bounds on q.
In particular, we consider q-materials whose high-contrast constituents have
volume fractions p1 = p and p2 = 1 − p. Given data on the effective complex
permittivity 3∗, the complex matrix particle bounds constructed by Sawicz &
Golden (1995) and Golden (1998) are inverted to obtain admissible regions
in (p, q)-parameter space, with explicitly computed algebraic curves forming
the boundaries. For fixed p, the bounds on q represent the first rigourous
inversion for separation or connectedness information on the inclusions in a
composite material.

We apply the results to obtain information about the microstructure of sea
ice from its effective complex permittivity. One motivation for determining such
inverse bounds comes from remote electromagnetic sensing of polar ice packs:
brine inclusion separation may be used to monitor the brine percolation threshold
(Golden et al. 1998a, 2007), an on–off switch for fluid flow through sea ice that
mediates a broad range of biological and climatic processes.

Although we consider sea ice as an example, the inversion algorithm we present
may be generalized to other composites and other effective parameters. The
simplicity and the generality of the suggested method indicate wide potential
applicability and advances in the theory of inverse homogenization for recovering
structural parameters from bulk property measurements.

Before embarking on its applications to sea ice, let us describe the general
algorithm. The forward bounds of the analytic continuation method all belong to
a special class of Möbius transformations. These are complex functions of the form
T (z) = (Az + B)/(Cz + D), whose coefficients A, B, C , D are usually complex
numbers. However, for the Möbius transformations arising in the theory, these
coefficients are generally polynomial functions of certain structural parameters—
such as p and q—that we are interested in estimating. The problem is to find
the ‘good’ parameter values that allow for the forward bounds to capture an
observed effective permittivity. This problem is essentially equivalent to a search
for those parameter values that allow 3∗ = T (z) to be solved for some real
number z = ẑ , known as the spectral parameter. Here, T (z) describes one of the
forward bounding circles. The process of solving 3∗ = T (z) yields an algebraic
equation in the structural parameters whose solution bounds the region of
‘good’ parameter values within a larger parameter space. We present the general
form of this algebraic equation. In different applications, this algebraic equation
will take different forms. If there are two parameters of interest, the solution
of this algebraic equation is a one-dimensional curve that lends itself well to
visual display.
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2. Sea ice and its effective complex permittivity

Sea ice is a mixture of pure ice, brine and air. In cold first year ice, brine
is typically concentrated in sub-millimetre scale pockets. Although the local
complex permittivity 3(x) varies considerably on the millimetre scale, an
electromagnetic wave of sufficiently long wavelength cannot resolve the fine-scale
variation between ice, brine and air. This is the case for the Synthetic Aperture
Radar used in remote sensing that operates in the C-band—a nominal frequency
range 8–4 GHz with a corresponding wavelength range of 3.75–7.5 cm. For such
long wavelengths, sea ice may be treated as if it were a homogeneous material
having a single effective complex permittivity 3∗. In the long wavelength regime,
the wavelength is assumed to be infinite—currently a necessary assumption for the
analytic continuation method.

Here, we treat sea ice as a two-component medium instead of a three-
component medium. The first phase consists of brine, retained as a pure medium,
having complex permittivity 31. The second phase is an ice–air composite having
an effective complex permittivity 32 that is approximated by a mixing formula
incorporating the relatively close 3air and 3ice. Section 6 elaborates on this
mixing formula. In the sequel, the second ‘ice phase’ refers to this composite
of pure ice and air. Although the three-component case can also be treated
with multi-component bounds (Golden 1986; Milton 1987a,b; Milton & Golden
1990), the mathematics involves several complex variables and has a number of
unresolved issues.

The tightest of the forward bounds are obtained in §3b(iii) by assuming that
the sea ice is both statistically isotropic and is a matrix particle composite. In
actual sea ice, the brine inclusions tend to be elongated in the vertical direction.
Because of this, we take the dimension d = 2, so that an assumption of statistical
isotropy effectively reduces to an assumption that the geometry is isotropic only
within the horizontal plane. This is consistent with the dataset analysed in §7,
which comes from measurements of ice slabs that are using vertically incident
waves. Except where dimension d is explicitly mentioned, all forward and inverse
bounds assume d = 2.

Although this two-dimensional, two-component model works well for sea ice, it
may not be viable for other composites such as the Ag–MgF2 cermet films studied
by Gajdardziska-Josifovska et al. (1989), who point out that three-phase cermets
are evidently not amenable to accurate modelling by two-phase systems.

3. The forward theory

This section summarizes the analytic continuation method (Bergman 1978;
Milton 1980; Golden & Papanicolaou 1983; Cherkaev 2001; Zhang & Cherkaev
2009). We also summarize the work of Bruno (1991). We obtain four types of
forward bounds on effective complex permittivity: the first- and second-order
bounds R1 and R2, and the first- and second-order matrix particle bounds Rmp

1
and Rmp

2 . Each of these incorporates different assumptions about the sea-ice
geometry: R1 assumes that the brine volume fraction is known; R2 assumes in
addition that the distribution of the brine is statistically isotopic. The same holds
for Rmp

1 and Rmp
2 , with the yet additional assumption of a matrix particle model

of sea ice.

Proc. R. Soc. A (2012)

 on April 13, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


788 C. Orum et al.

The analytic continuation method models sea ice as a two-phase random
medium in all of Rd , with an isotropic local complex permittivity 3(x , b), with
3(x , b) a stationary random field in x ∈ Rd and b ∈ U, where U is the set of all
realizations of the random medium. The complex permittivity 3(x , b) takes values
31 and 32, the permittivities of brine and ice, respectively, and we write 3(x , b) =
31c1(x , b) + 32c2(x , b), where c1 is the characteristic function of medium 1, which
equals one for all realizations b ∈ U having medium 1 at x , and equals zero
otherwise, and c2 = 1 − c1.

The constitutive relation can be written as D = 3E , where E(x , b) and
D(x , b) are the stationary random electric and displacement fields, satisfying the
equations

V · D = 0 and V × E = 0. (3.1)

We assume that 〈E(x , b)〉 = ej , where ej is a unit vector in the jth direction, for
some j = 1, . . . , d, and 〈·〉 means ensemble average over U or spatial average over
all of Rd . The effective complex permittivity tensor 3∗ is defined as

〈D〉 = 3∗〈E〉. (3.2)

Here, we are dealing with isotropic composites, so we consider only one diagonal
coefficient of the effective permittivity tensor 3∗ = 3∗

jj .
Homogeneity of the effective parameter, 3∗(a31, a32) = a3∗(31, 32), applied with

a = 1/32, results in 3∗(31/32, 1) = 3∗(31, 32)/32. Hence, by introducing h = 31/32, we
can consider the effective complex permittivity formed by constituents with the
parameters h and 1. We define m(h) by m(h) = 3∗(31, 32)/32.

The function m(h) is analytic off the negative real axis (−∞, 0] in the
h-plane and maps the upper half plane to the upper half plane: this characterizes
m(h) as a Herglotz function (Baker & Graves-Morris 1996, p. 262). A Herglotz
function has the integral representation

f(z) = az + b +
∫∞

−∞
zu + 1
u − z

dn(u), b ∈ R, a ≥ 0,

with n(u) bounded and non-decreasing on R. If the first moment of n is finite, we
may rewrite this as

f(z) = az + b′ +
∫∞

−∞
dm(u)
u − z

, b′ = b −
∫∞

−∞
u dn(u), dm(u) = (1 + u2) dn(u).

This representation allows us to write an analytic integral representation for
3∗. For this purpose, it is more convenient to introduce s = 1/(1 − h) and consider
F(s) = 1 − m(h), which is analytic off [0, 1] in the s-plane. Then,

F(s) = 1 − 3∗

32
=

∫ 1

0

dm(z)
s − z

, s = 1
1 − h

, (3.3)

where m is a positive measure on [0, 1]. This formula is essentially the spectral
representation of the resolvent E = (s + Gc1)−1ej , obtained from (3.1) and (3.2),
where G = V(−D)−1V·, D denotes the Laplacian, and (−D)−1 is convolution with
the free-space Green function for −D. In the Hilbert space L2(U, P) with weight
c1 in the inner product, Gc1 is a bounded self-adjoint operator with norm less
than or equal to one. In (3.3), m is a spectral measure of Gc1. One of the most

Proc. R. Soc. A (2012)
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Recovery of inclusion separations 789

important features of (3.3) is that it separates the parameter information in
s = 32/(32 − 31) from information about the geometry of the mixture, which is
all contained in m.

Statistical assumptions about the geometry are incorporated into m through
its moments mn . A comparison of the perturbation expansion of (3.3) around a
homogeneous medium, s = ∞ or equivalently 31 = 32, namely

F(s) = m0s−1 + m1s−2 + m2s−3 + · · · , (3.4)

with a similar expansion of the resolvent representation for F(s) yields mn =∫1
0 zn dm(z) = (−1)n〈c1[(Gc1)nej ] · ej〉. The zeroth moment m0 = p1, where p1 is the

volume fraction of the first material in the composite, and for a statistically
isotropic composite material, the first moment of m is calculated as m1 = p1p2d−1.

Expansion (3.4) converges only in the disc |h − 1| < 1, while the integral
representation (3.3) provides the analytic continuation of (3.4) to the full domain
of analyticity. In this way, information obtained about a nearly homogeneous
system can be used to analyse the system near percolation as h → 0 or h → ∞.

(a) First- and second-order bounds

Bounds on 3∗, or F(s), are obtained by fixing s in (3.3), varying over admissible
measures m, and finding the corresponding range of values of F(s) in the complex
plane. Two types of bounds on 3∗ are readily obtained. The first-order bounds
R1 assume only that the relative volume fractions p1 and p2 = 1 − p1 are known,
so that only m0 = p1 need to be satisfied. The second-order bounds R2 assume in
addition that the material is statistically isotropic.

(i) The forward region R1

The set of admissible measures satisfying m0 = p1 forms a compact, convex set.
Since (3.3) is a linear functional of m, the extreme values of F are attained by
extremes of the admissible measures: these are the Dirac point measures of the
form p1dz . The values of F(s) are, therefore, bounded by the circle

C1(z) = p1

s − z
, −∞ ≤ z ≤ ∞ (relevant arc: 0 ≤ z ≤ p2). (3.5)

A second circle bounding R1 may be obtained by introducing the function

E(s) = 1 − 31

3∗ = 1 − sF
s(1 − F)

.

Bergman (1982) established that this is a Herglotz function like F(s), analytic off
[0, 1], with a representation like (3.3) whose representing measure has mass p2,

E(s) =
∫ 1

0

dx(z)
s − z

, x0 =
∫ 1

0
dx(z) = p2. (3.6)

Then, in the E-plane, the other circular boundary of R1 is parametrized by

Ĉ1(z) = p2

s − z
, −∞ ≤ z ≤ ∞ (relevant arc: 0 ≤ z ≤ p1). (3.7)

Proc. R. Soc. A (2012)
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After these circles are transferred to the common 3∗-plane, and noting their
intersection, the relevant bounding arcs given parenthetically in (3.5) and (3.7)
may be determined.

(ii) The forward region R2

If the material is further assumed to be statistically isotropic, i.e. 3∗
ik = 3∗dik ,

then m1 = p1p2d−1 must be satisfied as well, and we obtain the second-order
bounds R2. Now instead of directly varying over all those admissible measures
whose moments satisfy both m0 = p1 and m1 = p1p2d−1, it is convenient to use the
following transformation, as pointed out by Bergman (1982):

F1(s) = 1
p1

− 1
sF(s)

. (3.8)

The function F1(s) is also an Herglotz function, and has the representation

F1(s) =
∫ 1

0

dm1(z)
s − z

. (3.9)

The constraints on the moments m0 and m1 are then transformed to a restriction
only on the mass of m1, which is m1

0 = p2(p1d)−1. Applying the same procedure
that was used for R1 yields the region R2, whose boundaries are again circular
arcs. One arc, in the F -plane, is

C2(z) = p1(s − z)
s(s − z − p2/d)

, 0 ≤ z ≤ (d − 1)
d

. (3.10)

In the E-plane, the other arc is

Ĉ2(z) = p2(s − z)
s(s − z − p1(d − 1)/d)

, 0 ≤ z ≤ 1
d

. (3.11)

The forward bounds discussed up to this point are summarized in table 1:
on the left-hand side are the bounds on the values F(s) and E(s), which arise from
the integral representations of the form (3.3) and (3.6) by letting the representing
measure vary over the extremes. In order to be useful as bounds on the complex
permittivity, these should be transferred to the 3∗-plane using the relations

F(s) = 1 − 3∗

32
and E(s) = 1 − 31

3∗ . (3.12)

The functions Ti,j(z ; p), i, j = 1, 2, defined on the right-hand side of table 1 are
obtained by transferring such bounds accordingly. Some notational simplification
is achieved by introducing the new variable q = 2s − 1. Note that each Ti,j(z ; p) is
a Möbius transformation that maps the extended real line R ∪ {∞} onto a circle
in the 3∗-plane.

(iii) Isomorphic groups

A convenient way of transferring bounds between planes exploits the
isomorphism between the Möbius transformation group and the projective general
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Table 1. Forward bounds on 3∗. Forward bounds on E(s) and F(s) are on the left. The result of
translating these bounds to the 3∗-plane is on the right. In making the translation, we assume
d = 2. Notation: s = 32/(32 − 31), q = 2s − 1, p = p1 = 1 − p2.

F -plane or E-plane 3∗-plane

R1, first arc: (F)

C1(z) = p1

s − z
T1,1(z ; p) = −32z − 32p + 32s

−z + s
R1, second arc: (E)

Ĉ1(z) = p2

s − z
T1,2(z ; p) = −31z + 31s

−z + p + s − 1

R2, first arc: (F)

C2(z) = p1(s − z)
s(s − z − p2/d)

T2,1(z ; p) = −232(q + 1 − 2p)z + 32(q + 1)(q − p)
−2(q + 1)z + (q + 1)(q + p)

R2, second arc: (E)

Ĉ2(z) = p2(s − z)
s(s − z − p1(d − 1)/d)

T2,2(z ; p) = −232(q − 1)z + 32(q − 1)(q + 1 − p)
−2(q − 1 + 2p)z + (q + 1)(q − 1 + p)

linear group PGL(2, C) (Jones & Singerman 1987). For example, the relationship
between 3∗ and F given by (3.12) has the matrix representations, with s fixed,

T{F→3∗} ∼=
(−32 32

0 1

)
and T{3∗→F} ∼=

(−1 32
0 32

)
.

Then, with p = p1, multiplying a matrix (in the equivalence class) representing
C1(z) on the left by T{F→3∗} yields a matrix representation for T1,1(z ; p),(−32 32

0 1

) (
0 p

−1 s

)
=

(−32 −32p + 32s
−1 s

)
.

The other entries on the right-hand side of table 1 may be obtained similarly. Let
us note that T{E→3∗} = (0 31; −1 1) and T{E→F} = (−s 1; −s s).

(iv) The classical bounds

In the 3∗-plane, the two arcs describing R1 meet at the vertices

T1,1(z ; p)|z=p2 = T1,2(z ; p)|z=0 =
(

p1

31
+ p2

32

)−1

and
T1,1(z ; p)|z=0 = T1,2(z ; p)|z=p1 = p131 + p232.

When 31 and 32 are real, R1 reduces to the interval defined by the classical
harmonic mean and arithmetic mean bounds: (p1/31 + p2/32)−1 ≤ 3∗ ≤ p131 + p232.
Similarly, when 31 and 32 are real with 31 ≥ 32, R2 collapses to the interval

32 + p1

(
1

31 − 32
+ p2

d32

)−1

≤ 3∗ ≤ 31 + p2

(
1

32 − 31
+ p1

d31

)−1

,

the very bounds derived by Hashin & Shtrikman (1962).
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(b) First- and second-order matrix particle bounds

Still tighter bounds on 3∗, Rmp
1 ⊆ R1 and Rmp

2 ⊆ R2 may be obtained if the
material has a matrix particle structure with separated inclusions. In this case,
the support of the spectral measure m in (3.3) is contained in the subinterval
[sm, sM] and

F(s) = 1 − 3∗

32
=

∫ sM

sm

dm(z)
s − z

. (3.13)

This important observation is due to Bruno (1991), whose work we
summarize next. Although Bruno considers the effective conductivity of strongly
heterogeneous composites, the mathematics of effective complex permittivity
is similar.

(i) Summary of Bruno’s work

The bounds sm and sM are obtained by mapping the bounds on the singularities
and zeros of the corresponding function m(h) from the complex h-plane to the
s-plane. The h-plane bounds result from analyticity of m(h), corresponding to a
matrix particle composite, in neighbourhoods of h = 0 and h = ∞. The method
is based on an expansion of the electric potential f into convergent series: in h
around h = 0; in w = 1/h around h = ∞.

To sketch the argument, we consider a domain D large in comparison with
the size of inhomogeneity, D = {0 ≤ xi ≤ 1}, filled with a composite mixture of two
materials with properties 31 = h and 32 = 1. We assume that an electric potential
f is constant on the upper v1 and lower v0 boundaries and periodic on vertical
boundaries S of the domain D, so that f satisfies the equation

V · 3(x)Vf(x) = 0 in D, f(x)|v0 = 0, f(x)|v1 = 1,
vf(x)

vn

∣∣∣∣
S

= 0. (3.14)

Using the solution of (3.14), the effective conductivity m(h) may be calculated as

m(h) =
∫
D

3(x)|Vf(x)|2 dx = h
∫
Dc

|Vf(x)|2 dx +
∫
D′

|Vf(x)|2 dx , (3.15)

where Dc ⊂ D is the part of D occupied by the material with conductivity h, and
D′ = D − Dc. It is known that (3.14) has a unique solution for any value of h
outside the negative real axis (Bergman 1978; Golden & Papanicolaou 1983) and
that m(h) is an analytic function of h ∈ C/(−∞, 0].

Using a combination of the trace and extension theorems (Nečas 1967) and the
Poincaré inequality for functions in H 1(Dc) and H 1(D′), it can be shown that for
the matrix particle composites, the two integrals on the right-hand side of (3.15)
are bounded: each function u′ ∈ H 1(D′) can be extended to a function u ∈ H 1(D),
which coincides with u′ in D′ and∫

Dc

|Vu(x)|2 dx ≤ A
∫
D′

|Vu′(x)|2 dx ; (3.16)
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and for each function u ∈ H 1(Dc), there is a function u′ ∈ H 1(D′) that differs by
a constant from u on the boundary of each inclusion, and

∫
D′

|Vu′(x)|2 dx ≤ B
∫
Dc

|Vu(x)|2 dx . (3.17)

The fields in matrix particle composites with coronas around grain inclusions
satisfy these bounds with positive constants A and B depending on grain shape
and separation.

To show analyticity of m(h) around the origin, the solution of (3.14) is
represented as

f(x , h) =
∞∑

k=0

fk(x)hk , (3.18)

with the coefficients fk satisfying an infinite system of equations obtained from
(3.14) upon substitution of the series (3.18). Separating the problem into two
problems over subdomains Dc and D′ allows one to solve them iteratively, since
the problems are coupled through the condition on the boundary of inclusions.
Using (3.16), one can show that (3.18) as well as the series of the gradients Vfk
is absolutely convergent for |h| ≤ 1/A. Therefore, f(x , h) and hence m(h) are
analytic for |h| ≤ 1/A. Similarly, to show analyticity of m(h) at infinity, f(x , h) =
j(x , w = h−1) is expanded as

j(x , w) =
∞∑

k=0

jk(x)wk , (3.19)

around the origin in the w-plane. Using (3.17), the convergence of (3.19) can be
shown for |w| ≤ 1/B.

Together, (3.18) and (3.19) provide the analytic continuation of f(x , h) in the
regions |h| ≤ 1/A and |h| ≥ B. Accordingly, m(h) is analytic in these regions, and
in particular, for h on the negative real axis, −1/A ≤ h and h ≤ −B. Mapping the
interval [−B, −1/A] to the s-plane gives the subinterval sm ≤ z ≤ sM bounding
the support of the measure m displayed in (3.13), with sm and sM depending on
the microgeometry of the composite.

The further the separation of the inclusions, the smaller the support interval
[sm, sM], and the tighter the bounds. Explicit calculations for sm and sM are
available for the following matrix particle model of sea ice: within the horizontal
plane, the brine is assumed to be contained in separated, circular discs of radii
r brine, holding random positions in such a way that each disc of brine is surrounded
by a corona of ice, with outer radius rice. As introduced in §1, this is a q-material
with q = r brine/rice. For such a geometry, Bruno has calculated for d = 2 that

sm = 1
2(1 − q2) and sM = 1

2(1 + q2). (3.20)

Smaller q values indicate well-separated brine—and colder temperatures as
illustrated in §7—and q = 1 corresponds to no restriction on the separation, with
sm = 0 and sM = 1, so that Rmp

1 and Rmp
2 coincide with R1 and R2.
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Returning to (3.13), a convenient way of incorporating the support restriction
is the substitution

s = lt + sm and l = sM − sm = q2, (3.21)

which maps [sm, sM] in the s-plane to [0, 1] in the t-plane. Consequently,

H (t) = F(s) = F(lt + sm) (3.22)

is analytic off [0, 1] in the complex t-plane, and there is a positive Borel measure
n on [0, 1] such that H (t) = ∫1

0(t − z)−1 dn(z). Using m0 = p1 and m1 = p1p2d−1, it
can be shown that n has moments

n0 = p1

l
(3.23a)

and

n1 = p1

l2

(p2

d
− sm

)
, (3.23b)

with the formula for n1 holding under the assumption of statistical isotropy.

(ii) The forward region Rmp
1

The bounds Rmp
1 are obtained by assuming (3.23a) is satisfied. Applying the

same extremal procedure that gave (3.5) for R1 shows that the values of H (t) lie
inside the circle

K1(z) = p1/l

t − z
, z ∈ R.

Note that H (t) assumes values in the F -plane: the H - and F -planes coincide. This
translates via (3.21) and (3.22) into the circle K ′

1(z) = p1/(s − lz − sm), z ∈ R,
which is readily seen to coincide with the image of C1(z). So in this case, the
matrix particle assumption provides no improvement over the first arc of R1.

Next, we consider the analogue G(t) of E(s) defined by

G(t) = 1 − tH (t)
t(1 − H (t))

. (3.24)

Then, G(t) has an integral representation G(t) = ∫1
0(t − z)−1dr(z), where the

mass of r is r0 = 1 − l−1p1. We then obtain a circle in the G-plane analogous to
Ĉ1(z) in (3.7), namely,

K̂1(z) = 1 − l−1p1

t − z
, z ∈ R. (3.25)

In the F -plane, this becomes, via (3.22) and (3.24),

K̂ ′
1(z) = p1(s − sm) − l2z

(s − sm)(p1 − l + s − sm) − l(s − sm)z
, z ∈ R, (3.26)

which improves upon (3.7). Here, (3.26) is a correction of Golden (1998, eqn 3.29).
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(iii) The forward region Rmp
2

Finally, we consider the case where the material is further assumed to be
statistically isotropic. Let

H1(t) = 1
n0

− 1
tH (t)

= l

p1
− 1

tH (t)
. (3.27)

Then, H1(t) is a Herglotz function that is analytic off [0, 1] and has an integral
representation in terms of a measure n1, which can be shown to have mass

n1
0 = n1

(n0)2
= p2/d − sm

p1
. (3.28)

The allowed values of H1(t) are contained inside the circle {n1
0/(t − z) : z ∈ R},

which in the H -plane becomes the circle

K2(z) = n2
0(t − z)

t(n0(t − z) − n1)
, z ∈ R. (3.29)

The other circle is obtained by applying a similar transformation to G(t),

G1(t) = 1
r0

− 1
tG(t)

= l

l − p1
− 1

tG(t)
. (3.30)

This function is also Herglotz, analytic off [0, 1], with representing measure r1.
The mass of r1 is

r1
0 = n0(1 − n0) − n1

(1 − n0)2
. (3.31)

The allowed values of G1(t) are contained inside the circle {r1
0/(t − z) : z ∈ R},

which in the G-plane becomes

K̂2(z) = (1 − n0)(t − z)
t(t − z − n0 + n1/(1 − n0))

, z ∈ R. (3.32)

Table 2 summarizes the first- and second-order matrix particle bounds: the left-
hand side gives bounds on the values of G(t) and H (t), which are then transferred
to the 3∗-plane on the right-hand side. For example, the matrix representation of
T2,2(z ; p, q) may be obtained by multiplying the matrix representing K̂2(z) on the
left by T{G→3∗} = T{F→3∗}T{G→F}, i.e.(−32 32

0 1

) (−1 t−1

−1 1

) (−1 + n0 t(1 − n0)
−t t(t − n0 + n1(1 − n0)−1)

)

=
(

32t−1 − 32 (32t−1 − 32)t(t − n0 + n1(1 − n0)−1)
1 − n0 − t −t(1 − n0) + t(t − n0 + n1(1 − n0)−1)

)
,

and then substituting t = (q + q2)/(2q2), n0 = p/q2 and n1 = p(q2 − p)/(2q4) from
(3.20)–(3.23). Typical forward bounds on 3∗ are illustrated in figure 1. While
figure 2 illustrates inverse bounds, figure 3 also illustrates forward bounds.
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0.4

0.6

 = 0.008
3.0 3.4 3.8

 = 0.018
3.0 3.4 3.8

 = 0.039

(e*)

(e∗)

Figure 1. Forward bounds R1 (outer) and R2 (inner) on 3∗ depend on the brine volume fraction p.
The same 3∗ = 3.24 + 0.08i appears in all three figures (+), while p changes. For this 3∗, inversion
of R1 gives 0.0072 ≤ p ≤ 0.0396 and inversion of R2 gives 0.0115 ≤ p ≤ 0.0238, computed from
equations (5.7, 5.8) and (5.9, 5.10) respectively. Data are given in §8. (Online version in colour.)

Table 2. Forward bounds on 3∗ under the matrix particle assumption. Forward bounds on G(t)
and H (t) are on the left. The result of translating these bounds to the 3∗-plane are on the right. In
making the translation, we assume d = 2. Notation: s = 32/(32 − 31), q = 2s − 1, p = p1 = 1 − p2. If
q = 1, Ti,j (z ; p, q) reduces to Ti,j (z , p).

H -plane or G-plane 3∗-plane

Rmp
1 , first arc: (H )

K1(z) = p1/l

t − z
T1,1(z ; p, q) = −232q2z + 32(q + q2 − 2p)

−2q2z + q + q2

Rmp
1 , second arc: (G)

K̂1(z) = 1 − p1/l

t − z
T1,2(z ; p, q) = −2q232(q − q2)z + 32(q + q2)(q − q2)

−2q2(q + q2)z + (q + q2)(q − q2 + 2p)

Rmp
2 , first arc: (H )

K2(z) = n2
0(t − z)

t(n0(t − z) − n1)
T2,1(z ; p, q) = −232q2(q + q2 − 2p)z + 32(q + q2)(q − p)

−2q2(q + q2)z + (q + q2)(q + p)

Rmp
2 , second arc: (G)

K̂2(z) = (1 − n0)(t − z)
t(t − z − n0 + n1/(1 − n0))

T2,2(z ; p, q) = −2q232(q − q2)z + 32(q − q2)(q + q2 − p)
−2q2(q − q2 + 2p)z + (q + q2)(q − q2 + p)

4. The inverse problem

Having computed the forward bounds, we now formulate the general inverse
problem: given an observed effective property, determine the range of parameter
values consistent with the observation. This is illustrated in figure 1 using sea ice
modelled as a two-component random medium, effective complex permittivity 3∗
as the observed effective property and brine volume fraction p as the parameter
of interest. As the brine volume increases from p ≈ 0.007 to p ≈ 0.040, the
forward region R1 changes size and sweeps over the fixed observed 3∗, while the
smaller region R2 covers 3∗ only for p between p ≈ 0.012 and p ≈ 0.024. These
two intervals, respectively, are the first- and second-order inverse bounds on p,
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Figure 2. Inverting the forward regions gives algebraic curves having these general shapes;
their exact shapes depend on 3∗, 31 and 32. The horizontal lines in ascending order,
p̂1,l < p̂2,l < p̂2,u < p̂1,u, are obtained by inverting R1 and R2. The curves are: (a) G1,2(p, q) = 0
from the second arc of Rmp

1 ; (b) G2,1(p, q) = 0 from the first arc of Rmp
2 ; (c) G2,2(p, q) = 0 from

the second arc of Rmp
2 . The larger view on the right shows (c) G2,2(p, q) = 0; on the left, this curve

is not readily distinguishable from the line p̂1,l. (Online version in colour.)
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Figure 3. Matching forward and inverse regions: (a) reproduces figure 2 and shows (p, q) pairs
selected at (b) point 1 (0.017, 0.992); (c) point 2 (0.017, 0.927); (d) point 3 (0.009, 0.979). The
same observed 3∗ = 3.24 + 0.08i is shown in the three panels depicting forward regions. Point 1
yields regions R1, R2, Rmp

1 and Rmp
2 , all of which cover 3∗. For point 2, R1 and R2 cover 3∗, while

Rmp
1 and Rmp

2 do not. For point 3, R1 and Rmp
1 cover 3∗, but R2 and Rmp

2 do not. Data are given
in §8. R1 (outer dashed), R2 (inner dashed), Rmp

1 (outer solid), and Rmp
2 (inner solid) (Online

version in colour.)
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given the observed 3∗. It turns out that the end points of these intervals may be
determined as roots of the polynomials Fi,j(p) defined in §5 by inverting Ti,j(z ; p),
i, j = 1, 2.

Simultaneous inversion for both p and q is more complicated, but the same
method applies: given an observed 3∗, inversion of Ti,j(z ; p, q) determines the
algebraic curve Gi,j(p, q) = 0 that bounds a region in (p, q)-parameter space.

5. The inverse algorithm

Theorem 5.1 provides the theoretical basis of the inverse algorithm. It asserts
that the boundary of the inverse region may be computed by solving an algebraic
equation involving structural parameters of the measure m. This extends and
provides an alternative to the approach of Cherkaeva & Golden (1998), in which
bounds for p were found by solving coupled nonlinear equations.

Theorem 5.1 is based on the observation that the bounds on 3∗ on the right-
hand sides of tables 1 and 2 are all Möbius transformations in z ; the relevant
arcs shown in figure 1 are the images of certain subintervals of [0, 1] under such
transformations. The full circle is the image of the extended real line R ∪ {∞}. For
generality, we now designate structural parameters of the measure m by p1, . . . , pn ,
instead of just p and q. If parameter values p̂ = (p̂1, . . . , p̂n) are chosen so that
3∗ (or another observed effective property) lies on such a circle, the spectral
parameter ẑ is defined to be the ẑ ∈ R such that 3∗ = Tp̂(ẑ). We explicitly do
not regard ẑ as a ‘structural parameter of the measure m’.

We use the following notation: C[x1, . . . , xn] denotes the ring of multi-variate
polynomials in x1, . . . , xn , with complex coefficients; z is the complex conjugate of
z ∈ C; and both Tp(z) and T (z ; p) are used to indicate the parametric dependence
of a Möbius transformation on p = (p1, . . . , pn). We use the following facts:
Möbius transformations map circles to circles in C, where lines are regarded as
circles of infinite radii and the compositional inverse of T (z) = (Az + B)/(Cz +
D) is T−1(z) = (Dz − B)/(−Cz + A) (Jones & Singerman 1987).

Theorem 5.1. Let T (z ; p) be an n-parameter family of Möbius transformations

Tp(z) = T (z ; p) = A(p)z + B(p)
C (p)z + D(p)

, p = (p1, . . . , pn),

where A(p), B(p), C (p), D(p) ∈ C[p1, . . . , pn] and the parameters p1, . . . , pn are
real. Then, a fixed z ∈ C lies on T (R; p̂), a circle with a single point removed, if
and only if p̂ is a real root of the multi-variate polynomial Fz(p) defined by

Fz(p) = �{[D(p)z − B(p)][−C (p)z + A(p)]}, (5.1)

and p̂ is not also a root of the multi-variate polynomial

Sz(p) = −C (p)z + A(p). (5.2)

For such p̂, z = T (ẑ ; p̂), where the spectral parameter ẑ may be computed as

ẑ = D(p̂)z − B(p̂)
−C (p̂)z + A(p̂)

= �{D(p̂)z − B(p̂)}
�{−C (p̂)z + A(p̂)} = �{D(p̂)z − B(p̂)}

�{−C (p̂)z + A(p̂)} . (5.3)
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Proof. Let z ∈ C be fixed and assume z ∈ T (R; p̂), with p̂ = (p̂1, . . . , p̂n). Then,

z = T (ẑ ; p̂) = A(p̂)ẑ + B(p̂)
C (p̂)ẑ + D(p̂)

, (5.4)

for some ẑ ∈ R, ẑ �= ∞. Since Sz(p) = 0 can only occur if ẑ = ∞, it follows that
Sz(p) �= 0. Solving for ẑ by inverting (5.4) gives

ẑ = T−1(z; p̂) = D(p̂)z − B(p̂)
−C (p̂)z + A(p̂)

. (5.5)

By considering separately the real and imaginary parts of (5.5) and using the fact
that ẑ ∈ R, it follows that p = p̂ is a solution of

�
{

D(p)z − B(p)
−C (p)z + A(p)

}
= 0 (z fixed). (5.6)

In view of Sz(p̂) �= 0, this is equivalent to p̂ being a root of the polynomial (5.1).
In the other direction, let z ∈ C be fixed and suppose Fz(p̂) = 0 and Sz(p̂) �= 0.

Then, (5.6) holds with p = p̂. Let ẑ be defined by (5.5). Then, z = T (ẑ ; p̂). Since
(5.6) holds with p = p̂, it follows that ẑ is real, so (5.5) defines ẑ as the spectral
parameter. The remaining part of (5.3) holds because for any z , w ∈ C/{0}, we
have �{zw̄} = 0 if and only if the points {0, z , w} are collinear, in which case,
z/w = �(z)/�(w) = �(z)/�(w). �

Using this unified approach, we first apply theorem 5.1 to obtain formulae for
first- and second-order inverse bounds on the volume fraction p of brine in sea ice,
and in passing rederive results of Cherkaeva & Golden (1998). Next, we apply
theorem 5.1 to obtain first- and second-order inverse bounds in (p, q)-parameter
space. Since the role of z will always be assumed by 3∗, to simplify notation, we
will write F(p) for F3∗(p) and G(p, q) for F3∗(p, q).

(a) Inverting R1

The forward region R1 is derived assuming only knowledge of the volume
fraction p = p1. We invert R1 to obtain bounds on p by considering T1,1(z ; p)
and T1,2(z ; p) as families of maps parametrized by p.

(i) Inverting the first arc of R1

The polynomial coefficients of T1,1(z ; p) are

A(p) = −32, B(p) = −32p + 32s, C (p) = −1 and D(p) = s.

An application of theorem 5.1 gives F1,1(p) = �{[32p + (3∗ − 32)s][3∗ − 32]}. Solving
F1,1(p) = 0 gives a lower bound on the volume fraction,

p̂1,l = |3∗ − 32|2�(3132)
|31 − 32|2�(3∗32)

. (5.7)

Note that the subscript ‘1’ on p̂1,l refers to its role as a first-order bound, while
p1 denotes a volume fraction.
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(ii) Inverting the second arc of R1

The polynomial coefficients of T1,2(z ; p) are

A(p) = −31, B(p) = 31s, C (p) = −1 and D(p) = −1 + p + s.

Theorem 5.1 gives F1,2(p) = �{[3∗p + (3∗ − 31) s − 3∗][3∗ − 31]}, and solving
F1,2(p) = 0 gives an upper bound on the volume fraction,

p̂1,u = 1 − |3∗ − 31|2�(3231)
|32 − 31|2�(3∗31)

. (5.8)

The fact that (5.7) gives a lower bound while (5.8) gives an upper bound was
determined numerically, i.e. it is the particular values of 31, 32, 3∗ that imply
p̂1,l ≤ p̂1,u.

(b) Inverting R2

The forward region R2 is the region in the 3∗-plane bounded by the two circles
described by T2,1(z ; p) and T2,2(z ; p). Following the same procedure for R2 as R1,
we find that each circle determines a polynomial that is quadratic in p, yielding
the second-order bounds p̂2,l and p̂2,u with p̂1,l ≤ p̂2,l ≤ p ≤ p̂2,u ≤ p̂1,u.

(i) Inverting the first arc of R2

Inverting T2,1(z ; p) gives F2,1(p) = a1p2 + b1p + c1, with

a1 = 2�{(3∗ + 32)32(q + 1)},
b1 = −2|q + 1|2�{3∗32} + 2�{(3∗ − 32)32q(q + 1)}

and c1 = |q + 1|2|3∗ − 32|2�{q}.
Solving F2,1(p) = 0 gives the second-order upper bound

p̂2,u =
−b1 +

√
b2
1 − 4a1c1

2a1
. (5.9)

(ii) Inverting the second arc of R2

Inverting T2,2(z , p) gives F2,2(p) = a2p2 + b2p + c2, with

a2 = 2�{[3∗(q + 1) + 32(q − 1)]3∗},
b2 = 2�{(3∗ − 32)(q2 − 1)3∗} + �{[3∗(q + 1) + 32(q − 1)](3∗ − 32)(q − 1)}

and c2 = |q − 1|2|3∗ − 32|2�{q}.
Solving F2,2(p) = 0 determines the second-order lower bound

p̂2,l =
−b2 −

√
b2
2 − 4a2c2

2a2
. (5.10)
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The fact that (5.9) provides an upper bound while (5.10) provides a lower bound
was determined numerically, as was the determination of the sign of the radical
in these equations.

(c) Inverting Rmp
1

The forward region Rmp
1 in the 3∗-plane is determined by the two intersecting

circles: T1,1(z ; p, q) and T1,2(z ; p, q), z ∈ R.

(i) Inverting the first arc of Rmp
1

Inversion of T1,1(z ; p, q) reduces to (5.7) because the circular image of K ′
1(z)

coincides with the image of C1(z), as noted in §3b(ii).

(ii) Inverting the second arc of Rmp
1

Inverting T1,2(z ; p, q) gives the polynomial

G1,2(p, q) = �{[23∗(q + q2)p + (3∗ − 32)(q2 − q4)][3∗(q + q2) − 32(q − q2)]},
which is cubic in q2. The algebraic curve G1,2(p, q) = 0 is readily expressed as

p = �{[(3∗ − 32)(q2 − q4)][3∗(q + q2) − 32(q − q2)]}
2�{3∗(q + q2)32(q − q2)} .

(d) Inverting Rmp
2

The forward region Rmp
2 in the 3∗-plane is described by the intersection of the

two circles: T2,1(z ; p, q) and T2,2(z ; p, q), z ∈ R.

(i) Inverting the first arc of Rmp
2

Inverting T2,1(z ; p, q) gives G2,1(p, q) = a1(q)p2 + b1(q)p + c1(q) with

a1(q) = 2�{(3∗ + 32)32(q + q2)},
b1(q) = −2|q + q2|2�{3∗32} + 2�{(3∗ − 32)32q(q + q2)}

and c1(q) = |q + q2|2|3∗ − 32|2�{q}.
Note that G2,1(p, q)|q=1 = F2,1(p). The algebraic curve G2,1(p, q) = 0 is given by

p = −b1(q) ± √[b1(q)]2 − 4a1(q)c1(q)
2a1(q)

. (5.11)

The curve G2,1(p, q) = 0 is illustrated in figure 2; the top and bottom portions of
the curve correspond to the positive and negative roots in (5.11), respectively.
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Alternatively, and this will be used in §7,

G2,1(p, q) = d1(p)q4 + e1(p)q2 + f1(p),

d1(p) = −2p�{3∗32} + |3∗ − 32|2�{q},
e1(p) = 2p2�{3∗32} − 2p�{(3∗ − 32)32q} + |3∗ − 32|2�{q2}

and f1(p) = 2p2�{(3∗ + 32)32q} + 2p�{(3∗ − 32)32q2}
− 2p|q|2�{3∗32} + |q|2|3∗ − 32|2�{q}.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.12)

(ii) Inverting the second arc of Rmp
2

Inverting T2,2(z ; p, q) gives G2,2(p, q) = a2(q)p2 + b2(q)p + c2(q), with

a2(q) = 2�{[3∗(q + q2) + 32(q − q2)]3∗},
b2(q) = 2�{(3∗ − 32)(q2 − q4)3∗}

+ �{[3∗(q + q2) + 32(q − q2)](3∗ − 32)(q − q2)}
and c2(q) = |q − q2|2|3∗ − 32|2�{q}.
The algebraic curve G2,2(p, q) = 0 is given by

p = −b2(q) ± √[b2(q)]2 − 4a2(q)c2(q)
2a2(q)

. (5.13)

Both roots appear in the full display of the curve on the right-hand side of
figure 2.

(e) Matching forward and inverse regions

The curves Gi,j(p, q) = 0 are boundary curves; it remains to determine which
side of the boundaries the admissible parameter values lie. When q = 1, Rmp

1
reduces to R1 so that the inverse region determined by Rmp

1 must contain the
line segment [(p1,l, 1), (p1,u, 1)]. Similarly, the inverse region determined by Rmp

2
must contain the shorter segment [(p2,l, 1), (p2,u, 1)]. A complete matching of
the forward regions with the corresponding inverse regions may be carried out by
computing forward regions at selected (p, q) pairs. Figure 3 illustrates this process.

(f ) If Fz(p) = 0 has no real roots

We return to a discussion of the inversion algorithm in general, not just its
application to sea ice. We follow the same notation of theorem 5.1 and again
consider p1, . . . , pn as variable (real) parameters.

It may happen that Fz(p) = Fz(p1, . . . , pn) = 0 has no real roots. The following
theorem addresses this issue. Here is its practical application: suppose for an
observed effective property z ∈ C, we have Fz(p) �= 0 for all relevant parameter
values p. According to theorem 5.1, this means that the circles Tp(R) do not
come into contact with z as p varies. Theorem 5.2 gives criteria to decide if this
is because z always lies inside, or always lies outside, each of the circles Tp(R).
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The new notation Ln , denoting a subset of Rn , accounts for the fact that
relevant parameter values may not comprise all of Rn . For example, for our
sea-ice problem, the relevant values of (p, q) lie in L2 = [0, 1] × [0, 1] � R2. We
also introduce the notation L′

n denoting a connected subset of Ln . In most
applications, we would expect L′

n = Ln . Jones & Singerman (1987, p. 28) discuss
the ‘circle inversion’ mentioned after (5.16).

Theorem 5.2. Suppose L′
n is a connected subset of parameter set Ln ⊆ Rn and

�{C (p)D(p)} �= 0 ∀p = (p1, . . . , pn) ∈ L′
n . (5.14)

If Fz(p) = 0 has no real roots, then z lies outside each circle in the family {Tp(R) :
p ∈ L′

n} provided the following inequality holds for at least one p ∈ L′
n :

∣∣∣∣∣z − i
2

A(p)D(p) − B(p)C (p)

�{C (p)D(p)}

∣∣∣∣∣ >
1
2

|A(p)D(p) − B(p)C (p)|
|�{C (p)D(p)}| . (5.15)

If Fz(p) = 0 has no real roots, then z lies inside each circle in {Tp(R) : p ∈ L′
n},

provided that the reverse inequality in (5.15) holds for at least one p ∈ L′
n.

Proof. First, the hypothesis (5.14) implies that each Tp(R) is a circle of finite
radius. Otherwise, Tp(R ∪ {∞}) would be a straight line in C passing through
∞ in the extended complex plane, implying that Tp(z) = ∞ for some z ∈ R ∪
{∞}. Upon computing z = T−1

p (∞), we find z = −D(p)/C (p) /∈ R by (5.14), and
−D(p)/C (p) �= ∞ also by (5.14). Therefore, Tp(R) has finite radius.

Next, let x(p) and r(p) denote the centre and radius of Tp(R), respectively,

x(p) = i
2

A(p)D(p) − B(p)C (p)

�{C (p)D(p)} and r(p) = 1
2

|A(p)D(p) − B(p)C (p)|
|�{C (p)D(p)}| .

(5.16)
These may be derived by noting that inversion in the circle Tp(R) exchanges x and
∞, and is conjugate via Tp to a reflection across R. Since ∞ = Tp(−D(p)/C (p)),
it follows that x(p) = Tp(−D(p)/C (p)), yielding the indicated formula; and
r(p) = |x(p) − Tp(∞)|. Formulae (5.16) show that x(p) and r(p) are continuous.
Define J : L′

n → R by J (p) = |z − x(p)| − r(p). Note that 0 /∈ J (L′
n). (Otherwise,

z ∈ Tp(R) for some p ∈ L′
n , and then Fz(p) = 0 would have a real root in L′

n by
theorem 5.1.) Since J is continuous, J (L′

n) is connected. Hence, either J (p) > 0 for
all p ∈ L′

n or J (p)<0 for all p ∈ L′
n . If (5.15) holds for a particular p∗ ∈ L′

n , then
J (p∗) > 0, hence J (p) > 0 for all p ∈ L′

n , so that z lies outside each circle Tp(R)
for all p ∈ L′

n . Similar reasoning handles the reverse inequality in (5.15). �

Theorem 5.2 has the following corollary in its specialization to sea ice: if
for a given 3∗ �= 0, Fi,j(p) fails to have a real root, then 3∗ lies outside the
circles Ti,j(R; p) for all p ∈ [0, 1]; if for a given 3∗ �= 0, Gi,j(p, q) fails to have a
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real root, then 3∗ lies outside the circle Ti,j(R; p, q) for all (p, q) ∈ [0, 1] × [0, 1].
This is because for each entry on the right-hand side of table 1, there exists
a p ∈ [0, 1], such that A(p)D(p) − B(p)C (p) = 0; and for each entry on the right-
hand side of table 2, there exists a (p, q) ∈ [0, 1] × [0, 1], such that A(p, q)D(p, q) −
B(p, q)C (p, q) = 0.

6. Inverse bounds for volume fraction

In this section, we consider the problem of inverting for the single parameter p
before considering both p and q in §7. We apply the inversion method developed in
§5 to obtain upper and lower bounds on p using the effective complex permittivity
data for sea ice given in §8. We then compare these bounds with an empirical
formula from Frankenstein & Garner (1967) that determines brine volume from
temperature and salinity.

The inversion formulae for p̂1,l, p̂1,u, p̂2,l, p̂2,u depend on 3∗, and the complex
permittivities of the two phases, 31 and 32. The latter two may be calculated
from the measured temperature, sample salinity, sample density and the
electromagnetic frequency of the experiments, using the formulae described next.

Concerning 31, the complex permittivity of the brine, we use the calculations of
Stogryn & Desargant (1985) that are based on a Debye-type relaxation equation,

31 = 3∞ + 3s − 3∞
1 − i2pf t

+ i
s

2p30f
, i = √−1, (6.1)

in which f denotes the frequency in gigahertz, and 3∞, 3s, t and s are expressed
as functions of temperature by the following equations fit to experimental data:

3∞ = 82.79 + 8.19T 2

15.68 + T 2
, 3s = 939.66 − 19.068T

10.737 − T
,

2pt = 0.10990 + 0.13603 × 10−2T + 0.20894 × 10−3T 2 + 0.28167 × 10−5T 3

and s =
{−T exp[0.5193 + 0.08755T ] if T ≥ −22.9◦C,

−T exp[1.0334 + 0.1100T ] if T ≤ −22.9◦C.

Here, 3s and 3∞ are the limiting static and high-frequency values of the real part
of 31, t is the relaxation time in nanoseconds, 30 is the permittivity of free space,
8.85419 × 10−12 F m−1, and s is the ionic conductivity of the dissolved salts in
siemens per metre. It is assumed that s is independent of frequency.

Concerning 32, it was found by Cherkaeva & Golden (1998) that the theoretical
forward bounds fit the data more closely by accounting for air in the sea ice.
In particular, the complex permittivity of the ice 32 was calculated as a
permittivity of a composite with a small volume fraction of air using the
Maxwell–Garnett formula. We use the same approach here,

32 = 3ice

[
1 − dpair(3ice − 3air)

3ice(d − 1) + 3air + pair(3ice − 3air)

]
. (6.2)

Here, 3ice = (3.1884 + 0.00091 T ) + 0.00005i (Mätzler & Wegmuller 1987, 1988),
3air = 1, and the volume fraction of air, pair, is calculated via the

Proc. R. Soc. A (2012)

 on April 13, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Recovery of inclusion separations 805

Table 3. Coefficients of F1(T ) and F2(T ) for −22.9 ≤ T ≤ −2◦C. Adapted from Cox & Weeks
(1983, p. 312).

a0 a1 a2 a3

F1(T ) −4.732 −2.245 × 101 −6.379 × 10−1 −1.074 × 10−2

F2(T ) 8.903 × 10−2 −1.763 × 10−2 −5.330 × 10−4 −8.801 × 10−6

Table 4. Inverse bounds for laboratory ice-slab data. Complex permittivity data adapted from
Arcone et al. (1986) in §8 are used to compute bounds p̂1,l, p̂1,u, p̂2,l, p̂2,u using (5.7)–(5.10) with
31 and 32 determined using (6.1) and (6.2), respectively. The column labelled ‘pc’ gives the brine
volume fractions computed using (6.3), from which qmin(pc) is computed using (7.1). The complete
table is in the electronic supplementary material. Notes: (a) the value for p̂2,l computed by solving
F2,2(p) = 0 is complex, hence theorem 5.2 is applicable: the observed effective complex permittivity
lies outside the forward bounds for all parameter values p ∈ [0, 1]; (b) T = −27.0 ◦C lies outside
the range given in (6.3); (c) the value qmin(pc) = 1 occurs because pc > p̂2,u, which can also be seen
in figure 4.

slab ◦C p̂1,l p̂1,u p̂2,l p̂2,u pc qmin(pc)

84-3 −22.5 −0.2352 0.0088 (a) 0.0047 0.0119 —
−20.0 0.0078 0.0415 0.0124 0.0250 0.0128 0.9383
−18.0 0.0074 0.0415 0.0119 0.0249 0.0138 0.9466
−17.5 0.0084 0.0458 0.0132 0.0270 0.0140 0.9308
· · · · · ·
−1.5 0.0251 0.1545 0.0418 0.0956 0.1245 1 (c)

84-4 −27.0 −2.8138 0.0285 (a) 0.0154 (b) —
−22.0 0.0020 0.0082 0.0035 0.0059 0.0121 1 (c)
−20.5 0.0062 0.0335 0.0103 0.0209 0.0126 0.9626
· · · · · ·
−10.0 0.0071 0.0459 0.0119 0.0275 0.0212 0.9814
−9.0 0.0055 0.0296 0.0098 0.0198 0.0230 1 (c)
−7.5 0.0063 0.0352 0.0114 0.0234 0.0268 1 (c)
−6.0 0.0106 0.0643 0.0187 0.0412 0.0326 0.9914

· · · · · ·
−2.0 0.0244 0.1502 0.0414 0.0943 0.0912 0.9979

equations given by Cox & Weeks (1983),

pair = Vair

V
= 1 − r

rice
+ rS

F2(T )
F1(T )

.

Here, r is the density of the sea-ice sample in grams per cubic centimetre; T is
its temperature in degrees celsius; S is its salinity in parts per thousand; rice is
the density of pure ice in grams per cubic centimetre, which is given by rice =
0.917 − 1.403 × 10−4T ; and the coefficients of Fj(T ) = a0 + a1T + a2T 2 + a3T 3,
j = 1, 2, are given in table 3. In (6.2), we take d = 3, as the air inclusions in
actual sea ice are uniformly and isotropically distributed throughout the ice in
three dimensions, as opposed to the brine inclusions.
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Figure 4. Second-order bounds on brine volume fraction p from the columns labelled ‘p̂2,l’ and
‘p̂2,u’ in table 4 are compared with the values of pc determined by the equations of Frankenstein &
Garner (1967). What is significant is that the famous relation of Frankenstein & Garner is captured
by electromagnetic measurements. Filled circles, p̂2,l, p̂2,u; plus symbols, pc.

Table 4 and figure 4 compare the result of inverting for brine volume fraction
from effective complex permittivity with the result of computing brine volume
fraction using the equation of Frankenstein & Garner (1967),

p = p1 =

⎧⎪⎪⎨
⎪⎪⎩

0.001S(43.795|T |−1 + 1.189) −22.9 ≤ T ≤ −8.2,

0.001S(45.917|T |−1 + 0.930) −8.2 ≤ T ≤ −2.06,

0.001S(52.56|T |−1 − 2.28) −2.06 ≤ T ≤ −0.5.

(6.3)

Here, T is the temperature in degrees, celsius and S is the salinity in parts per
thousand.

7. Inverse bounds for inclusion separation

Figure 2 shows typical inverse bounds on p and q. For a given brine volume
fraction p̂2,l ≤ p ≤ p̂2,u, we may determine an interval of admissible q values from
the second-order matrix particle bounds: it is the interval qmin(p) ≤ q ≤ 1, where
qmin(p) is the value of q where a horizontal line at level p will intersect the inverse
boundary curve from the first arc of Rmp

2 . Thus, qmin(p) may be computed by
setting (5.12) equal to zero and solving for q,

qmin(p) = −e1(p) − √[e1(p)]2 − 4d1(p)f1(p)
2d1(p)

, p̂2,l ≤ p ≤ p̂2,u. (7.1)

If p is not in the indicated interval, then we set qmin(p) = 1. Here, d1(p), e1(p) and
f1(p) are given by (5.12). The need for the minus sign on the square root was
established numerically.

Figure 5 shows qmin(pc) calculated by (7.1), with pc calculated by (6.3), using
data given in table 5. It indicates a coalescence towards percolation as the
temperature rises. Since 1 is always the upper bound, we cannot make inferences
about the ice being bounded away from percolation, at colder temperatures.
Nevertheless, the lower bound qmin(p) is still informative; it bounds q towards
percolation.
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Figure 5. Slab temperature versus minimum separation parameter qmin(pc). The latter is computed
by (7.1) using only those values of pc computed by (6.3) that lie between p̂2,l and p̂2,u. Data are
from the first and last columns of table 4. The inverted data displayed here illustrate that as the
ice warms, the separations of the brine inclusions decrease. It is significant that this important
phenomenon is being characterized electromagnetically through an inversion scheme. Stars, slab
84-3; squares, slab 84-4.

Table 5. Laboratory ice-slab data adapted from Arcone et al. (1986) (fig. 7, p. 14 289). The real and
imaginary parts of 3∗ were measured with waves vertically incident to the slabs at 4.75 GHz. Slab
84-3 has salinity 3.8 ppt, density 0.884 g cm−3. Slab 84-4 has salinity 3.8 ppt, density 0.886 g cm−3.
The electronic supplementary material contains data from both slabs.

slab 84-4

(◦C) −27.0 −22.0 −20.5 −19.5 −18.0 −16.5 −15.0 −12.5 −10.0
�3∗ 3.133 3.111 3.215 3.230 3.244 3.252 3.267 3.244 3.289
�3∗ 0 0.048 0.089 0.077 0.089 0.089 0.113 0.077 0.101

(◦C) −9.0 −7.5 −6.0 −5.5 −4.5 −3.5 −2.5 −2.0
�3∗ 3.289 3.333 3.504 3.548 3.585 3.719 3.822 4.000
�3∗ 0.155 0.173 0.238 0.254 0.258 0.250 0.280 0.315

Table 6. Data used in figures 1–3. Adapted from Arcone et al. (1986) and Golden et al. (1998b).

31 32 3∗ frequency (GHz) temperature (◦C)

33.30 + 39.89i 3.068 + 0.00006i 3.24 + 0.08i 4.75 −18.5

8. Data

Tables 5 and 6 record data used herein; see also the electronic supplementary
material.
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