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The Anderson transition in solids and optics is a wave phenomenon where disorder induces localization
of the wave functions. We find here that the hallmarks of the Anderson transition are exhibited by classical
transport at a percolation threshold—without wave interference or scattering effects. As long range order
or connectedness develops, the eigenvalue statistics of a key random matrix governing transport cross
over toward universal statistics of the Gaussian orthogonal ensemble, and the field eigenvectors delocalize.
The transition is examined in resistor networks, human bone, and sea ice structures.
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Introduction.—The Anderson theory of the metal-insu-
lator transition (MIT) [1,2] provides a powerful, quantum
mechanical framework for understanding when a disordered
medium allows electronic transport, and when it does not.
Indeed, for large enough disorder the electrons are localized
in different places, with uncorrelated energy levels described
by Poisson statistics [3,4]. For small disorder, the wave
functions are extended and overlap, giving rise to correlated
Wigner-Dyson (WD) energy level statistics [3,4] with
strong level repulsion [5]. For intermediate disorder hybrid
Poisson-like level statistics arise [3,4,6,7].
Here, we consider the effective transport coefficients of

macroscopic two phase composites in 2D and 3D [8–10],
including electrical and thermal conductivity, diffusivity,
complex permittivity, and magnetic permeability. All
are formulated with the same elliptic partial differential
equation. For example, electrical conduction is described
by ∇ · ðσ∇ϕÞ ¼ 0with potential ϕ, electric fieldE ¼ −∇ϕ,
and local conductivity σ taking the values σ1 or σ2.
A metal-insulator mixture is modeled with h ¼ σ1=σ2 → 0.
Near a percolation threshold the system undergoes a
classical MIT with the effective conductivity σ� described
by critical exponents [10–12].
The underlying physics of the quantum and classical

MIT are quite different. Anderson localization in quantum
systems, described by the Schrödinger equation, is a wave
interference phenomenon, and should be universal to all
wave systems, such as in optics where it has been
investigated extensively [13]. On the other hand, for
transport in macroscopic two phase media governed by
the elliptic equation above, there are no wave interference
or scattering effects and no quantum phenomena.
It is surprising then that the self-adjoint random operator

G governing effective transport in composites has spectral
properties that transition in a way that is strikingly similar
to the Anderson transition in wave mechanics. We find
here that phase connectedness in composites determines the
Anderson-like transition in the spectral properties ofG. The
critical volume fraction at the percolation threshold [11]

plays the role of the critical level of disorder necessary for
localization in wave physics.
The operator G arises in the analytic continuation

method [14–16] for studying transport in two phase
composites. Stieltjes integral representations for the bulk
transport coefficients such as σ� incorporate the two phase
mixture geometry in a spectral measure μ of G [16]. For
discrete media such as the random resistor network (RRN)
[11], G is a real-symmetric random matrix and the spectral
measure μ as well as the electric field E are given explicitly
in terms of its eigenvalues and eigenvectors [10,17]. The
locations of the eigenvalues along the negative real axis in
the h plane correspond to singularities of the bulk transport
coefficients [8,10,12,18].
We observe that as the conducting phase percolates, the

eigenvectors of G shift from localized to extended, causing
the electric field E to spread throughout the system. Near
the connectedness-driven MIT mobility edges appear,
analogous to Anderson localization where mobility edges
mark the characteristic energies of the quantum MIT [5].
The overlap of eigenvectors ofG gives rise to a transition in
the statistical properties of the eigenvalues from weakly
correlated Poisson-like statistics toward universal WD
statistics of the Gaussian orthogonal ensemble (GOE) with
strong level repulsion [3–5]. This eigenvalue repulsion
explains the collapse of spectral gaps as connectedness
develops [17–20], which is closely related to critical
behavior [10,12,18–22].
To help connect our findings to the physics of disordered

media, we consider two systems whose optical properties
are determined by the spectral characteristics considered
here, and where our findings may have observable conse-
quences: metallic particles in an insulating host, such as
colloidal suspensions of gold nanoparticles in a liquid [10],
and metal films such as depositions of nanosized metal
particles on a dielectric substrate [23]. The long wavelength
quasistatic assumption holds in the visible range, and
these systems are described macroscopically by an effective
complex permittivity ϵ�, and locally by the above elliptic
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partial differential equation with local complex permittivity
values ϵ1ðωÞ and ϵ2ðωÞ. Values of h ¼ ϵ1=ϵ2 near the
negative real axis can be realized in these systems over
certain ranges of frequency ω [10]. The resonance structure
of ϵ� and the absorption profile, such as sharp peaks
associated with surface plasmon resonances [10,23], are
then observable [10,12] and determined by the spectral
properties of G. For finite discrete models [10,12,18,23],
such as binary RL-C networks where metallic bonds
consist of a resistor in series with an inductor and dielectric
bonds consist of a capacitor [12,18], the eigenvalues of the
matrix G are poles of the effective complex conductivity,
which collectively give rise to network resonances. Indeed,
geometrical disorder in these media leads to a broad range
of surface plasmon resonances analogous to RL-C reso-
nances, and strong enhancement of the local electric fields
[23]. Our findings on the transition to universality of the
resonance spacing distribution, for example, may be observ-
able through analysis of the fine structure of the absorption
spectra. Interestingly, WD universality has been observed in
microwave absorption spectra of a suspension of metal
particles at low temperature, where the energy level spacing
distribution for electronic states in the grains determines the
conductivity [24].
As remarked above, the physics of the quantum and

classical MIT are different. Thus, we emphasize that the
similarities to the Anderson transition described here are
mathematical in nature and one cannot expect a similarity in
all physical aspects. For example, the dependence of the
conductivity on the eigenvalues and eigenvectors is different
in the quantum and classical cases. Moreover, in quantum
conduction a magnetic field breaks time reversability,
yielding a Hermitian random matrix and a crossover to
universal WD statistics of the Gaussian unitary ensemble,
instead of the GOE associated with time reversability and a
real-symmetric randommatrix [25].TheAnderson transition
toGaussian unitary ensemble universality has been captured
by an exactly solvable model [4,7], while the transition to
GOE universality remains open.
In random matrix theory [5,26,27], long and short range

correlations of the eigenvalues [5,6] of matrices with random
entries aremeasuredusingvarious statistics [5,26], such as the
eigenvalue spacing distribution (ESD). Eigenvector localiza-
tion is often described by the inverse participation ratio (IPR)
[2,28]. A fascinating feature of random matrix theory is that
eigenvalue statistics arising in a broad range of unrelated
systems exhibit the same universal behavior—from nuclear
spectra [5,26] and mesoscopic conductors [25] to random
graphs [29] and quantum chaos [5]. Here, we explore the
transition to GOEuniversality in the 2D and 3DRRN, as well
as in 2D discretizations of the brine microstructure of sea ice
[30,31], melt ponds on the surface of Arctic sea ice [32], the
sea ice pack itself, and porous human bone [33].
Mathematical methods.—Consider conduction in two

phase composites [8,10,16,17], whereE and J are the electric

and current density fields satisfying J ¼ σE, ∇ · J ¼ 0, and
∇ ×E ¼ 0, and σ is the local conductivity. For a stationary
random medium in 2D or 3D with component conductivities
σ1 andσ2,σ ¼ σ1χ1 þ σ2χ2,whereχ1 ¼ 1 inmedium1andis
zero otherwise, with χ2 ¼ 1 − χ1.
The effective conductivity matrix σ� can be defined

by hJi ¼ σ�hEi with average field hEi ¼ E0. Here, h·i
denotes ensemble averaging over the probability distribu-
tion defining the random medium, and E0 ¼ E0e1, for
example, where e1 is a unit vector in the x direction [16].
Equivalently, we find ϕ satisfying ∇ · ðσ∇ϕÞ ¼ 0 in the 2D
square ½−L;L� × ½−L; L�, or 3D cube, ϕð−L; yÞ ¼ −LE0,
and ϕðL; yÞ ¼ LE0 for−L ≤ y ≤ L, and ∂ϕ=∂y ¼ 0 on the
top and bottom, so that hEiL ¼ E0. Here h·iL is spatial
average. The effective conductivity matrix σ�L is defined by
hJiL ¼ σ�LhEiL. For stationary, ergodic σ, limL→∞σ�L ¼ σ�
(see the appendix in Ref. [16]).
The key to the analytic continuation method is the

Stieltjes integral representation [14–17]

FðsÞ ¼ 1 −
σ�

σ2
¼

Z
1

0

dμðλÞ
s − λ

; s ¼ 1

1 − σ1=σ2
; ð1Þ

where we focus on a diagonal coefficient σ� ¼ σ�kk of the
matrix σ� for isotropic media. Equation (1) follows from
the resolvent formula for the electric field [16,17]

χ1E ¼ sðsI − GÞ−1χ1E0; ð2Þ

andFðsÞ ¼ hχ1E ·E0i=ðsE2
0Þ, where μ is a spectral measure

of the random operatorG ¼ χ1Γχ1 and Γ ¼ −∇ð−ΔÞ−1∇· is
the projection onto curl-free fields, based on convolution
with the Green’s function for the Laplacian Δ ¼ ∇2.
Parameter information in s is separated from mixture
geometry information, which is encoded into μ via its
moments, μn ¼

R
1
0 λndμðλÞ. For example, μ0 ¼ hχ1i ¼ p,

the volume fraction of medium 1. All of the effective
properties of the composite are represented via Stieltjes
integrals with the same μ [34]. The measure μ reduces to a
weighted sum of Dirac δ-functions δðλ − λjÞ for media such
as laminates, hierarchical coated cylinder and sphere assemb-
lages, and finite resistor networks [8].
Consider a square d ¼ 2 RRN in ½0; L� × ½0; L�, with

conducting bars along x ¼ 0 and x ¼ L and periodic
boundary conditions at y ¼ 0 and y ¼ L, and its cubic
d ¼ 3 analog. In this case, G ¼ χ1Γχ1 is a real-symmetric
random matrix of size N ¼ Ldd [17], χ1 is a diagonal
matrix with 1’s and 0’s along the diagonal corresponding
to bond type, and Γ is a projection matrix [17]. The measure
μ is determined by the eigenvalues λj and eigenvectors vj
of N1 × N1 submatrices of Γ corresponding to diagonal
components ½χ1�jj ¼ 1, dμ ¼ P

jhmjδðλ − λjÞidλ, where
mj ¼ ½vj · χ1ek�2, j ¼ 1;…; N1, N1 ≈ pN [17].
To calculate eigenvalue and eigenvector statistics, we

have converted 2D images of sea ice and bone to resistor
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networks. Figure 1 displays images of the Arctic ice
pack with a binary version on the far right. The matrix
G ¼ χ1Γχ1 is then obtained for these binary discretizations.
Finally, consider the time dependent Schrödinger equa-

tion iℏ∂ψ=∂t ¼ Hψ , and the Laplace transform Ψðx; sÞ
of ψðx; tÞ, as in Ref. [1] (here s is the transform variable).
Then, Ψðx; sÞ has a resolvent representation analogous
to Eq. (2), Ψðx; sÞ ¼ ðiℏsI −HÞ−1ψðx; 0Þ. Then, G for
classical transport is an analog of the Hamiltonian H.
Numerical results.—For highly correlated WD spectra

of the GOE, the nearest neighbor ESD PðzÞ is accurately
approximated by PðzÞ ≈ ðπz=2Þ expð−πz2=2Þ, which illus-
trates eigenvalue repulsion, vanishing linearly as spacings
z → 0 [5,6,25]. In contrast, the ESD for uncorrelated Poisson
spectra, PðzÞ ¼ expð−zÞ, allows for level degeneracy [5].
In Fig. 2 we display the ESDs for Poisson and GOE

spectra, along with the ESDs forG corresponding to sea ice
composite structures with fluid area fraction p and the 2D
RRN with a fraction p of phase 1. [To observe statistical
fluctuations of eigenvalues about the mean density ρðλÞ
[5,26], the spectrum must be unfolded [5,6,28]. ] It shows

that for sparsely connected systems, the behavior of the
ESDs is well described by weakly correlated Poisson-like
statistics [6]. They increase linearly from zero but the
initial slope of the curve is steeper than in the WD case,
implying less repulsion, and the tails decay exponentially.
With increasing connectedness, the ESDs transition toward
highly correlated WD statistics with strong level repulsion
and Gaussian tails. For the 2D and 3D RRN, the eigenvalue
density ρðλ; pÞ obeys ρðλ; pÞ ¼ ρð1 − λ; 1 − pÞ in the
bulk of the spectrum. This is reflected in the ESDs by
the symmetry Pðz; pÞ ¼ Pðz; 1 − pÞ, as shown for the 2D
RRN in Fig. 2(c).
Long-range eigenvalue correlations are measured by

quantities such as the eigenvalue number variance Σ2ðLÞ,
in intervals of length L (not to be confused with the system
size L), and the spectral rigidityΔ3ðLÞ [5]. For uncorrelated
Poisson spectra, these long range statistics are linear, with
Σ2ðLÞ ¼ L and Δ3ðLÞ ¼ L=15. In contrast, the strong
correlations of WD spectra make the spectrum more rigid
[6] so that Σ2ðLÞ and Δ3ðLÞ grow only logarithmically [5].
In Fig. 3 we display Σ2ðLÞ and Δ3ðLÞ for Poisson and

WD spectra [5], along with those for the matrix G for
macroscopic composite structures. For sparsely connected
systems, these statistics exhibit linear Poisson-like behavior
away from the origin with slope less than their Poisson
counterparts. This linear behavior has been attributed to
exponentially decaying correlations of eigenvalues [6].
With increasing connectedness, these statistics transition
toward logarithmic WD behavior typical of the GOE,
which has quadratically decaying eigenvalue correlations
[6]. Similar to the ESDs in Fig. 2, for the RRN these
statistics also display the symmetry Σ2ðL;pÞ¼Σ2ðL;1−pÞ
and Δ3ðL; pÞ ¼ Δ3ðL; 1 − pÞ.
Moreover, Fig. 3(f) suggests that the GOE limit is

attained by the long range statistics for the 3D RRN for
all pc ≤ p ≤ 1 − pc. The computed ESDs also appear to

FIG. 1. Connectedness transition in composite structures.
Images of the Arctic sea ice pack (photo credit D. K. Perovich)
with increasingly connected ocean phase from left to right.

(a)

(b)

(c)

FIG. 2. Short-range eigenvalue correlations. The ESDs for
Poisson (blue dash dot) and WD (green dashed) spectra are
shown in (a)–(c), along with ESDs for (a) the Arctic sea ice pack,
(b) Arctic melt ponds, and (c) the 2D RRN.

(a) (b) (c)

(d) (e) (f)

FIG. 3. Long-range eigenvalue correlations. (a)–(c) The eigen-
value number variance Σ2ðLÞ and (d)–(f) the spectral rigidity
Δ3ðLÞ for Poisson (blue dash dot) and WD (green dash) spectra
are shown along with those of (a) Arctic pack ice, (b) Arctic
melt ponds, (c) sea ice brine inclusions, (d) human bone
microstructure, (e) the 2D RRN, and (f) the 3D RRN.
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overlie the GOE limit almost exactly for all p values tested
in pc ≤ p ≤ 1 − pc. With this in mind, we recall the
Anderson transition, where low disorder corresponds to
extended states andWD statistics. When disorder exceeds a
critical level, the states localize and the eigenvalues become
decorrelated. We view the 3D RRN with pc ≤ p ≤ 1 − pc
to be “ordered” with extended states and WD statistics.
As p decreases, the disorder—or blockages to the flow—
increases, and the eigenstates localize.
The eigenvectors vj associated with the random N1 × N1

submatrices of Γ exhibit a connectedness driven transition
in their localization properties. The IPR Ij [28] is defined as
Ij ¼

P
i½vij�4, i; j ¼ 1;…; N1, where vij is the ith compo-

nent of vj. Two limiting cases illustrate the meaning of Ij:
(i) a normalized vector with only one component vij ¼ 1

has Ij ¼ 1; (ii) a vector with identical components
vij ¼ 1=

ffiffiffiffiffiffi
N1

p
has Ij ¼ 1=N1. Eigenvectors of matrices in

the GOE are known to be highly extended and independent
of the distribution of the eigenvalues [27], and the IPR is
given by IGOE ¼ 3=N1 [28].
In the matrix setting, the electric field in Eq. (2) has the

following eigenvector expansion

χ1E ¼ sE0

X
j

½ðs − λjÞ−1ðvj · χ1ekÞ�vj: ð3Þ

This provides a direct link between localized eigenvectors
vj and eigenmodes of χ1E with large magnitudes in only a
few resistors, while extended eigenvectors correspond to
fields extending throughout the network. Figure 4(a) shows
the electric field χ1E for the 2D RRN with p ¼ pc ¼ 1=2.
We have plotted the IPR Ij for the 2D and 3D RRN, as

functions of λj and j, with increasing j corresponding to
increasing magnitude of λj. Our results have revealed that
the eigenvectors vj delocalize as p increases and the system
becomes increasingly connected. Specifically, for p ≪ pc,
the eigenvectors are localized, with values of Ij much larger
than the GOE IPR. Also, Ij is oscillatory as a function of λj,

following the peaks and valleys of “geometric” resonances
exhibited by ρðλÞ for small p [17,18], with localized
regions corresponding to lower density. This indicates
significant correlation between the eigenvalues and eigen-
vectors, contrasting the GOE.
As p → p−

c , spectral gaps around the end points shrink
and vanish [17,18], while the Ij continually decrease. As p
surpasses pc and 1 − pc, δ components form in μ at λ ¼ 0
and λ ¼ 1, respectively [19]. The δ component at λ ¼ 0 is
manifested by a large number of λj with magnitude≲10−14,
followed by an abrupt change of magnitude ≳10−4, with
no eigenvalues in the interval (10−14, 10−4), and similarly
for λ ¼ 1. Figure 4(b) displays Ij for the 3D RRN with
p ¼ 1 − pc ≈ 0.7512, plotted versus index j. The locations
of the abrupt changes in eigenvalue magnitudes are
identified by red vertical lines, while the GOE IPR value
is identified by the red horizontal line. This figure dem-
onstrates that eigenvectors associated with the δ compo-
nents at λ ¼ 0, 1 are typically more extended than others,
with Ij values closer to the GOE limit.
This delocalization of the eigenvectors can be seen in

Fig. 4(c), which displays the p dependence of hIi over all
values of Ij. As p and system connectedness increase, hIi
decreases, with transitional behavior at pc. This indicates
that the eigenvectors (and eigenmodes of E) become pro-
gressively extended throughout the network. Figure 4(b)
indicates that this average delocalization is largely due to the
formation of the δ components in μ at λ ¼ 0, 1.
Figure 4(b) also shows that regions of extended states

are separated by “mobility edges” with a sudden increase
in the number of localized eigenvectors, which is analogous
to Anderson localization, where mobility edges mark
the characteristic energies of the MIT [5]. Interestingly,
the mobility edges in Fig. 4(b) are found at the locations of
the δ components (red vertical lines), which control critical
behavior of transport in insulator-conductor and conductor-
superconductor systems [10,12,19].
Conclusions.—We have demonstrated that the statistical

behavior of the eigenvalues and eigenvectors of the random
matrix G ¼ χ1Γχ1 governing classical transport through
composites—in the absence of wave interference and
quantum effects—undergoes a percolation-driven transi-
tion that is analogous to the Anderson transition in wave
physics. The eigenvalues—or resonances in the bulk trans-
port coefficients—shift from weakly correlated Poisson-
like statistics toward highly correlated universal WD
statistics of the GOE, as a function of order or connected-
ness. Correspondingly, the eigenvectors undergo a delo-
calization, with highly extended states appearing at the
spectral end points, separated by mobility edges of local-
ized states. The delocalization of eigenvectors corresponds
to an extended transport field, such as the electric field E,
extending throughout the composite near global connected-
ness thresholds. The percolation-driven transition to repul-
sive eigenvalue behavior also accounts for the vanishing

(a) (b) (c)

FIG. 4. Delocalization of eigenvectors. (a) The electric field
χ1E (in log scale) for a realization of the 2D RRN, with a
system size L ¼ 50, volume fraction p ¼ pc ¼ 1=2, and
σ1=σ2 ¼ 4.0 × 1010. (b) The IPR Ij plotted versus the index
j ¼ 1;…; N1 for a realization of the 3D RRN with L ¼ 12 and
p ¼ 1 − pc ≈ 0.7512. The vertical lines define the δ components
of the spectral measure μ at λ ¼ 0, 1, while the horizontal line
marks the GOE IPR value IGOE ¼ 3=N1. (c) The p dependence
of the average IPR hIi for the 2D and 3D RRN.
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gaps in the support of the spectral measure μ, which is
closely connected to critical behavior of transport. Our
results open the door to applying ideas and methods from
Anderson localization to classical transport, and open a
new chapter in the application of random matrix theory to
complex macroscopic systems.
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