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Abstract. Advective diffusion of passive tracers by fluid flow plays a key role in the transport of
buoys, salt, and heat in aqueous geophysical flows, the dispersion of pollutants and trace gases in the
atmosphere, and even the motion of sea ice floes under the influence of winds and ocean currents. The
long time, large scale behavior of such systems is equivalent to an enhanced diffusive process with an
effective diffusivity tensor D∗. In recent decades, homogenization of the advection-diffusion equation
has led to an integral representation for D∗ , involving the Péclet number of the flow and a spectral
measure of a self-adjoint operator. Analytical calculations of D∗ have been obtained for only a few
simple flows. We help overcome this limitation by providing the mathematical foundation for rigorous
computation of D∗ . In particular, we adapt and extend two approaches to the effective parameter
problem and develop discrete, matrix formulations for both approaches, expressing the spectral
measures explicitly in terms of, respectively, standard and generalized eigenvalues and eigenvectors
of Hermitian matrices. Through a detailed matrix analysis, we demonstrate that the two approaches
are equivalent. The unified mathematical framework is utilized to compute D∗ for model flows.
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1. Introduction. The enhancement in diffusive transport of passive scalars by
complex fluid flow plays a key role in many important processes in the global climate
system [54] and Earth’s ecosystems [14]. Advection of geophysical fluids intensifies
the dispersion and large scale transport of heat [35], pollutants [12, 7, 47], and nu-
trients [14, 21] diffusing in their environment. Advective processes also enhance the
large scale transport of plankton [21], which is an important component of the food
web that sustains life in the polar oceans. The transport of vast sea ice floes in the
polar oceans is driven by a seasonally and regionally changing balance in oceanic and
atmospheric forces [28, 54]. These forces can enhance the transport of sea ice floes by
eddie fluxes in the atmosphere and ocean currents [55, 44, 43, 28].

Complex interactions between shearing ocean waves, tidal currents, and wind
drift, for example, gives rise to complex, behavior of the flow fields [58, 27, 11]. It was
discovered in the early 1900s [52] that complex fluid flows transport passive scalars
in much the same way as that of molecular diffusion. The mathematical description
of this phenomenon [53] demonstrated that the long time, large scale behavior of a
diffusing particle or tracer being advected by an incompressible fluid velocity field
is equivalent to an enhanced diffusive process with an effective diffusivity tensor D∗.
Describing the enhancement of the effective transport properties by fluid advection
is a challenging problem with theoretical and practical importance in many fields of
science and engineering, ranging from turbulent combustion [1, 10, 51, 56, 42, 57] to
mass, heat, and salt transport in geophysical flows [35].

A broad range of mathematical techniques have been developed that reduce the
analysis of complex fluid flows, with rapidly varying structures in space and time,
to solving averaged or homogenized equations that do not have rapidly varying data,
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and involve an effective parameter [31, 9, 15, 16, 40, 29, 30, 57]. Homogenization
of the advection-diffusion equation for passive scalar transport by random, time-
independent, mean-zero fluid velocity fields was treated in [31]. This reduced the
analysis of advective diffusion to solving a diffusion equation involving a homogenized
temperature and a (constant) effective diffusivity tensor D∗.

An important consequence of this analysis is that the effective diffusivity D∗ is
given in terms of a random “cell problem” involving a curl-free stationary stochas-
tic process [31], which satisfies a steady state diffusion equation involving a skew-
symmetric random matrix H [2, 3, 15, 16]. By adapting the analytic continuation
method of homogenization theory for composite materials [19], it was shown [3, 2]
that the cell problem could be written as a resolvent formula involving a self-adjoint
random operator acting on the Hilbert space of curl-free vector fields. This, in turn,
led to a Stieltjes integral representation for the symmetric part of D∗, involving the
Péclet number Pe of the flow and a spectral measure of the operator. A key feature
of the integral representation for D∗ is that parameter information in Pe is separated
from the geometry of the fluid velocity field, which is encoded in the spectral measure
through its moments. This parameter separation has led [3, 2] to rigorous forward
bounds for the diagonal components of D∗.

The mathematical framework developed in [31] was adapted [40] to the case of a
periodic, time-dependent fluid velocity field with non-zero mean. It was shown [40]
that, depending on the strength of the fluctuations relative to the mean flow, the
effective diffusivity tensor D∗ can be constant or a function of both space and time.
When D∗ is constant, only its symmetric part appears in the homogenized equation as
an enhancement in the diffusivity. However, when D∗ is a function of space and time,
its antisymmetric part also plays a key role in the homogenized equation. Based on [8],
the cell problem associated with a time-independent flow was transformed [40] into a
resolvent formula involving a self-adjoint operator, acting on the Sobolev space [33, 17]
of spatially periodic scalar fields, which is also a Hilbert space. This, in turn, led to
a discrete Stieltjes integral representation for the antisymmetric part of D∗, involving
the Péclet number of the flow and a spectral measure of the operator.

Such methods have been extended to steady flows where particles diffuse according
to linear collisions [41], solute transport in porous media [8], anelastic (weakly com-
pressible) flows [32], and to the setting of a time-dependent fluid velocity field [37, 4].
All these approaches yield integral representations of the symmetric and, when ap-
propriate, the antisymmetric part of D∗. Variational formulations of the effective
parameter problem for D∗ are given in [15, 16, 3].

Here we adapt and extend the mathematical frameworks developed in both [3]
and [40] to the case of time-independent periodic flows. We also discuss how the
frameworks are extended to randomly perturbed periodic flows. In particular, for
each approach in [3, 40], we develop Stieltjes integral representations for both the
symmetric and antisymmetric parts of D∗, involving the molecular diffusivity and a
spectral measure of a self-adjoint operator that depends only on the fluid velocity
field. Moreover, for each approach in [3, 40], we provide the mathematical foundation
for rigorous computation of D∗ through discrete, matrix formulations of these effective
parameter problems.

We demonstrate for the setting introduced in [3], that the discrete spectral mea-
sure is given explicitly in terms of the eigenvalues and eigenvectors of a standard
eigenvalue problem. We develop an efficient, numerically stable projection method
which allows the spectral measure to be obtained from the eigenvalue problem as-
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sociated with a much smaller matrix, greatly increasing the efficiency of numerical
computations. For the setting described in [40], we show that the spectral measure is
instead given in terms of the eigenvalues and eigenvectors of a generalized eigenvalue
problem.

We provide a detailed matrix analysis that demonstrates the two approaches are
equivalent when the matrix Laplacian, at the heart of both approaches, is of full
rank. However, the matrix Laplacian becomes rank deficient when periodic boundary
conditions are imposed. We generalize both approaches to this rank deficient setting.
Moreover, we demonstrate that both approaches can be formulated in terms of a
common, standard eigenvalue problem and show that the two generalized approaches
are again equivalent. This analysis provides a numerically efficient way to compute the
discrete spectral measure underlying the integral representation for D∗. We utilize this
unified mathematical framework to compute the effective diffusivity for some model
flows.

1.1. Synopsis of the paper. In Section 2, we formulate the effective parameter
problem for advection enhanced diffusion by random, incompressible flows. In par-
ticular, we review the problem of homogenizing the advection-diffusion equation for
such flows, developed in [31], which yields a rigorous representation for the effective
diffusivity tensor D∗ in terms of the solution of a random “cell problem” which arises
in the homogenization procedure.

In Section 3.1, we discuss how the incompressibility of the fluid velocity field
allows it to be expressed in terms of the divergence of an antisymmetric random
matrix. This, in turn, allows the cell problem to be written as a steady state diffusion
equation involving a curl-free random field. Moreover, we demonstrate how this leads
to functional formulas for the symmetric and antisymmetric parts of the effective
diffusivity tensor D∗, involving the curl-free field and a self-adjoint random operator.
In Section 3.2, we discuss how the cell problem can be transformed into a resolvent
formula involving this self-adjoint operator, which acts on the Hilbert space of curl-
free, random vector fields [2, 3]. We then discuss how this result and the spectral
theorem [50, 45] yields Stieltjes integral representations for both the symmetric [2, 3]
and antisymmetric parts of D∗, involving a spectral measure of the operator.

In Section 4.1, we provide a mathematical foundation for rigorous computation of
D∗ associated with this approach. In particular, a discrete representation of the cell
problem involving a Hermitian random matrix leads to Stieltjes integral representa-
tions for the symmetric and antisymmetric parts of D∗, involving a discrete spectral
measure which is given explicitly in terms of the eigenvalues and eigenvectors of the
matrix. In Section 4.2, we develop an efficient, numerically stable projection method
which allows spectral statistics to be obtained by diagonalizing a much smaller random
matrix.

In Section 5, we formulate another approach to the effective parameter prob-
lem [40], which is different from that discussed in Section 4. We demonstrate that
this approach also provides Stieltjes integral representations for the symmetric and
antisymmetric parts of D∗. In particular, we transform the cell problem into a resol-
vent formula involving a self-adjoint random operator acting on the Sobolev space of
random scalar fields, which is also a Hilbert space. This leads to functional formulas
for D∗ and a resolvent formula for the cell problem. This, in turn, leads to Stieltjes
integral representations for the symmetric and antisymmetric parts of D∗, involving
a spectral measure of the random operator.

The symmetry of the random operator depends intimately on the Sobolev-type
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inner-product in this approach. Consequently, its matrix formulation is substantially
different from that of Section 4. This technical difficulty is overcome in Section 6 by
casting the effective parameter problem in terms of a generalized eigenvalue problem,
which has the Sobolev-type inner-product as a key feature. This leads to Stieltjes
integral representations for the symmetric and antisymmetric parts of D∗, involv-
ing a discrete spectral measure which is given explicitly in terms of the associated
generalized eigenvalues and eigenvectors.

The inverse Laplacian operator is central to both of the continuum formulations
of the effective parameter problems described in Sections 3 and 5. Consequently,
the matrix Laplacian is also central to both of the discrete formulations described in
Sections 4 and 6, which is assumed to be of full rank so that it is invertible. Given this
condition, we demonstrate in Section 7 the equivalence of the discrete formulations of
the effective parameter problems given in Sections 4 and 6.

In Section 8, we generalize the mathematical frameworks formulated in Sections 4
and 6 to the case of a rank deficient matrix Laplacian. This is important in the
computation of D∗ for randomly perturbed periodic flows, as the matrix Laplacian
with periodic boundary conditions is rank deficient. A detailed matrix analysis shows
that both approaches are equivalent and that the spectral statistics can be obtained
from a standard eigenvalue problem of a smaller random matrix. When the matrix
Laplacian is of full rank, these generalized formulations reduce to the formulations in
Sections 4 and 6.

In Section 9 we numerically compute the spectral measures and effective diffusivity
tensors for a variety of randomly perturbed periodic flows and compute the associated
critical exponent associated with the advection dominant, small molecular diffusivity
limit. Our numerical findings are in agreement with known theoretical results.

2. Homogenization of the advection-diffusion equation. The dispersion
of a cloud of passive scalars with density φ diffusing with molecular diffusivity ε and
being advected by a incompressible velocity field u satisfying ∇·u = 0 is described
by the advection-diffusion equation

φt(t, x ) = u(x)·∇φ(t, x ) + ε∆φ(t, x ), φ(0, x) = φ0(x), x ∈ R
d, t > 0,(2.1)

with initial density φ0(x) given. Here, φt denotes partial differentiation of φ with
respect to time t, ∆ = ∇·∇ = ∇2 is the Laplacian, ε > 0, d is the system dimension,
and we denote by 0 the null element on all linear spaces in question. Moreover,
ξ·ζ = ξ

†
ζ and † is the operation of complex-conjugate-transpose, with ξ·ξ = |ξ|2.

Later, we will extensively use this form of the dot product over complex fields, with
built in complex conjugation. However, we stress that all quantities considered in this
section are real-valued. We assume for now that the time-independent fluid velocity
field u is spatially periodic on the region V ⊂ Rd. Later, we will discuss the case of
an array of randomly perturbed, periodic flows.

The long time, large scale dispersion of the passive scalars can be described [53]
by an effective diffusivity tensor D∗. An explicit representation for D∗ can be found
using methods of homogenization theory [6, 38]. These methods have demonstrated
that the averaged or homogenized behavior of the advection-diffusion equation in (2.1)
is determined by a diffusion equation involving an averaged scalar density φ̄ and a
(constant) effective diffusivity tensor D∗ [31]

φ̄t(t, x) = ∇·[D∗
∇φ̄(t, x)], φ̄(0, x) = φ0(x).(2.2)
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The components D∗
jk, j, k = 1, . . . , d, of D∗ are given by [31]

D∗
jk = εδjk + 〈ujχk〉,(2.3)

where 〈·〉 denotes volume averaging over the period cell V. The function χj in (2.3)
satisfies a cell problem which is a steady state advection-diffusion equation with a
forcing term involving uj, the jth component of the fluid velocity field u [31, 16],

u·∇χj + ε∆χj = −uj, 〈∇χj〉 = 0.(2.4)

Equations (2.2)–(2.4) follow from the assumption that the initial density φ0 is
slowly varying relative to the variations of the velocity field u [31, 16]. This in-
formation is incorporated into equation (2.1) by introducing a small dimensionless
parameter δ � 1 and writing [31]

φ(0, x) = φ0(δx).(2.5)

Anticipating that φ will have diffusive dynamics as t→∞, space and time are rescaled
by x 7→ x/δ and t 7→ t/δ2. As δ → 0, the associated solution φδ(t, x) = φ(t/δ2, x/δ)
of equation (2.1) (in the rescaled variables) converges to φ̄(t, x) which satisfies equa-
tion (2.2). The convergence is in an L2 sense that depends on the technical assump-
tions made about the fluid velocity field u [31, 3, 15, 16, 40, 29].

We stress that the cell problem in (2.4) involves only the fast variables x/δ
and t/δ2 [31]. Other space-time scalings have also been considered, which have
lead to space-time dependent D∗ [40] and even anomalous diffusive dynamics [29].
Homogenization theorems for space-time dependent fluid velocity fields are treated
in [9, 29, 40].

In our analysis of the effective diffusivity tensor D∗, it will be convenient to use
non-dimensional parameters. We therefore assume that equation (2.1) has been non-
dimensionalized as follows. Let ` and τ be typical length and time scales associated
with the problem of interest. Mapping to the non-dimensional variables t 7→ t/τ and
x 7→ x/`, one finds that φ satisfies the advection-diffusion equation in (2.1) with a
non-dimensional molecular diffusivity and fluid velocity field,

ε 7→ τε/` 2, u 7→ τ u/`.(2.6)

In the case of a time-independent, spatially periodic flow, a natural choice for ` and
τ is, respectively, the maximum cell period and τ = `/〈|u|2〉1/2, so that (2.6) is given
by ε 7→ ε/(` 〈|u|2〉1/2) and u 7→ u/〈|u|2〉1/2. In this case, a natural definition of the
Péclet number Pe is

Pe =
`〈|u|2〉1/2

ε
,(2.7)

so that the scaled molecular diffusivity satisfies ε = Pe−1.

3. Curl-free fields and the effective diffusivity tensor. In this section,
we adapt and extend a method [2, 3] which leads to integral representations for the
effective diffusivity tensor D∗. More specifically, in Section 3.1 we provide functional
formulas for the symmetric and antisymmetric parts of D∗, involving the curl-free
vector field ∇χj displayed in equation (2.4). We review a Hilbert space formulation
of this effective parameter problem [3, 2, 15, 16] in Section 3.2, which leads to a
resolvent formula for ∇χj, involving a self-adjoint operator. Moreover, we use this
result and the spectral theorem [50, 45] to provide Stieltjes integral representations
for both the symmetric and antisymmetric parts of D∗, involving a spectral measure
of the operator.
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3.1. Functional formulas for the effective diffusivity tensor. Since u(x)
is incompressible, ∇·u = 0, there is a real (non-dimensional) antisymmetric matrix
H(x) [2, 3] such that

u = ∇·H, HT = −H,(3.1)

where HT denotes transposition of the matrix H. Due to the anti-symmetry of the
matrix H and the symmetry of the Hessian operator ∇∇ when acting on a suffi-
ciently smooth space of functions, we have that H : ∇∇ϕ = 0 for all such smooth
functions ϕ. Consequently, ∇·[H∇ϕ] = [∇·H]·∇ϕ + H : ∇∇ϕ = [∇·H]·∇ϕ, or
∇·[H∇] = [∇·H]·∇ as operators acting on such functions. Using this identity and
the representation of the fluid velocity field u in (3.1), equation (2.1) can be written
as a diffusion equation,

φt = ∇·[D∇φ], φ(0, x) = φ0(x), D = εI + H.(3.2)

Moreover, the cell problem in (2.4) can be written as a steady-state diffusion equa-
tion [15, 16],

∇·[D(∇χk + ek )] = 0, 〈∇χk〉 = 0, k = 1, . . . , d.(3.3)

Here, 〈·〉 denotes volume averaging over the period cell V, ek is a standard basis
vector, k = 1, . . . , d, and D(t, x) = εI + H(t, x) can be viewed as a local diffusivity
tensor with coefficients

Djk = εδjk + Hjk, j, k = 1, . . . , d,(3.4)

where δjk is the Kronecker delta and I is the identity operator on R
d.

The symmetric S∗ and antisymmetric A∗ parts of the effective diffusivity tensor
D∗ are defined by

D∗ = S∗ + A∗, S∗ =
1

2

(

D∗ + [D∗] T
)

, A∗ =
1

2

(

D∗ − [D∗] T
)

.(3.5)

Substituting into equation (2.3) the expression for uj displayed in (2.4) and using
equation (3.1), u = ∇·H, one finds that the components S∗

jk and A∗
jk, j, k = 1, . . . , d,

of S∗ and A∗ can be written in terms of the following functionals involving the real-
valued vector field ∇χk

S∗
jk = ε(δjk + 〈∇χj ·∇χk〉), A∗

jk = 〈H∇χj ·∇χk〉.(3.6)

The symmetry S∗
jk = S∗

kj of the tensor S∗ in (3.6) follows from the fact that the vector
field ∇χk is real-valued so that 〈∇χj·∇χk〉 = 〈∇χk·∇χj〉. Moreover, the positivity
condition 〈∇χk·∇χk〉 = 〈|∇χk|2〉 ≥ 0 demonstrates that the effective transport of the
scalar density φ is always enhanced in all of the principle directions ek, k = 1, . . . , d,
by the presence of an incompressible velocity field, D∗

kk = S∗
kk ≥ ε. The equality

D∗
kk = S∗

kk follows from the skew-symmetry of the matrix A∗, A∗
kj = −A∗

jk, hence
A∗

kk = 0. This, in turn, follows from the skew-symmetry of the real-valued matrix H,
which implies that A∗

jk = 〈H∇χj·∇χk〉 = −〈∇χj ·H∇χk〉 = −〈H∇χk·∇χj〉 = −A∗
kj .

We conclude this section by noting that the cell problem in equation (3.3) is
equivalent [2, 3, 15, 16] to the quasi-static limit of Maxwell’s equations [19, 34, 24],
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which describe the transport properties of an electromagnetic wave in a composite
material,

∇×Ek = 0, ∇·Jk = 0, Jk = DEk, 〈Ek〉 = ek, D = εI + H.(3.7)

Here, Ek = ∇χk + ek plays the role of the local electric field satisfying 〈Ek〉 = ek,
Jk = DEk plays the role of the local current density, and D = εI + H plays the
role of the local conductivity tensor of the medium. Since H is skew-symmetric, the
intensity-flux relation Jk = DEk is not the usual Fourier law, but instead resembles
that of a Hall medium [23, 15, 16, 34]. In Section 3.2, we employ the representation
of the cell problem displayed in (3.7) and adapt the analytic continuation method [19]
for characterizing transport in composites to provide Stieltjes integral representations
for both the symmetric and antisymmetric parts of the effective diffusivity tensor D∗,
involving a spectral measure of a self-adjoint operator.

3.2. Hilbert space and integral representations. The analytic continuation
method provides Stieltjes integral representations for the bulk transport coefficients
of composite media [19]. This method is based on the spectral theorem of Hilbert
space theory and a resolvent formula for, say, the electric field, involving a self-adjoint
operator [19] or matrix [36] which depends only on the composite geometry. In this
section, we adapt this method [3, 2] to provide Stieltjes integral representations for
both the symmetric and antisymmetric parts of the effective diffusivity tensor D∗,
which encodes the complicated geometry of the fluid velocity field in a spectral mea-
sure of a self-adjoint operator.

The analytical platform of the analytic continuation method is Hilbert a space
H . In the effective parameter problem for effective diffusivity, the mathematical
structure of H depends on the specific details of the fluid velocity field of interest.
When one considers a fluid velocity field that is spatially periodic on a region V ⊂ Rd,
the Hilbert space H can be taken to be [29]

H = {ξ ∈ ⊗d
n=1L

2(V, m) : ξ(x) is periodic in V},(3.8)

where m is the normalized Lebesgue measure (uniform distribution) on Rd, restricted
to V, and L2(V, m) is the space of complex-valued scalar functions that are square-
integrable with respect to m. The Hilbert space H is equipped with a sesquilinear
inner-product 〈·, ·〉 defined by 〈ξ, ζ〉 = 〈ξ·ζ〉, with 〈ζ, ξ〉 = 〈ξ, ζ〉 for ξ, ζ ∈H , which
induces a norm ‖ · ‖ defined by ‖ξ‖ = 〈ξ, ξ〉1/2 and ξ ∈ H implies that ‖ξ‖ < ∞.
Here, 〈·〉 denotes volume average over the period cell V with respect to the measure
m, a is the complex-conjugate of the scalar a, and we stress that the dot product
ξ·ζ = ξ

†
ζ includes the operation † of complex-conjugate-transpose.

One could also imagine a random fluid flow filling all of Rd, with a velocity field
u determined by the probability space (Ω, P ) with σ-algebra generated by the sets
{u(x) ∈ B}, where x ∈ Rd and B a Borel subset of Rd [3]. Here, Ω is the set of all
geometric realizations of u, which is indexed by the parameter ω ∈ Ω representing one
particular geometric realization, and P is the associated probability measure. The
underlying Hilbert space in this case can be taken to be H = L2(Ω, P ), i.e., the
space of all P -measurable vector-valued functions ξ satisfying ‖ξ‖ = 〈|ξ|2〉1/2 < ∞,
where 〈·〉 denotes ensemble averaging and the underlying sesquilinear inner-product
is defined by 〈ξ, ζ〉 = 〈ξ·ζ〉 . In this case, one could consider a random fluid flow with
a velocity field u that is stationary [31] or ergodic [2, 3], for example, with regularity
conditions at infinity, i.e., as |x| → ∞. In these cases, one works with an infinite
medium directly, which presents significant computational difficulties.
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A more computationally tractable, random system is given by a n × n array of
randomly perturbed periodic flows [16]. In this case, the σ-algebra associated with the
underlying probability space is generated by the Lebesgue measurable subsets of Rd.
Here, the Hilbert space H is given by equation (3.8) and averaged quantities depend
on the realization of the random medium because 〈·〉 is given by volume averaging
over the period cell V. The effective diffusivity tensor D∗ is obtained by taking an
infinite volume limit, D∗ = limn→∞ D∗

n, of the finite volume effective diffusivity tensor
D∗

n and evoking an ergodic theorem [16, 19]. Numerically, it is natural to spatially
average each statistical trial and then ensemble average over all of the sampled random
realizations.

In any case, once the Hilbert space H is established, with associated average 〈·〉,
inner-product 〈·, ·〉, and norm ‖ · ‖, the spectral theory presented in the remainder of
this section progresses independent of the underlying details. For the sake of numerical
tractability, we will assume that the Hilbert space H is given by equation (3.8). The
fluid velocity field u can be assumed to represent a periodic or randomly perturbed
periodic flow.

Now consider the associated Hilbert space H× of curl-free fields [19, 3, 15, 16].

H× = {ξ ∈H : ∇×ξ = 0 weakly and 〈ξ〉 = 0} .(3.9)

The curl-free vector field ∇χk in the cell problem in (3.3) is mean-zero 〈∇χk〉 = 0.
When the matrix D in equation (3.2) is bounded in the operator norm ‖ ·‖ induced by
the H -inner-product [18], ‖D‖ < ∞, then there exists unique ∇χk ∈ H× satisfying
equation (3.3) [19]. We assume that

0 < ε <∞, ‖H‖ <∞,(3.10)

which together imply that ‖D‖ <∞.
The linear operator Γ = ∇(∆−1)∇· is a projection onto the Hilbert space H×

in the sense that Γ : H 7→ H× and Γξ = ξ (weakly) for all ξ ∈ H×, in particular
Γ∇χk = ∇χk. It is based on convolution with respect to the Green’s function for
the Laplacian ∆ [48, 17]. Applying the integro-differential operator ∇∆−1 to the
cell problem in equation (3.3) yields Γ[(εI + H)(∇χk + ek )] = 0. Since Γek = 0
and Γ∇χk = ∇χk, this is equivalent to (εI + ΓHΓ)∇χk = −ΓHek, which yields the
following resolvent formula for ∇χk

∇χk = (εI + A)−1gk, A = ΓHΓ, gk = −ΓHek.(3.11)

The operator Γ is self-adjoint on H×, i.e., 〈Γξ·ζ〉 = 〈ξ·Γζ〉 for all ξ, ζ ∈ H×. Using
this property and Γ∇χk = ∇χk, we may write A∗

jk in equation (3.6) as A∗
jk =

〈A∇χj·∇χk〉. Consequently, substituting the functional formula for ∇χk in (3.11)
into the functionals displayed in equation (3.6) yields

S∗
jk = ε(δjk + 〈(εI + A)−1gj ·(εI + A)−1gk〉),(3.12)

A∗
jk = 〈A (εI + A)−1gj·(εI + A)−1gk〉.

Since Γ is a projection operator onto H× ⊂H it is bounded by unity in operator
norm on H , ‖Γ‖ ≤ 1 [46, 18]. Integration by parts and the symmetry of the operator
(−∆)−1 [48] shows that Γ is also a symmetric operator, i.e., 〈Γξ·ζ〉 = 〈ξ·Γζ〉 for
all ξ, ζ ∈ H . These two properties of Γ show that it is a self-adjoint operator on
H [45]. Consequently, the anti-symmetry of the matrix H implies that A = ΓHΓ is an
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antisymmetric operator on H , i.e., 〈Aξ·ζ〉 = −〈ξ·Aζ〉. We stress that the operator
A depends only on the fluid velocity field via equation (3.1). By equation (3.10), the
operator A is bounded on H with ‖A‖ ≤ ‖H‖ <∞. This, the skew-symmetry of A,
and the sesquilinearity of the H -inner-product imply that M = −ıA, where ı =

√
−1,

is a bounded symmetric operator, hence self-adjoint on H with ‖M‖ = ‖A‖ < ∞.
The spectrum Σ of the self-adjoint operator M is real-valued with spectral radius
equal to its operator norm [45], i.e.,

Σ ⊆ [−‖H‖, ‖H‖ ].(3.13)

The spectral theorem for bounded linear self-adjoint operators in Hilbert space
states that there is a one-to-one correspondence between the operator M and a family
of self-adjoint projection operators {Q(λ)}λ∈Σ — the resolution of the identity —
satisfying [50]

lim
λ→ inf Σ

Q(λ) = 0, lim
λ→ sup Σ

Q(λ) = I.(3.14)

Furthermore, for all ξ, ζ ∈ H×, the complex-valued function of the spectral variable
λ defined by µξζ(λ) = 〈Q(λ)ξ, ζ 〉 is strictly increasing and of bounded variation [50],
and therefore has a complex Radon–Stieltjes measure µξζ associated with it [49, 50,
18]. The spectral theorem also states that, for all complex-valued functions f, h ∈
L2(µξζ), there exist linear operators denoted by f(M) and h(M) which are defined
in terms of the sesquilinear functional 〈f(M) ξ, h(M) ζ 〉 [50]. In particular, this
functional has the following integral representation involving the Stieltjes measure
µξζ , for all ξ, ζ ∈H×,

〈f(M)ξ, h(M) ζ 〉 =

∫ ∞

−∞

f(λ)h(λ) dµξζ (λ), µξζ(λ) = 〈Q(λ)ξ, ζ〉,(3.15)

where the integration is over the spectrum Σ of M [45, 50] and f denotes complex
conjugation of the scalar function f .

Since a Stieltjes measure ν has the property [50]
∫ b

a dν(λ) = ν(b) − ν(a), equa-
tion (3.14) implies that the mass µ0

ξζ of the measure µξζ is given by

µ0
ξζ =

∫ ∞

−∞

dµξζ(λ) =

∫ ∞

−∞

d〈Q(λ)ξ, ζ 〉 = 〈ξ, ζ〉,(3.16)

which is bounded in the sense that |µ0
ξζ| ≤ ‖ξ‖ ‖ζ‖ <∞ for all ξ, ζ ∈H×. Due to the

sesquilinearity of the inner-product and the fact that the projection operator Q(λ) is
self-adjoint on H×, the complex-valued function µζξ(λ) satisfies µζξ(λ) = µξζ(λ) and
µξξ(λ) = ‖Q(λ)ξ‖2. Consider the associated positive Stieltjes measure µξξ and the
real-valued functions

Reµξζ(λ) =
1

2

(

µξζ(λ) + µξζ(λ)
)

, Imµξζ(λ) =
1

2 ı

(

µξζ(λ) − µξζ (λ)
)

,(3.17)

with associated signed Stieltjes measures Reµξζ and Imµξζ [18].
For notational simplicity we denote by µjk(λ) = 〈Q(λ)gj, gk〉 instead of µgjgk

(λ).
We now demonstrate that the spectral theorem in (3.15) provides Stieltjes integral
representations for the functional formulas displayed in equation (3.12), involving a
spectral measure µjk associated with the function µjk(λ), where the real-valued vector
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field gk = −ΓHek is defined in equation (3.11). From equation (3.16), the mass µ0
jk

of the measure µjk is real-valued and satisfies

µ0
jk = 〈gj , gk〉 = 〈ΓHej ·ΓHek〉 = 〈HT ΓHej · ek〉, |µ0

jk| ≤ ‖H‖2 <∞,(3.18)

where we have used that Γ is a self-adjoint projection operator on H×. In equa-
tion (3.15), set M = −ıA, ξ = gj , and ζ = gk. Moreover, for the first formula
in equation (3.12) set f(λ) = h(λ) = (ε + ıλ)−1, and in the second formula set
f(λ) = ıλ(ε+ ıλ)−1 and h(λ) = (ε+ ıλ)−1, with λ ∈ R and |λ| ≤ ‖H‖ <∞. It is clear
from equation (3.18) that the functions f and h defined above satisfy f, h ∈ L2(µjk)
for all 0 < ε < ∞. Consequently, the spectral theorem in (3.15) implies that the
functional formulas for S∗

jk and A∗
jk in equation (3.12) have the following Stieltjes

integral representations

S∗
jk = ε

(

δjk +

∫ ∞

−∞

dµjk(λ)

ε2 + λ2

)

, A∗
jk =

∫ ∞

−∞

ıλdµjk(λ)

ε2 + λ2
,(3.19)

which involve the complex measure µjk.

We now show how the integrals in (3.19) for S∗
jk and A∗

jk can be represented in
terms of the signed measures Reµjk and Im µjk, respectively, that are associated with
the functions displayed in (3.17). Since ∇χk and H in (3.6) are real-valued, we have
from (3.11) the following symmetry conditions

〈(εI + A)−1gj·(εI + A)−1gk〉 = 〈(εI + A)−1gk·(εI + A)−1gj〉(3.20)

〈A (εI + A)−1gj·(εI + A)−1gk〉 = 〈(εI + A)−1gk·A (εI + A)−1gj〉.

These symmetries, the sesquilinearity of the H -inner-product, the linearity [50] of
the Stieltjes integral in (3.15) with respect to the function µξζ(λ) and equation (3.19)
yield

S∗
jk = ε

(

δjk +

∫ ∞

−∞

dReµjk(λ)

ε2 + λ2

)

, A∗
jk =

∫ ∞

−∞

λdIm µjk(λ)

ε2 + λ2
,(3.21)

where we have used the identities Reµjk(λ) = (µjk(λ) + µjk(λ))/2 and Im µjk(λ) =
(µjk(λ) − µjk(λ))/(2ı).

The formulas for S∗
jk and A∗

jk in (3.21) were computed with respect to the standard
basis {ej}, through the definition of µjk(λ) = 〈Q(λ)gj , gk〉 with gk = −ΓHek. We
now show that, given S∗

jk and A∗
jk, j, k = 1, . . . , d, the effective diffusivity tensor

can be computed relative to any directions. This is due to the bilinearity of the
inner-product underlying the definition of µjk(λ). More specifically, if ξ, ζ ∈ Rd are
arbitrary directions of interest, then 〈Q(λ)ΓHξ, ΓHζ〉 = ∑

jk ajbk〈Q(λ)gj, gk〉, where
the constants aj and bk, j, k = 1, . . . , d, are the coordinates of the vectors ξ and ζ

with respect to the standard basis. This immediately leads to integral representations
for the effective diffusivity tensor relative to any desired directions.

We conclude this section with a discussion regarding some rigorous, elementary
bounds for S∗

jk and A∗
jk, j, k = 1, . . . , d, that follow from the integral representations

in (3.21). We assume that 0 < ε < ∞ throughout our discussion. From equa-
tion (3.13), the spectrum Σ of the operator M = −ıA is a bounded subset of R.
Denote λ+ = sup Σ and |λ|+ = supλ∈Σ |λ|, and recall that infλ∈Σ λ2 = 0 as λ = 0 is
a limit point [48] of the compact operator M [8, 29]. Since µkk is a positive measure
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with finite mass µ0
kk, the inequalities 1/(ε2 + λ2

+) ≤ 1/(ε2 + λ2) ≤ 1/ε2, holding for
all λ ∈ Σ, yield [18]

ε [1 + µ0
kk/(ε2 + λ2

+)] ≤ S∗
kk ≤ ε [1 + µ0

kk/ε2].(3.22)

It may be that µ0
kk = 0, hence S∗

kk = ε, e.g., shear flow orthogonal to the kth
direction [3, 15].

When j 6= k, Reµjk is a signed measure. There are unique, positive measures
Reµ+

jk and Reµ−
jk such that Reµjk = Reµ+

jk−Reµ−
jk [18]. Moreover, associated with

the signed measure Reµjk is its total variation |Reµ|jk [18]

Reµjk = Reµ+
jk − Reµ−

jk, |Reµ|jk = Reµ+
jk + Reµ−

jk.(3.23)

From equation (3.18) the measures Reµ+
jk and Reµ−

jk have bounded mass, [Reµ+
jk]0

and [Reµ−
jk]0, respectively, thus the mass |Reµ|0jk of the measure |Reµ|jk is also

bounded. Since |S∗
jk| ≤

∫

d|Reµ|jk(λ)/(ε2 + λ2) [18], the upper bound in equa-

tion (3.22) with µ0
kk replaced by |Reµ|0jk holds for the positive quantity |S∗

jk|. Our
numerical results in Section 9 indicate that µkk = |Reµ|jk, j 6= k, for 2D flows that
are symmetric about the line y = x, such as as cat’s eye flow, yielding the bound
|S∗

jk| ≤ S∗
kk which holds for such flows (see Figures 3 and 4 below). These bounds

for S∗
jk can be improved upon by separately considering the positive and negative

contributions of the integral representation for S∗
jk, yielding

ε
[Reµ+

jk]0

ε2 + λ2
+

−
[Reµ−

jk]0

ε
≤ S∗

jk ≤
[Reµ+

jk]0

ε
− ε

[Reµ−
jk]

0

ε2 + λ2
+

, j 6= k.(3.24)

In a similar way, we obtain the following bounds for A∗
jk

−
|λ|+ |Imµ|0jk

ε2
≤ A

∗
jk ≤

|λ|+ |Imµ|0jk

ε2
, j 6= k,(3.25)

where |Imµ|0jk is the finite mass of the total variation |Imµ|jk = Imµ+
jk +Imµ−

jk of the

signed measure Imµjk = Imµ+
jk − Imµ−

jk [18].
More sophisticated bounds on S∗

kk than the bounds discussed here have been
obtained using variational methods [15, 16, 3] as well as Padé approximants [5, 3] of
Stieltjes functions.

4. Discrete setting: curl-free fields. To numerically compute the spectral
measures and effective diffusivity for various randomly perturbed periodic flows, in
Section 9 we consider a discrete approximation of the cell problem in (3.3). In partic-
ular, we use its resolvent representation in (3.11) written as (εI+A)∇χk = gk, which
leads to a matrix representation A of the operator A = ΓHΓ, not to be confused with
the antisymmetric part A∗ of the effective diffusivity tensor. In this section, we use
the discrete version of this formula to derive the Stieltjes integrals in (3.21) for this
matrix setting, involving a discrete spectral measure µjk which is given explicitly in
terms of the eigenvalues and eigenvectors of the matrix A. In Section 9, we provide
details regarding the system discretization and boundary conditions associated with
the fluid flows of interest. Here, we focus only on the mathematical formulation of
the effective parameter problem for the discrete setting. In Section 4.1, we discuss the
spectral properties of the matrix A that lead to a discrete Stieltjes integral [20] rep-
resentation for the effective diffusivity tensor D∗. A numerically efficient projection
method is formulated in Section 4.2, which enables our computations of D∗.
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4.1. Matrix formulation of the effective parameter problem. In the dis-
crete setting [36], H is represented by a banded antisymmetric matrix, and for sim-
plicity we will not make a notational distinction between the two cases, as the context
will be made clear. The differential operator ∇ is represented by a finite difference
matrix ∇ [36, 13], where ∇T = (∇T

1 , . . . ,∇T
d ) and ∇j , j = 1, . . . , d, are also finite

difference matrices. Moreover, the divergence operator ∇· is given by −∇T and the
matrix representation of the negative Laplacian −∆ is given by ∇T∇. Consequently,
the projection operator Γ = ∇(∆−1)∇· is represented by the symmetric projection
matrix Γ = ∇(∇T∇)−1∇T , satisfying Γ 2 = Γ and Γ∇ = ∇, where (∇T∇)−1 is now
interpreted as a matrix inversion. We assume here that the matrix ∇ is of full rank
so that (∇T∇)−1 exists. The rank deficient case, where the matrix ∇T∇ is singular,
is examined in detail in Section 8. In this way, the integro-differential operator A is
represented by an antisymmetric matrix A = ΓHΓ satisfying AT = −A, which is not
to be confused with the antisymmetric part A∗ of the effective diffusivity tensor D∗.
In a similar way, the vectors gk = −ΓHek, k = 1, . . . , d, are redefined in this matrix
setting and, for simplicity, we will not make a notational distinction between the two
cases for the vectors gk and ek, as the context will be made clear.

The spectrum Σ of the antisymmetric matrix A, of size N , say, consists solely of
eigenvalues υn, n = 1, . . . , N , with corresponding eigenvectors wn satisfying Awn =
υnwn. It is well known [22] that its eigenvalues υn are purely imaginary, υn = ıλn

with λn ∈ R. Therefore, the matrix M = −ıA is Hermitian (M† = M) and it has the
same eigenvectors wn as the matrix A and real eigenvalues given by λn = Imυn. It
is also well known [25] that the eigenvectors wn, n = 1, . . . , N , form an orthonormal
basis for CN , i.e., w †

n wm = δnm and for every ξ ∈ CN we have ξ =
∑

n(w†
nξ)wn =

(
∑

n wnw†
n

)

ξ. Consequently, defining Qn = wnw†
n, n = 1, . . . , N , to be the mutually

orthogonal projection matrices onto the eigenspaces spanned by the wn,

N
∑

n=1

Qn = I, Qn = wnw†
n, QlQm = Ql δlm.(4.1)

We now use equation (4.1) to prove the spectral theorem in (3.15) for this ma-
trix setting. From Mwn = λnwn and equation (4.1) we have that MQn = λnQn.
This formula and (4.1) then imply that the matrix M has the spectral decomposition
M =

∑

n λnQn. By the mutual orthogonality of the projection matrices Qn and by
induction, we have that Mm =

∑

n λm
n Qn for all m ∈ N. This, in turn, implies that

f(M) =
∑

n f(λn)Qn for any polynomial f : R 7→ C. From the mutual orthogonality
and the symmetry of the projection matrices Qn it follows that, for all ξ, ζ ∈ CN and
complex-valued polynomials f(λ) and h(λ), the bilinear functional 〈f(M)ξ·h(M)ζ〉
has the integral representation displayed in equation (3.15), with M substituted by
M. Moreover, the complex-valued function µξζ(λ) = 〈Q(λ)ξ, ζ〉 in equation (3.15) is
now given by µξζ(λ) = 〈Q(λ)ξ·ζ〉, where the associated matrix representation Q(λ)
of the projection operator Q(λ) and the discrete spectral measure dµξζ(λ) are given
by

Q(λ) =
∑

n: λn≤λ

θ(λ − λn)Qn, dµξζ (λ) =
∑

n: λn≤λ

〈δλn
(dλ)[Qnξ·ζ]〉.(4.2)

Here, θ(λ) is the Heaviside function, satisfying θ(λ) = 0 for λ < 0 and θ(λ) = 1 for
λ ≥ 0, and δλn

(dλ) is the δ-measure centered at λn.
The spectral theorem for symmetric matrices also holds for functions of the form

f(λ) = aλl(b + cλ)−m, with l, m ∈ N, a, b, c ∈ C, and b + cλ 6= 0 for all λ ∈ Σ.
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We will demonstrate this for the special cases that arise in the functional formulas
for S∗

jk and A∗
jk displayed in equation (3.12), with A substituted with A, which yield

the integral representations in (3.19) involving a discrete spectral measure dµjk(λ)
associated with the measure in (4.2). The argument involving the function f(λ)
above is a simple extension of that given here.

As A is a real-valued matrix, its eigenvalues υn = ıλn, n = 1, . . . , N , and eigen-
vectors wn come in complex-conjugate pairs [22]. Therefore, if the size N of A is
even, then we may re-number the index set IN as IN = {−N/2, . . . ,−1, 1, . . . , N/2}
such that υ−n = υn = −υn and w−n = wn. If N is odd then υ0 = 0 is also an eigen-
value with a real-valued eigenvector w0. Denoting by W the matrix with columns
consisting of the eigenvectors wn, Υ = diag(υ−N/2 , . . . , υN/2) the diagonal matrix
with eigenvalues υn on the main diagonal, and Λ = diag(λ−N/2 , . . . , λN/2), we have

that A = WΥW† = ıWΛW†, where the matrix W is unitary W†W = WW† = I [22].
Therefore, the matrix M = −ıA = WΛW† is Hermitian (M† = M).

This spectral decomposition of A demonstrates that the matrix (εI+A)−1, is well
defined for all 0 < ε <∞. In particular, since W† = W−1, it has the following useful
representation (εI + A)−1 = W(εI + ıΛ)−1W†, where (εI + ıΛ)−1 is a diagonal matrix
with entries 1/(ε + ıλ). This allows the discrete version of the resolvent formula in
equation (3.11) to be written as

∇χj = W(εI + ıΛ)−1W†gj, gj = −ΓHej .(4.3)

Substituting the resolvent formula for ∇χk in equation (4.3) into the discrete version
of (3.6) and using Γ∇ = ∇ to write 〈H∇χj·∇χk〉 = 〈A∇χj ·∇χk〉, we obtain the
following analogue of equation (3.12),

S∗
jk = ε( δjk + 〈(εI + ıΛ)−1W†gj·(εI + ıΛ)−1W†gk〉 ),(4.4)

A∗
jk = 〈ıΛ(εI + ıΛ)−1W†gj ·(εI + ıΛ)−1W†gk〉,

where we have used that W† = W−1. The quadratic form W†gj·W
†gk arising in (4.4)

can be written in terms of the projection matrices Qn defined in (4.1) as follows

W†gj ·W
†gk =

∑

n∈IN

(w†
ngj)(w

†
ngk) =

∑

n∈IN

Qn gj·gk.(4.5)

This implies that the functional formulas for S∗
jk and A∗

jk in equation (4.4) have the
integral representations displayed in equation (3.19) with discrete spectral measure
dµjk(λ) defined in equation (4.2) with ξ = gj = −ΓHej and ζ = gk = −ΓHek.

As in the abstract Hilbert space setting discussed in Section 3.2, we may use the
fact that the matrix A, the vector gj, and the molecular diffusivity ε are real-valued to
obtain the symmetry relations in equation (3.20), with A changed to A. This allows us
to rewrite the integral representations for S∗

jk and A∗
jk in (3.19) involving the discrete,

complex measure dµjk(λ), as the integral representations in equation (3.21) involving
the real signed measures Reµjk and Im µjk. As in the abstract Hilbert space set-
ting, these signed measures are determined by the functions Reµjk(λ) and Imµjk(λ)
displayed in equation (3.17), where in this matrix setting µjk(λ) = 〈Q(λ)gj ·gk〉 and
Q(λ) is defined in equation (4.2). As the projection matrix Qn is Hermitian, we have
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[Qngk·gj ] = [Qngj ·gk]. Consequently, from equations (3.17) and (4.2) we have that

Reµjk(λ) =
1

2

∑

n: λn≤λ

〈θ(λ − λn)[(Qn + Qn)gj ·gk ]〉(4.6)

Imµjk(λ) =
1

2ı

∑

n: λn≤λ

〈θ(λ − λn)[(Qn −Qn)gj·gk ]〉,

where [(Qn + Qn)gj·gk ] = 2Re[Qngj·gk] and [(Qn − Qn)gj·gk ] = 2ıIm[Qngj·gk].
Since the eigenvalues υn = ıλn and eigenvectors wn of the matrix A come in

complex conjugate pairs, the representations of the measures Reµjk and Imµjk, which
follow from the functions in equation (4.6), can be simplified and shown [40] to depend
only on the restricted index set {n ≥ 0 : λn ≤ λ}. This is clear from equations (3.21)
and (4.6), since for n ≥ 0 we have λ2

−n = (−λn)2 = λ2
n and w−n = wn, thus

Q−n = Qn. Consequently, we have that

Re[Qngj·gk] + Re[Q−ngj·gk] = 2Re[Qngj·gk](4.7)

λnIm[Qngj ·gk] + λ−nIm[Q−ngj·gk] = 2λnIm[Qngj ·gk],

with λ0Im[Q0gj·gk] ≡ 0.

4.2. Projection method. We now formulate a projection method for numeri-
cally efficient computation of the discrete spectral measure µjk associated with (4.2),
which governs the ε-dependence of the integral representations for S∗

jk and A∗
jk in

equation (3.21). This method follows from the projective nature of the matrix Γ,
which causes A = ΓHΓ to have a large null space associated with that of Γ. In par-
ticular, we demonstrate that the spectral weights [Qngj·gk] associated with this null
space are identically zero and therefore do not need to be computed at all. Moreover,
as discussed in Section 9, this method stabilizes numerical computations of µjk, which
enables more accurate computations of the effective diffusivity tensor D∗.

Since Γ is a real-symmetric projection matrix of size N , its eigenvalues γn, n =
1, . . . , N , satisfy γn = 0, 1 [22]. Consequently, Γ has the spectral decomposition
Γ = PGPT , where P is an orthogonal matrix, PPT = PTP = I, with columns consisting
of the eigenvectors of Γ, and the diagonal matrix G has the eigenvalues γn along its
main diagonal. Write P = [P0 P1], where the columns of the N ×N0 matrix P0 and
the N × N1 matrix P1 are orthonormal eigenvectors that span the null space and
range of Γ, respectively, with N0 + N1 = N [22]. It follows that G = diag(0N0

, 1N1
),

where 0N0
and 1N1

are vectors of zeros and ones of length N0 and N1, respectively.
This, in turn, implies that the matrix Γ can be written as

Γ = P1P
T
1 .(4.8)

The matrix P being orthogonal implies that PT
1 P1 = I11, where I11 is the identity

matrix of size N1 × N1. This demonstrates that the matrix Γ satisfies Γ2 = Γ.
Moreover, Γ projects vectors in RN on to the subspace spanned by the columns of P1.

Using the spectral decomposition Γ = PGPT of Γ, we may write the matrix
A = ΓHΓ as A = P[G(PTHP)G]PT . The block matrix form of the matrix G(PT HP)G =
PT AP is given by

G(PTHP)G =

[

O00 O01

O10 I11

] [

PT
0

PT
1

]

H
[

P0 P1

]

[

O00 O01

O10 I11

]

=

[

O00 O01

O10 PT
1 HP1

]

,

(4.9)
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where Oab is a matrix of zeros of size Na ×Nb, a, b = 0, 1.
Due to the skew-symmetry of H, the matrix PT

1 HP1 of size N1 ×N1 is also anti-
symmetric and consequently has the spectral decomposition

PT
1 HP1 = ıR11Λ11R

†
11,(4.10)

where R11 is a unitary matrix, R
†
11R11 = R11R

†
11 = I11, and Λ11 is a real-valued

diagonal matrix. Equations (4.9) and (4.10) allow the matrix A to be written as

A = ıWΛW†, W = PR, R =

[

I00 O01

O10 R11

]

, Λ =

[

O00 O01

O10 Λ11

]

,(4.11)

where I00 is the identity matrix of size N0 × N0. Since R11 is a unitary matrix,
the matrix R also is. Consequently, since P is orthogonal, W is a unitary matrix
W†W = WW† = I.

Equation (4.11) demonstrates that the eigenvalues ıλn of the matrix A are zero
for all n = 1, . . . , N0. We now show that the associated spectral weights [Qngj·gk]
are also zero for all n = 1, . . . , N0. Here, gj = −ΓHej , Qn = wnw †

n , and wn,
n = 1, . . . , N , are the eigenvectors of A which comprise the columns of the matrix
W. From equation (4.11), we see that W† = R†PT . Since Γ = PGPT and P is an
orthogonal matrix, this implies that W†Γ = R†GPT . It follows from the block forms
of the matrices G, P, and R displayed in equations (4.9) and (4.11), that W†Γ is given
by

W†Γ = R†GPT =

[

I00 O01

O10 R
†
11

] [

O00 O01

O10 I11

] [

PT
0

PT
1

]

=

[

O0N

R
†
11P

T
1

]

,(4.12)

where O0N is a matrix of zeros of size N0 × N . It follows from gj = −ΓHej and
equation (4.12) that w †

ngj = 0 for all n = 1, . . . , N0. This and equation (4.5) imply
that [Qngj·gk] = 0 for all n = 1, . . . , N0, as claimed. Our analysis demonstrates that
the discrete spectral measure dµjk(λ) associated with equation (4.2) does not depend
on these components, and do not need to be computed at all. Moreover, in the case
of a randomly perturbed, periodic velocity field, since the matrix Γ is non-random,
the spectral decomposition Γ = PGPT needs to be computed only once, while the
spectral decomposition in (4.10) of the much smaller matrix PT

1 HP1 of size N1×N1 is
performed repeatedly to gather spectral statistics. This greatly increases the efficiency
of associated computations.

5. Sobolev space and the effective diffusivity. In this section, we adapt
and extend an alternate method [8, 40] to the method presented in Section 3, which
provides integral representations for the effective diffusivity tensor D∗, and leads to a
more convenient approach for its computation. We provide functional formulas that
are analogous to the formulas in equation (3.6) for the symmetric S∗ and antisymmet-
ric A∗ parts of D∗, involving the scalar field χj displayed in equation (2.4). We also
provide a Sobolev space formulation of the effective parameter problem [40] which
yields a resolvent formula for χj that is analogous to the formula in (3.11), involving
a self-adjoint operator that depends only on the fluid velocity field. This leads to the
Stieltjes integral representations displayed in (3.21), involving a spectral measure of
the operator.

In contrast to Section 3.2, which defined the effective diffusivity tensor D∗ in terms
of the vector field ∇χj, here we define D∗ in terms of the scalar field χj. Consider
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the Hilbert space H, with χj ∈ H, j = 1, . . . , d,

H = {f ∈ L2(V, m) : f(x) is periodic in V},(5.1)

where m is the Lebesgue measure on Rd, restricted to V, and the σ-algebra associated
with the underlying probability space is generated by the Lebesgue measurable subsets
of Rd. The Hilbert space H is equipped with a sesquilinear inner product 〈·, ·〉 defined
by 〈f, h〉 = 〈 f h 〉, with 〈h, f〉 = 〈f, h〉 and f, h ∈ H, which induces a norm ‖ · ‖
defined by ‖f‖ = 〈f, f〉1/2 and f ∈ H implies that ‖f‖ < ∞. Now consider the
associated Sobolev space H1 ⊂ H, which is also a Hilbert space,

H1 = {f ∈ H : ‖f‖1 <∞, 〈f〉 = 0}, ‖f‖1 = 〈|∇f |2〉1/2,(5.2)

where ‖ · ‖1 is the norm induced by the underlying sesquilinear inner-product 〈·, ·〉1
defined by 〈f, h〉1 = 〈∇f·∇h〉, with 〈h, f〉1 = 〈f, h〉1.

Recall the definition of the components D∗
jk = εδjk + 〈ujχk〉, j, k = 1, . . . , d, of

the effective diffusivity tensor D∗ in (2.3). Rewrite the functional 〈ujχk〉 as [40],

〈ujχk〉 = 〈[∆∆−1uj]χk〉 = −〈∇∆−1uj·∇χk〉 = −〈∆−1uj, χk〉1,(5.3)

where we have used the periodicity of the functions uj and χk. Substituting into
equation (5.3) the expression −uj = u·∇χj+ε∆χj for−uj in (2.4) yields the following
functional formulas for the components S∗

jk and A∗
jk, j, k = 1, . . . , d, of the symmetric

S∗ and antisymmetric A∗ parts of D∗ defined in equation (3.5),

S∗
jk = ε(δjk + 〈χj , χk〉1), A∗

jk = 〈Aχj , χk〉1, A = ∆−1[u·∇].(5.4)

The functional formulas displayed in (5.4) are analogous to the functional formulas in
equation (3.6). Due to the incompressibility of the fluid velocity field, ∇·u = 0, the
operator A is antisymmetric on H1 , i.e., 〈Af, h〉1 = −〈f, Ah〉1 for all f, h ∈ H1 (see
equation (A.1)). We stress that the operator A depends only on the fluid velocity field
u. Since the scalar fields χj and Aχj are real-valued, we have that 〈χj, χk〉1 = 〈χk, χj〉1
and A∗

kj = 〈Aχk, χj〉1 = −〈χk, Aχj〉1 = −〈Aχj , χk〉1 = −A∗
jk, confirming that S∗ is

symmetric and A∗ is antisymmetric.
Applying the operator ∆−1 to both sides of the the cell problem ε∆χj +u·∇χj =

−uj in equation (2.4) yields the following resolvent formula for χj involving the an-
tisymmetric operator A, which is analogous to equation (3.11),

χj = (ε + A)−1gj , gj = −∆−1uj.(5.5)

Substituting the resolvent formula for χj in (5.5) into the functionals displayed in
equation (5.4) yields

S
∗
jk = ε(δjk + 〈(ε + A)−1gj , (ε + A)−1gk〉1),(5.6)

A∗
jk = 〈A (ε + A)−1gj, (ε + A)−1gk〉1,

which is a direct analogue of equation (3.12).
Since V is a bounded domain, the linear operator ∆−1 is bounded on H [48].

When the components uk, k = 1, . . . , d, of the fluid velocity field u are uniformly
bounded on the period cell V,

max
k

sup
x∈V

|uk| <∞,(5.7)
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the linear operator A is bounded on H1, with (see equation (A.3))

‖A‖1 ≤
[

d ‖∆−1‖ max
k

sup
x∈V

|uk|2
]1/2

<∞.(5.8)

All of the fluid velocity fields that we consider in Section 9 satisfy equation (5.7).
More generally, for uk ∈ H, k = 1, . . . , d, the operator A is compact on H1 [8],
hence bounded [48]. It follows that M = −ıA is a bounded linear operator on H1

with ‖M‖1 = ‖A‖1 < ∞, where ı =
√
−1. Moreover, the skew-symmetry of A

and the sesquilinearity of the H1-inner-product imply that M is also symmetric,
〈Mf, h〉1 = 〈f, Mh〉1, hence self-adjoint on H1 [45]. The spectrum Σ of the self-
adjoint operator M is real-valued, with spectral radius equal to its operator norm [45],
i.e.,

Σ ⊆ [−‖A‖1, ‖A‖1 ].(5.9)

Exactly as in Section 3.2, direct analogues of equations (3.15)–(3.21) lead to the
Stieltjes integral representations in (3.21), involving a Stieltjes measure µjk associated
with the function of the spectral variable λ defined by µjk(λ) = 〈Q(λ)gj , gk〉1, where
gj = −∆−1uj is defined in (5.5) and {Q(λ)}λ∈Σ is the family of self-adjoint projection
operators that is in one-to-one correspondence with the bounded linear self-adjoint
operator M on the Hilbert space H1. From equation (3.16), the mass µ0

jk of the

measure µjk is given by µ0
jk = 〈gj , gk〉1 = 〈∇∆−1uj·∇∆−1uk〉 so that

µ0
jk = 〈[(−∆)−1uj ] uk〉, |µ0

jk| ≤ ‖∆−1uj‖ ‖uk‖ <∞.(5.10)

6. Discrete setting: Sobolev space of scalar fields. In Section 9, we con-
sider a discrete approximation of the cell problem in (2.4) written as (ε+ ıM)χj = gj,
where M = −ıA, A = ∆−1[u·∇], and gj = −∆−1uj , as defined in equations (5.4)
and (5.5). From the formula u = ∇·H in equation (3.1) and our discussion in Sec-
tion 4.1, we may write the discrete, matrix representation M of the self-adjoint op-
erator M = ∆−1[−ı∇·H∇] by M = (−∇T∇)−1[−ı∇T H∇]. As in Section 4.1, for
simplicity, we do not make a notational distinction for the matrix H, between the
continuum and discrete settings as the context will be clear. This composition of the
Hermitian matrix −ı∇T H∇ and the real-symmetric matrix (−∇T∇)−1 is not sym-
metric. From equation (A.1) we see that the symmetry properties of the operator M
depend intimately on the inner-product 〈f, h〉1 = 〈∇f·∇h〉 of the underlying Sobolev
space H1 defined in equation (5.2). Therefore, the properties of this inner-product
must be included in the discrete formulation of the effective diffusivity tensor D∗.

In this section, we provide a discrete, matrix formulation of the effective pa-
rameter problem introduced in Section 5, which involves a generalized eigenvalue
problem that has the Sobolev-type inner-product as a central feature. In particular,
this formulation retains the key properties of the weak form of the eigenvalue prob-
lem 〈Mϕn, ϕn〉1 = λn. Namely, the operator M is self-adjoint with respect to the
inner-product 〈·, ·〉1 defined by 〈f, h〉1 = 〈∇f·∇h〉, its eigenfunctions ϕn ∈ H1 are
orthonormal 〈ϕn, ϕm〉1 = δnm, n, m = 1, 2, 3, . . ., with respect to the inner-product
〈·, ·〉1, and the spectrum Σ of M is real valued, Σ ⊂ R. Towards this goal, consider
the eigenvalue problem Mϕn = λnϕn in the following form,

−ı∇·H∇ϕn = λn∆ϕn.(6.1)
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Equation (6.1) is well defined for Hjk ∈ C1(V) and ϕn ∈ C2(V), where Cr(V) the space
of continuously differentiable functions of order r with domain V. Using a discrete
version of equation (6.1), our goal is to establish the integral representations in (3.21)
for the functionals S∗

jk = ε(δjk + 〈χj , χk〉1) and A∗
jk = 〈ıMχj , χk〉1 in (5.4), involving

a discrete spectral measure which is analogous to the measure in equation (4.2).
By our discussion in Section 4.1, the matrix representation of (6.1) is given by

Bzn = λnCzn, B = −ı∇T H∇, C = ∇T∇.(6.2)

The first formula in equation (6.2) is a generalized eigenvalue problem [39] associated
with the pencil B − λC, where B and C are Hermitian and real-symmetric matrices,
respectively, of size K, say. The λn and zn, n = 1, . . . , K, are known as generalized
eigenvalues and eigenvectors, respectively. The matrix C = ∇T∇ is clearly positive
semi-definite. In this section, we will assume that C is positive definite, hence invert-
ible. We will discuss the case where C is positive semi-definite in Section 8.

Since the matrices B and C are symmetric and C is positive definite, the gener-
alized eigenvalue problem has properties which are similar to the properties of the
standard symmetric eigenvalue problem [39]. In particular, the generalized eigenval-
ues λn are all real, the generalized eigenvectors zn form a basis for CK , and the zn

are orthonormal in the following sense z †
nCzm = δnm, n, m = 1, . . . , K, [39]. Since

C = ∇T∇ is real-valued, this is equivalent to the Sobolev-type orthogonality condition

∇zn·∇zm = δnm.(6.3)

In other words, the generalized eigenvectors zn are orthonormal with respect to the
“discrete inner-product” 〈·, ·〉1 defined by 〈ξ, ζ〉1 = ∇ξ·∇ζ, for ξ, ζ ∈ CK . Denoting
by Z the matrix with columns consisting of the generalized eigenvectors zn, equation
(6.3) is seen to be equivalent to [∇Z]†[∇Z] = I, or Z†CZ = I. A key feature of the
generalized eigenvalue problem is that the matrix Z simultaneously diagonalizes B

and C. Specifically, if Λ is the diagonal matrix whose elements on the main diagonal
are the generalized eigenvalues λn, then [39]

Z†BZ = Λ, Z†CZ = I.(6.4)

Since the zn, n = 1, . . . , K, form a basis for CK and satisfy (6.3), for all ξ ∈ CK ,
we have that ξ =

∑

n(∇zn·∇ξ)zn =
∑

n(zn[∇zn] †∇)ξ, which implies the following
analogue of equation (4.1)

K
∑

n=1

Qn = I, Qn = zn[∇zn] †∇, QlQm = Ql δlm ,(6.5)

where the matrices Qn, n = 1, . . . , K, are self-adjoint with respect to the discrete
inner-product 〈·, ·〉1 defined above, i.e., 〈Qnξ, ζ〉1 = 〈ξ,Qnζ〉1 for all ξ, ζ ∈ CK .

We now use equation (6.5) to prove the spectral theorem in (3.15) for this gen-
eralized eigenvalue problem setting. From Bzn = λnCzn and equation (6.5) we have
that BQn = λnCQn which is equivalent to C−1BQn = λnQn, since the matrix C is
invertible. As in the discussion following equation (4.1), the mutual orthogonality
of the projection matrices Qn implies that f(C−1B) =

∑

n f(λn)Qn for any polyno-
mial f : R 7→ C. From the mutual orthogonality of the projection matrices Qn and
their symmetry with respect to the discrete inner-product 〈·, ·〉1 it follows that, for
all ξ, ζ ∈ C

K and complex-valued polynomials f(λ) and h(λ), the bilinear functional
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〈f(C−1B)ξ, h(C−1B)ζ〉1 has the integral representation displayed in (3.15), with M

substituted by C−1B. Moreover, the complex-valued function µξζ(λ) = 〈Q(λ)ξ, ζ〉
in (3.15) is now given by µξζ (λ) = 〈Q(λ)ξ, ζ〉1, where the associated matrix represen-
tationQ(λ) of the projection operator Q(λ) and the discrete spectral measure dµξζ(λ)
are given by the following analogue of equation (4.2)

Q(λ) =
∑

n: λn≤λ

θ(λ − λn)Qn, dµξζ(λ) =
∑

n: λn≤λ

〈δλn
(dλ)[∇Qnξ·∇ζ]〉.(6.6)

We now demonstrate that discrete representations of the functional formulas for
S∗

jk and A∗
jk displayed in equation (5.4) yield their associated integral representations

in (3.21), involving the discrete spectral measure µjk displayed in (6.6). From A =
∆−1(∇·H∇) and (6.2), the matrix representation of the functional formulas S∗

jk =
ε(δjk + 〈χj, χk〉1) and A∗

jk = 〈Aχj , χk〉1 in equation (5.4) are given by

S∗
jk = ε(δjk + 〈∇χj·∇χk〉) A∗

jk = 〈∇C−1[ıB]χj·∇χk〉.(6.7)

Moreover, the matrix representation of the cell problem ε∆χj + ∇·H∇χj = −uj ,
displayed in (2.4), is given by

(εC + ıB)χj = uj,(6.8)

where uj is the discrete, vector representation of the jth component of the fluid ve-
locity field uj, for example. The matrix Z is invertible, as the generalized eigenvectors
zn form a basis for CN . Consequently, by equation (6.4) we have that B = Z−†ΛZ−1,
C = Z−†Z−1. It now follows from equation (6.8) that Z−†(εI + ıΛ)Z−1χj = uj, or
equivalently

χj = Z(εI + ıΛ)−1
Z

†uj .(6.9)

Substituting the resolvent formula for χj in (6.9) into equation (6.7) yields the
following formula that is a direct analogue of equation (4.4)

S
∗
jk = ε(δjk + 〈(εI + ıΛ)−1

Z
†uj·(εI + ıΛ)−1

Z
†uk〉)(6.10)

A∗
jk = 〈ıΛ(εI + ıΛ)−1Z †uj·(εI + ıΛ)−1Z †uk〉,

where we have used that [∇Z]† = [∇Z]−1. The quadratic form Z †uj·Z
†uk arising

in (6.10) can be written in terms of the projection matrices Qn defined in (6.5) as
follows. Analogous to equation (4.5), we have

Z†uj·Z
†uk =

N
∑

n=1

(z†nuj)(z
†
nuk) =

N
∑

n=1

znz †
nuj·uk.(6.11)

We now demonstrate that znz †
nuj·uk = ∇Qngj ·∇gk, where gj = (∇T∇)−1uj,

znz †
nuj·uk = znz †

n[∇T∇]gj·[∇T∇]gk = [∇zn][∇zn] †∇gj·∇gk = ∇Qngj·∇gk.

(6.12)

It follows from equations (6.11) and (6.12) that the functional formulas for S∗
jk and A∗

jk

displayed in (6.10) have the Stieltjes integral representations in equation (3.19), in-
volving the discrete spectral measure µjk displayed in (6.6) with ξ = gj = (∇T∇)−1uj

and ζ = gk = (∇T∇)−1uk.
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Exactly as in Section 4.1, we may rewrite these integral representations for S∗
jk and

A∗
jk in equation (3.19), involving the complex measure µjk, as the integral represen-

tations in equation (3.21) involving the real signed measures Reµjk and Imµjk. The
associated real-valued functions Reµjk(λ) and Imµjk(λ) are given by equation (4.6)
with [(Qn +Qn)gj ·gk ] substituted by [∇(Qn +Qn)gj·∇gk ]. Furthermore, due to the
generalized eigenvalues and eigenvectors of the antisymmetric matrix ıM = ∇T H∇
coming in complex conjugate pairs, the discrete measure µjk depends only on a sub-
set of the index set of the sums in (6.11) and satisfy equation (4.7), with [Qngj·gk ]
substituted by [∇Qngj·∇gk ].

7. Discrete equivalence of the effective parameter problems. In Sec-
tion 3, we formulated an effective parameter problem for the effective diffusivity tensor
D∗ associated with an incompressible fluid velocity field. The discrete version of this
effective parameter problem was formulated in Section 4. An alternate approach to
the effective parameter problem was formulated in Section 5, and its discrete version
was formulated in Section 6. In this section, we demonstrate that the discrete versions
of these effective parameter problems are equivalent for the case that the matrix ∇ is
of full rank, so that the matrix Laplacian is invertible.

Let ∇ = UΣVT be the singular value decomposition (SVD) of the matrix∇ of size
N × K, say, where N > K. Here, Σ = diag(σ1, . . . , σK), where 0 ≤ σ1 ≤ · · · ≤ σK ,
and the matrices U and V are of size N ×K and K ×K, respectively, and satisfy [13]

UT U = I, VTV = VVT = I,(7.1)

where I is the K×K identity matrix. The columns of U are called left singular vectors,
the columns of V are called right singular vectors, and the σi are called singular values.

It follows from ∇ = UΣVT and equation (7.1) that the spectral decomposition of
the negative matrix Laplacian ∇T∇ is given by ∇T∇ = VΣ2VT [13]. We assume that
∇ is of full rank so that σi > 0 for all i = 1, . . . , K. This implies that Σ−1 exists so
that the matrix Laplacian is invertible. In this case, it follows from ∇ = UΣVT and
equation (7.1) that the projection matrix Γ = ∇(∇T∇)−1∇T is given by

Γ = UUT ,(7.2)

which is a N ×N symmetric projection matrix satisfying Γ2 = Γ and Γ∇ = ∇ (see
equation (7.1)). A key property of the SVD of the full rank matrix ∇ is that its range
is spanned by the columns of U [13], hence Γ = UUT projects subspaces of RN onto
the range of ∇.

From equations (7.1) and (7.2), we can write the eigenvalue problem −ıΓHΓwn =
λnwn discussed in Section 4.1 as

[−ıUT HU][UTwn] = λn[UTwn].(7.3)

Now consider the generalized eigenvalue problem −ı∇T H∇zn = αn∇T∇zn discussed
in Section 6 and recall that ∇ = UΣVT and ∇T∇ = VΣ2VT . Since Σ is invertible,
by equation (7.1), we can write this generalized eigenvalue problem as the following
standard eigenvalue problem

[−ıUT
HU][ΣV

Tzn] = αn[ΣV
Tzn].(7.4)

Comparing the formulas in equations (7.3) and (7.4) indicates that spectrum asso-
ciated with each of these eigenvalue problems is identical, αn = λn, and that the
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eigenvectors are related by UTwn = ΣVTzn. Since Γ is a projection matrix, Γ2 = Γ,
the eigenvalue problem ΓHΓwn = ıλnwn can be written as ΓHΓ[Γwn] = ıλn[Γwn],
which implies that Γwn = wn. Consequently, applying the matrix U to both sides of
the formula UTwn = ΣVTzn and recalling that Γ = UUT and ∇ = UΣVT we have

wn = ∇zn.(7.5)

In the following lemma we make precise the correspondence between the stan-
dard eigenvalue problem −ıΓHΓwn = λnwn and the generalized eigenvalue prob-
lem −ı∇T H∇zn = αn∇T∇zn, as well as the associated spectral measures in equa-
tions (4.2) and (6.6), respectively.

Lemma 7.1. Consider the standard eigenvalue problem and the generalized eigen-
value problem given, respectively, in equations (7.6) and (7.7) below

−ıΓHΓwn = λnwn,(7.6)

−ı∇T H∇zn = λn∇T∇zn.(7.7)

Let ∇ = UΣVT be the SVD of the matrix ∇, which we assume to be of full rank. Then
equation (7.6) implies and is implied by equation (7.7), with wn and zn related as in
equation (7.5). This implies that the spectrum associated with each of these eigenvalue
problems is identical. Moreover, the spectral weights in equations (4.5) and (6.12) are
identical, i.e.,

QnΓHej ·ΓHek = ∇Qn[∇T∇]−1uj·∇[∇T∇]−1uk.(7.8)

This, in turn, implies that the associated spectral measures in equations (4.2) and
(6.6) are identical for all ξ, ζ ∈ CN .
Proof of Lemma 7.1

Recall that ∇ = UΣVT , ∇T∇ = VΣ2VT , and Γ = UUT , where Σ is invertible, and the
matrices V and U satisfy equation (7.1). First consider equation (7.6) written as in
equation (7.3), [−ıUT HU][UTwn] = λn[UTwn]. Since the matrix Σ is invertible and
VTV = I, we can rewrite equation (7.3) as

VΣ[−ıUTHU](ΣVT )(VΣ−1)[UTwn] = λn(VΣ2VT )(VΣ−1)[UTwn],(7.9)

which is precisely equation (7.7) written in terms of∇ = UΣVT with zn = VΣ−1UTwn.
This formula, equation (7.1), and the formula Γwn = wn above equation (7.5) im-
ply that wn = UΣVTzn = ∇zn. Now consider equation (7.7) written as in (7.4),
[−ıUT HU][ΣVTzn] = λn[ΣVTzn]. Since UT U = I, we can rewrite equation (7.4) as

U[−ıUT
HU](UT

U)[ΣV
Tzn] = λnU[ΣV

Tzn],(7.10)

which is precisely (7.6) written in terms of Γ = UUT with wn = UΣVTzn = ∇zn.

We now establish equation (7.8). From the formula u = ∇·H in (3.1), we have
that uj = ∇·Hej. Since ∇ = UΣVT , the discrete version of this formula is given by

uj = −∇T Hej = −VΣUTHej .(7.11)

From ∇ = UΣVT and (∇T∇)−1 = VΣ−2VT we have ∇(∇T∇)−1 = UΣ−1VT . Con-
sequently, Γ = UUT , and equations (7.1) and (7.11), yield −ΓHej = ∇(∇T∇)−1uj.
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Equation (7.8) now follows from the formula wn = ∇zn in (7.5)

wnw†
n∇(∇T∇)−1uj·∇(∇T∇)−1uk = [(∇T∇)−1∇Twn][(∇T∇)−1∇Twn]†uj·uk

= [(∇T∇)−1∇T∇zn][(∇T∇)−1∇T∇zn]†uj·uk

= znz†nuj·uk,(7.12)

where we have used that the inverse of a symmetric matrix is also symmetric [22].
The equivalence of equations (7.8) and (7.12) now follows from equations (4.1), (6.5),
and (6.12). This concludes our proof of Lemma 7.1 �.

We conclude this section with a discussion regarding numerical computations of
the effective diffusivity D∗. The approach discussed in this section and the projection
method discussed in Section 4.2 combine the computational advantages of the meth-
ods discussed in Sections 4.1 and 6. More specifically, in the full rank setting, the
spectral measure underlying the discrete integral representation for D∗ was calculated
in Section 4.1 in terms of the standard eigenvalue problem −ıΓHΓwm = λnwn , where
the matrix −ıΓHΓ is of size N × N . In Section 6, D∗ was calculated in terms of
the generalized eigenvalue problem −ı∇T H∇zn = λn∇T∇zn, involving the K × K
matrices −ı∇T H∇ and ∇T∇. Since ∇T = (∇T

1 , . . . ,∇T
d ) is of size K × N we have

that K = N/d. However, the generalized eigenvalue problem is more computation-
ally intensive than the standard eigenvalue problem [39]. For the case of randomly
perturbed flows, these are not efficient ways to compute spectral statistics for D∗.

The projection method developed in Section 4.2 demonstrates that, by first com-
puting the standard eigenvalue decomposition of the non-random matrix Γ, the spec-
tral statistics of the eigenvalue problem −ıΓHΓwn = λnwn can then be obtained
by repeatedly computing the standard eigenvalue decomposition of smaller matrices.
They are of size K×K by equations (4.8), (4.9), and (7.2). We stress that K and N1

both denote the rank of the matrix Γ in this section and in Section 4.2, respectively,
i.e., K = N1. Note that computing the matrix Γ = ∇(∇T∇)−1∇T involves numeri-
cally solving N linear systems of size K ×K. Alternatively, the proof of Lemma 7.1
illustrates that by first computing the SVD of the matrix gradient, ∇ = UΣVT , the
spectral statistics of the generalized eigenvalue problem −ı∇T H∇zn = λn∇T∇zn can
then be obtained by repeatedly computing the standard eigenvalue decomposition of
the matrix −ıUT HU which is of size K ×K. When N is large, these equivalent meth-
ods are more numerically efficient than the other approaches discussed in Sections 4.1
and 6.

In Section 8, we generalize Lemma 7.1 to the case where ∇ has rank K1 with
K1 < K, demonstrating that the two formulations are equivalent in the this rank
deficient setting. Moreover, we demonstrate that, by first computing the SVD of the
matrix gradient, D∗ can be computed via a standard eigenvalue problem for matrices
of size K1 ×K1. Consequently, the rank deficiency of the problem actually increases
the numerical efficiency of computations.

8. Rank deficiency and a unifying standard eigenvalue problem. In Sec-
tions 4 and 6 we provided two discrete, matrix formulations of the effective parameter
problem for the effective diffusivity tensor D∗. These two formulations assume that
the N × K matrix ∇ is of full rank K so that the negative matrix Laplacian ∇T∇
is invertible. Lemma 7.1 shows that, given this condition, the two formulations are
equivalent. In this section, we generalize Lemma 7.1 to the case where ∇ has rank K1

with K1 < K, again demonstrating that the two formulations are equivalent in this
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rank deficient setting. This framework is used in Section 9 to compute D∗ for periodic
flows, for which the matrix ∇ with periodic boundary conditions is rank deficient.

Consider the cell problem in (2.4) written, via (3.1) and [∇·H ]·∇ϕ = ∇·[H∇ϕ],
as

∇·H∇χj + ε∆χj = −uj.(8.1)

Discretizing equation (8.1) yields (see Section 4.1 for details)

∇T H∇χj + ε∇T∇χj = uj,(8.2)

where uj is the discrete, vector representation of the jth component of the fluid
velocity field uj , for example. Substituting the formula for uj in (8.2) into the discrete
version D∗

jk = εδjk + 〈uj·χk〉 of equation (2.3) yields

D
∗
jk = S

∗
jk + A

∗
jk, S

∗
jk = ε(δjk + 〈∇T∇χj·χk〉), A

∗
jk = 〈∇T

H∇χj ·χk〉,(8.3)

where, as before, S∗
kj = S∗

jk and A∗
kj = −A∗

jk.
We first work with equation (8.2) directly and develop a mathematical framework

which parallels that of Section 6. We then transform equation (8.2) into a discrete
analogue of equation (3.11) written as

(

εI+ΓHΓ
)

∇χj = −ΓHej , with a suitable gen-
eralization of the formula for the matrix Γ given in (7.2), and develop a mathematical
framework which parallels that of Section 4. The generalization of Lemma 7.1 in
Section 7 is then discussed, which establishes the equivalence of these two approaches
for the rank deficient setting.

Let ∇ = UΣVT be the SVD of the N ×K matrix ∇ discussed in Section 7. We
assume that ∇ is rank deficient so that ∇T∇ = VΣ2VT is singular, with K1 non-zero
eigenvalues and K0 = K −K1 zero eigenvalues, and write

U = [U0 U1], Σ =

[

O00 O01

O10 Σ1

]

, V = [V0 V1].(8.4)

Here, Oab are matrices of zeros of size Ka×Kb, a, b = 0, 1, Ua is N×Ka, Va is K×Ka,
and Σ1 is a K1 ×K1 diagonal, invertible matrix. By equation (7.1) the matrices U1

and V1 satisfy

U
T
1 U1 = I1, V

T
1 V1 = I1,(8.5)

where I1 is the K1 × K1 identity matrix. An important property of the SVD of the
matrix ∇ is that its null space is spanned by the columns of V0 and its range is
spanned by the columns of U1 [13].

Due to the blocks of zeros of Σ in (8.4), the matrix elements of ∇ and ∇T∇ do
not depend on U0 nor V0 and can be written as ∇ = U1Σ1V

T
1 and ∇T∇ = V1Σ

2
1V

T
1 .

Consequently, equation (8.2) can be rewritten as

[V1Σ1][U
T
1 HU1][Σ1V

T
1 ]χj + εV1Σ

2
1V

T
1 χj = uj.(8.6)

Since the K1×K1 matrix UT
1 HU1 is antisymmetric, it has the spectral decomposition

UT
1 HU1 = ıR1Λ1R

†
1, where Λ1 is a diagonal, real-valued matrix and R1 is a unitary

matrix, R
†
1R1 = R1R

†
1 = I1. It follows that

∇T
H∇ = ı[V1Σ1R1]Λ1[V1Σ1R1]

†, ∇T∇ = [V1Σ1R1][V1Σ1R1]
†.(8.7)
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Equation (8.6) can be rewritten as [V1Σ1R1](εI1+ıΛ1)[V1Σ1R1]
†χj = uj. This formula

and equation (8.5) together imply the following analogue of equation (6.9)

VT
1 χj = VT

1 Z1(εI1 + ıΛ1)
−1Z

†
1uj, Z1 = V1Σ

−1
1 R1.(8.8)

Substituting equation (8.8) into the functionals 〈∇T∇χj·χk〉 and 〈∇T H∇χj ·χk〉
in equation (8.3) yields the following analogue of (6.10) (see Appendix B for details)

S∗
jk = ε(δjk + 〈(εI1 + ıΛ1)

−1Z
†
1uj ·(εI1 + ıΛ1)

−1Z
†
1uk〉),(8.9)

A∗
jk = 〈ıΛ1(εI1 + ıΛ1)

−1Z
†
1uj·(εI1 + ıΛ1)

−1Z
†
1uk〉.

The quadratic form Z
†
1uj·Z

†
1uk arising in (8.9) yields the following analogue of (6.11)

Z
†
1uj·Z

†
1uk =

K1
∑

n=1

([z1
n]†uj)([z

1
n]†uk) =

K1
∑

n=1

[z1
n][z1

n] †uj·uk, z1
n = V1Σ

−1
1 r1

n,

(8.10)

where r1
n, n = 1, . . . , K1, are the orthonormal eigenvectors of the matrix UT

1 HU1 which
comprise the columns of R1. From ∇ = U1Σ1V

T
1 and equations (8.5) and (8.10) we

have that ∇z1
n = U1r

1
n. The orthogonality condition r1

n·r1
m = δnm and equation (8.5)

then imply that the vectors z1
n satisfy the Sobolev-type orthogonality condition in

equation (6.3), ∇z1
n·∇z1

m = δnm. Moreover, as the vectors r1
n form an orthonormal

basis for CK1 , we also have the following generalization of equation (6.5)

K1
∑

n=1

Q1
n = V1V

T
1 , Q1

n = z1
n[∇z1

n] †∇, Q1
lQ1

m = Q1
l δlm,(8.11)

where the matrices Q1
n, n = 1, . . . , K1, are self-adjoint with respect to the discrete

inner-product 〈·, ·〉1 defined by 〈ξ, ζ〉1 = 〈∇ξ·∇ζ〉, i.e., 〈Q1
nξ, ζ〉1 = 〈ξ,Q1

nζ〉1 for all
ξ, ζ ∈ CK1 .

It follows from equations (8.9) and (8.10) that

S
∗
jk/ε− δjk =

K1
∑

n=1

Re[ ([z1
n]†uj)([z

1
n]†uk) ]

ε2 + [λ1
n]2

, A
∗
jk =

K1
∑

n=1

λ1
nIm[ ([z1

n]†uj)([z
1
n]†uk) ]

ε2 + [λ1
n]2

,

(8.12)

where λ1
n, n = 1, . . . , K1, are the eigenvalues of the matrix −ıUT

1 HU1 corresponding
to the eigenvectors r1

n. Here, as before, we have used the fact that the matrices ∇ and
H, as well as the vectors χ1 and uj, and the molecular diffusivity ε are real valued,
so that 〈∇χj ·∇χk〉 = 〈∇χk·∇χj〉 and 〈∇T H∇χj·χk〉 = 〈χk·∇T H∇χj〉. Due to the

eigenvalues and eigenvectors of the antisymmetric matrix UT
1 HU1 coming in complex

conjugate pairs, as before, the sums in (8.12) depend only on a subset of the index
set.

We now argue that the mathematical framework developed in equations (8.2)–
(8.12) generalizes the full rank case in Section 6. Indeed, in the full rank setting, the
matrix V1 = V is orthogonal, Σ1 = Σ is invertible, and R1 = R is orthogonal, so that
the matrix Z1 = Z defined in (8.8) by

Z = VΣ−1
R(8.13)
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is invertible with Z−1 = R†ΣVT and satisfies Z−1Z = ZZ−1 = I. Consequently,
equation (8.7) implies that equation (6.4) is satisfied with Λ1 = Λ. In this case,
equations (6.9)–(6.11) are identical to equations (8.8)–(8.10), respectively.

We now generalize the mathematical framework developed in Section 4 to the
case that the matrix ∇ is rank deficient. Using equation (8.5) and the invertibility of
the matrix Σ1, we can rewrite equation (8.6) as

U1[U
T
1 HU1][U

T
1 U1][Σ1V

T
1 ]χj + εU1Σ1V

T
1 χj = U1Σ

−1
1 VT

1 uj.(8.14)

Substituting the formula uj = −∇T Hej of (7.11) into equation (8.14) and using
∇ = U1Σ1V

T
1 yields

(

εI + Γ1HΓ1

)

∇χj = g1
j , Γ1 = U1U

T
1 , g1

j = −Γ1Hej ,(8.15)

which analogous to equation (3.11). As in Section 7, the matrix Γ1 = U1U
T
1 projects

subspaces of RN onto the range of ∇. Since the matrix Γ1HΓ1 is antisymmetric,
it has the spectral decomposition Γ1HΓ1 = ıW1Λ̃W

†
1, where W1 is a unitary matrix

W
†
1W1 = W1W

†
1 = I. This and equation (8.15) yield the resolvent formula for ∇χj

displayed in (4.3), with corresponding notational changes. In equation (8.3), write
〈∇T∇χj ·χk〉 = 〈∇χj ·∇χk〉 and 〈∇T H∇χj·χk〉 = 〈Γ1HΓ1∇χj ·∇χk〉, where the sec-

ond formula follows from UT
1 U1 = I1 and ∇ = U1Σ1V1 which imply that Γ1∇ = ∇.

Exactly as in Section 4.1, this leads to equations (4.4) and (4.5), with corresponding
notational changes. This, in turn, leads to the integral representations for S∗

jk and
A∗

jk in equation (3.21), involving a discrete spectral measure µjk associated with the

function µjk(λ) = 〈Q1(λ)g1
j ·g

1
j 〉, defined by (4.2) with Q(λ) and Qn substituted by

Q1(λ) and Q1
n, respectively, where Q1

n = [w1
n][w1

n]† and w1
n , n = 1, . . . , K1, are the

eigenvectors of the matrix Γ1HΓ1 which comprise the columns of W1. In the case that
the matrix ∇ is of full rank, we have U1 = U hence W1 = W. This establishes that
the mathematical framework discussed in this paragraph reduces to the mathematical
framework in Section 4 for the full rank setting and therefore is a generalization.

We now employ the projection method developed in Section 4.2 to generalize the
mathematical framework in Section 7 to the rank deficient setting, establishing the
equivalence of the two approaches that follow from equations (8.6) and (8.15). We
stress that the matrix Γ1 defined in this section is identical to the matrix Γ defined
in Section 4.2, Γ1 = Γ, which were given different notations to clarify our discussion
here.

Since Γ1 = U1U
T
1 is a projection matrix, the projection method discussed in

Section 4.2 can be directly applied to equation (8.15). However, the mathematical
framework developed here provides deeper insight into equation (4.9) of the method.
In particular, in Section 4.2 we wrote Γ = PGPT , where P is an orthogonal matrix
consisting of the eigenvectors of Γ and the matrix G is defined in equation (4.9).
Moreover, we wrote P = [P0 P1], where the columns of the matrices P0 and P1 are
orthonormal eigenvectors that span the null space and range of Γ, respectively. Since
the eigenvalues γn associated with the eigenvectors in the matrix P1 satisfy γn = 1,
any linear combination of the corresponding eigenvectors is also an eigenvector of Γ
with eigenvalue γn = 1. Therefore, since the orthonormal columns of the matrix U1

span the range of Γ1 = U1U
T
1 , without loss of generality, we may take P1 = U1 so

that P = [P0 U1]. Consequently, we can rewrite equation (4.10) as

U
T
1 HU1 = ıR11Λ11R

†
11.(8.16)
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From equation (8.16) and the comment after equation (8.6), we have that R11 =
R1 and Λ11 = Λ1. This and equation (4.11) establishes that the spectra associated
with each of the two approaches are identical. We now establish that the spectral
weights associated with both approaches are also identical. From the formula P =
[P0 U1] and equation (4.11) with R11 = R1 and W redefined as W1, we have that
W1 = PR = [P0 U1R1]. Consequently, from ∇ = U1Σ1V

T
1 , equation (8.5), and

the formula Z1 = V1Σ
−1
1 R1 in (8.8), we have that ∇Z1 = U1R1, which implies the

following generalization of equation (7.5)

W1 = [P0 ∇Z1], ∇Z1 = U1R1.(8.17)

It now follows from Γ1P0 = 0, Γ1∇ = ∇, and the formula uj = −∇T Hej in (7.11)
that

W
†
1Γ1Hej ·W

†
1Γ1Hek = [∇Z1]

†Hej ·[∇Z1]
†Hek = Z

†
1uj·Z

†
1uk.(8.18)

This establishes that the spectral weights associated with both approaches are iden-
tical and, in turn, establishes the equivalence of the two approaches following from
equations (8.6) and (8.15). In Section 9 we will use equation (8.12) to compute the
effective diffusivity tensor D∗ for various periodic fluid flows.

9. Numerical Results. In this section, we employ the mathematical framework
developed in Section 8 to provide rigorous computations of the effective diffusivity
tensor D∗ for some model periodic flows. We do so by directly computing the spectral
measure in the Stieltjes integral representation for D∗ discussed in previous sections.
In particular, we consider two classes of periodic fluid velocity fields. As a benchmark
test we compute D∗ for shear flow, for which the spectral measure is known [3]. We
also consider a fluid velocity field that has a free parameter. As the parameter varies,
the flow transitions from cellular flow to shear flow in the diagonal x-y direction. This
gives rise to fascinating transitional behavior in the spectral measure, which governs
transitional behavior in the effective diffusivity tensor D∗. For the sake of brevity, we
will focus our attention on the ε behavior of the components S∗

jk, j, k = 1, . . . , d, of
S∗. Moreover, for computational simplicity, we have restricted our computations to
dimension d = 2.

By equation (3.1), the time-independent fluid velocity field u = u(x) is given in
terms of an antisymmetric matrix H = H(x), u = ∇·H. For dimension d = 2, the
matrix H is determined by a stream function Ψ = Ψ(x),

H =

[

0 Ψ
−Ψ 0

]

,(9.1)

yielding u = [−∂yΨ, ∂xΨ], where ∂x denotes partial differentiation in the variable
x, for example. In this section we consider two flows with free parameters which
transition from cellular flow to shear flow as parameters vary. In particular, we
consider BC-flow [9] and “cat’s eye” flow [15], which are defined by the following
stream functions ΨBC and ΨCE , respectively,

ΨBC (x) = B sin x− C sin y, ΨCE(x) = sin x sin y + A cos x cos y,(9.2)

where we have denoted x = (x, y). The corresponding fluid velocity fields are

uBC(x) = (C cos y, B cos x),(9.3)

uCE(x) = (− sin x cos y + A cos x siny, cos x sin y −A sin x cos y).

26



0

π

−π

-1

-2

0

1

2

−π 0 π −π 0 π

0

π

−π

-1

-2

0

1

2

−π 0 π

BC - Flow

0

π

−π

-0.4

-0.8

0

0.4

0.8

-0.4

-0.8

0

0.4

0.8

−π 0 π −π 0 π

0

π

−π
−π 0 π

Cat’s Eye Flow

Fig. 1. Transitions in flow structure. The streamlines for BC-flow and cat’s eye flow are
displayed for various parameter values, transitioning from shear to cell flow structure. From left
to right and top to bottom, the parameter values associated with BC-flow are B = 1 fixed and
C = 0, 0.01, 0.1, 0.3, 0.5 and 1, while those for cat’s eye flow are A = 0, 0.1, 0.3, 0.5, 0.7, and 1.

These fluid velocity fields transition from shear to cellular flow structure as the system
parameters A, B, C ∈ [0, 1] vary.

Streamlines of a 2D flow are level sets of the stream function Ψ, which define a
family of curves that are instantaneously tangent to the fluid velocity field u, since
u = [−∂yΨ, ∂xΨ] implies that u·∇Ψ = 0. In Figure 1, we display streamlines of the
stream functions in equation (9.2) for various parameter values. The streamlines for
cat’s eye flow are symmetric about the line y = x, which follows from the symmetry
of the stream function ΨCE(x, y) = ΨCE(y, x). The stream function for BC-flow
has a more complicated symmetry Ψ(x, y; B, C) = −Ψ(y, x; C, B). This symmetry
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indicates that if the values of B and C are interchanged, B ←→ C, then the original
flow is recovered from a 90◦ rotation (x→ y, y → −x) followed by a reflection about
the x-axis (y → −y). Consequently, flows elongated in the y-direction become flows
elongated in the x-direction under the interchange B ←→ C.

In equation (2.6) and the paragraph therein we discussed our choice for the non-
dimensionalization the advection-diffusion equation in (2.1). In particular, we mapped
u to the non-dimensional fluid velocity field u 7→ u/‖u‖ and ε to the non-dimensional
molecular diffusivity ε 7→ ε/(`‖u‖), where ` is the maximum cell period and ‖u‖ =
〈|u|2〉1/2 is the Hilbert space norm of u. For the fluid velocity fields in equation (9.3),
V = [0, 2π]2 and ` = 2π. When u in equation (9.3) is non-random then the underlying
Hilbert space is H = L2(V, m), where m denotes the normalized Lebesgue measure
(uniform distribution) on Rd, restricted to V, and ‖ · ‖ denotes the H -norm, with

‖uBC‖2 =
B2 + C2

2
, ‖uCE‖2 =

1 + A2

2
.(9.4)

In Section 3.2 we discussed the effective parameter problem for the setting of
randomly perturbed, periodic flows. For the sake of brevity, we consider here only
the randomly perturbed cat’s eye flow, with the parameter A uniformly distributed
on the interval [0, p], having second moment p2/3. Numerically, it is natural to set
H = L2(m×P ) [26], where P is the probability measure associated with the random
variable A. In this case, by Fubini’s theorem [18], 〈·〉 can be considered to denote
spatial averaging followed by statistical averaging and the formula for ‖uCE‖2 in (9.4)
is replaced by

‖uCE‖2 =
3 + p3

6
.(9.5)

We now discuss in more detail our discrete, matrix formulation of the effective
parameter problem. To illustrate how to generalize these ideas to dimension d larger
than d = 2, we will maintain aspects of our general notation. In this discrete setting,
the spatial region V = [0, 2π]d, for example, is replaced by a square lattice Vd

L of size
L containing Ld equally spaced points in V. As discussed in the beginning of Sec-
tion 4.1, the differential operators ∇ and ∇· are replaced by finite difference, matrix
operators ∇ and −∇T , respectively, with suitable boundary conditions. Periodic
boundary conditions will be assumed throughout this section. Since these matrices
operate on vectors, the d-dimensional lattice Vd

L must be bijectively mapped to a one
dimensional lattice VN of size N = Ldd. The specific structure of VN depends on the
bijective mapping Θ chosen. In our computations discussed in this section, we used
the mapping Θ described in [36].

Under the mapping Θ, a spatially dependent d-dimensional vector field v(x), say,
is bijectively mapped to a discretized constant vector of length N that contains all
of the spatial information of v(x) for x ∈ Vd

L. For example the spatially dependent
vector v(x) = (v1(x), v2(x)) is mapped to (v1, v2), where the vectors vi, i = 1, 2,
are constant and of length Ld. Similarly, the d-dimensional standard basis vector
e1 = (1, 0, . . . , 0) is mapped to the N -dimensional vector (1, 0, . . . , 0), where 1 and 0

are vectors of ones and zeros of length Ld, respectively, and similarly for the ej for
j = 2, . . . , d. Therefore, the vectors êj, j = 1, . . . , d, satisfying

êj = Θ(ej)/Ld/2, êj · êk = δjk,(9.6)
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serve as “lattice standard basis vectors.” In previous sections, we deferred the descrip-
tion of these vectors to the present section and, for simplicity, used the notation ej.
Now that the specific nature of these vectors has been discussed, we will henceforth
use the notation in equation (9.6). With this convention, the division by Ld/2 in (9.6)
takes care of the L-scaling in discrete representations of spatial integrals, where the
normalized differential dx/|V| becomes the discrete differential dx = (2π/L)d/(2π)d

when V = [0, 2π]d. As another example, under the bijective mapping, the 2×2 matrix
H in (9.1) becomes a N×N antisymmetric banded matrix, where the stream function
Ψ(x) is represented by a diagonal Ld×Ld matrix and the zero element 0 is represented
by a matrix of zeros. In higher dimensions d > 2 the discrete representation of the
matrix H is also banded. As in previous sections, for notational simplicity, we will not
make a notational distinction for the matrix H between the continuum and discrete
settings.

In Section 8 we demonstrated that, for the discrete setting, the spectral measure
µjk underlying the Stieltjes integral representation of S∗

jk is given by

dµjk(λ) =
∑

n: λ1
n≤λ

〈mjk(n) δλ1
n
(dλ)〉,(9.7)

where λ1
n, n = 1, . . . , K1, are the eigenvalues of the matrix −ıUT

1 HU1 in (8.16), while
various equivalent representations of the spectral weights mjk(n), j, k = 1, . . . , d, are
given in equation (8.18). In our computations of µjk, we used

mjk(n) = Re[ ([r1
n]†UT

1 Hêj) ([r1
n]†UT

1 Hêk) ], n = 1, . . . , K1,(9.8)

which follows from equations (4.6), (8.17), and (8.18). We stress that, for notational
simplicity, in this section we denote µjk ≡ Reµjk, j, k = 1, 2, as indicated in equa-
tion (9.8). In (9.8), r1

n, n = 1, . . . , K1, are the complex eigenvectors of the matrix
−ıUT

1 HU1. Consequently, µkk is a positive measure and µjk is a signed measure for
j 6= k. The size of the matrix∇ is N×Ld, where N = Ldd. For d = 2 the nullity of ∇
is 1, therefore, the size of U1 is N × (Ld − 1), so that the Hermitian matrix −ıUT

1 HU1

is of size K1 = Ld − 1.
We denote the spectral weights mjk(n) associated with the decomposition µjk =

µ+
jk − µ−

jk in (3.23) by m+
jk(n) and m−

jk(n), where m±
jk(n) ≥ 0. Moreover, we also

denote [18] by the functions [S∗
12]

+ and [S∗
12]

−

[S∗
12]

+(ε) = max{S∗
12(ε), 0}, [S∗

12]
−(ε) = max{−S∗

12(ε), 0},(9.9)

for each 0 < ε < ∞, so that S∗
12 = [S∗

12]
+ − [S∗

12]
−, [S∗

12]
±(ε) = S∗

12(ε; µ
±
12), and

[S∗
12]

± ≥ 0.
In the case of a non-random fluid velocity field u, we used L = 200 so that

K1 = 39, 999. The eigenvalues λ1
n and eigenvectors r1

n of the non-random Hermitian
matrix −ıUT

1 HU1 were computed using the Matlab function eig(). In this case, the
averaging 〈·〉 in (9.7) is interpreted as spatial averaging over the period cell V. In the
random setting, we used L = 100 so that K1 = 9, 999. In this case, the averaging 〈·〉
in (9.7) is interpreted as spatial averaging followed by ensemble averaging over ∼ 103

statistical trials.
The numerical accuracy of the eigenvalue problem is determined by the eigenvalue

condition numbers K(λ1
n), n = 1, . . . , K1, which are the reciprocals of the cosines of the

angles between the left and right eigenvectors. Large eigenvalue condition numbers
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of a Hermitian matrix implies that it is near a matrix with multiple eigenvalues,
while eigenvalue condition numbers close to 1 imply that the eigenvalue problem
is well-conditioned. The eigenvalue problem for the matrix −ıUT

1 HU1 is extremely
well conditioned with maxn |1− K(λ1

n)| ∼ 10−14 typical, which were computed using
Matlab’s function condeig().

To our knowledge, Matlab does not provide a function that describes the accu-
racy of the computed SVD of the matrix ∇ = UΣVT . In order to better under-
stand the numerical accuracy in the entries of the matrix U, which is central to our
computational method, we performed the following tests. For the case of Dirichlet
boundary conditions, the matrix ∇ is of full rank, hence the matrix Laplacian ∇T∇
is invertible. We computed the matrix Γ = ∇(∇T∇)−1∇T directly using Matlab’s
mldivide function A\B, i.e., Γ = ∇((∇T∇)\∇T ), and also using the SVD of the
matrix ∇, with Γ = UUT . We then computed the component-wise maximum differ-
ence max`m |[∇((∇T∇)\∇T ) − UUT ]`m|. When L = 100 and L = 200 this difference
is ∼ 10−15, which gives an idea of the accuracy of the SVD of ∇ for the rank defi-
cient, periodic setting. In all of our computations, Matlab’s sparse architecture was
employed wherever possible to keep roundoff error to a minimum.

We now discuss our numerical results. It was shown [3] in the continuum setting
that for shear flow in the x-direction, the measure µ11 is given by a δ-measure con-
centrated at the spectral origin, while µ22 ≡ 0, and similarly for shear flow in the
y-direction. As a baseline result, we computed the spectral measures and effective
diffusivities for BC-shear-flow in both the x and y-directions, which are obtained for
parameter values (B, C) = (0, 1) and (B, C) = (1, 0), respectively. Our computations
of the components µjk, j, k = 1, 2, of the spectral measure for BC-shear-flow displayed
in Figure 2 are in agreement with the theoretical prediction in [3].

Figure 2 displays the streamlines for BC-shear-flow in (a) the x-direction and (b)
the y-direction. In Figure 2c the components S∗

jk, j, k = 1, 2, of the effective diffusivity
tensor are displayed for BC-shear-flow in the x-direction. The analogous result for
BC-shear-flow in the y-direction is visually identical to Figure 2c under the mapping
S∗

11 ↔ S∗
22, i.e., under the exchange of the colors black ↔ blue. The components

µjk, j, k = 1, 2, of the spectral measure are displayed for BC-shear-flow in (d) the
x-direction and (e) the y-direction.

We focus our discussion on the results for BC-shear-flow in the x-direction, as
that for the y-direction is analogous. For all n = 1, . . . , K1, the spectral weights
m22(n) in Figure 2d associated with the y-direction satisfy m22(n) . 10−29, while
m±

12(n) . 10−28 in the bulk of the spectrum with a peak near the spectral origin
with spectral weights satisfying m±

12(n) . 10−16. With the effects of finite resolu-
tion L < ∞ as well as numerical errors in the computed components of the matrix
−ıUT

1 HU1 and its eigenvalue decomposition, associated with roundoff error due to a
machine epsilon of ∼ 10−16, these spectral weights can be considered “numerically
zero.” The spectral weights for the x-direction satisfy m11(n) . 10−28 in the bulk of
the spectrum, while the weights near the spectral origin satisfy 10−9 . m11 . 10−1,
resembling a δ-measure with virtually all of its mass concentrated near the origin.
This is consistent with theoretical predictions [3]. Due to the antisymmetry of the
real-valued matrix UT

1 HU1, its complex eigenvectors and purely imaginary eigenvalues
come in complex conjugate pairs [22]. Consequently, the eigenvalues of the Hermi-
tian matrix −ıUT

1 HU1 come in positive-negative pairs with identical spectral weights,
resulting in the symmetry about the y-axis displayed by the spectral measures in Fig-
ure 2.
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Fig. 2. Shear flow baseline result. The streamlines of BC-shear-flow in (a) the x-direction and
(b) the y-direction. (c) The ε behavior of our computations of the components S∗

jk
, j, k = 1,2, of

the effective diffusivity corresponding to shear flow in the x-direction. The spectral weights mjk of
the spectral measure Reµjk for shear flow in (d) the x-direction and (e) the y-direction. Consistent
with theoretical predictions, the measure associated with the direction of the flow resembles a delta
measure centered at the origin, while the other two components have spectral weights mjk with very
small magnitudes.

Due to the high concentration of measure mass in µ11 very near the spectral
origin, our computation of S∗

11 displayed in Figure 2c behaves like it’s being governed
by a delta function concentrated at the origin. In particular, Figure 2c shows that
the computed ε behavior of S∗

11 displayed in black color with solid line-style lays
right on top of the graph of its upper bound ε [1 + µ0

kk/ε2] given in (3.22), with
µ0

11 ≈ 2.5204× 10−2, displayed in black color and dash-dot line-style. (We had to
increase the line-width of the upper bound to be able to distinguish between the two
black lines.) Due to the extremely small magnitudes of the spectral weights m22 and
m±

12, with measure masses µ0
22 ≈ 2.7050×10−30, [µ0

12]
+ ≈ 5.2119×10−18, and [µ0

12]
− ≈
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1.6910 × 10−16, the upper and lower bounds for S∗
22 and S∗

12 in equations (3.22)
and (3.24) are very close to ε and 0, respectively; The graph of S∗

22 is virtually right
on top of the lower bound ε in cyan color and solid line-style, and the magnitudes
of [S∗

12]
+ and [S∗

12]
− are so small they don’t even appear on the graph. Since the

support of the spectral measure is contained in the interval [−1, 1], the components of
the effective diffusivity approach their bare molecular diffusivity value ε δjk for large
ε.

In [37] we developed Fourier methods for the rigorous computation of the spectral
measure µjk for BC-cell flow, with B = C = 1. In particular, the eigenvalue problem
Aϕn = λnϕn associated with the operator A = ∆−1[u·∇] was transformed into
an infinite algebraic system of equations, defining a discrete, generalized eigenvalue
problem. The Fourier coefficients of the eigenfunctions ϕn, n = 1, 2, 3, . . ., for the
continuum setting comprised the components of the generalized eigenvectors in the
discrete setting. Moreover, motivated by the theoretical findings in the current work,
we provided a rigorous extension of the results given here to the setting of a time-
dependent fluid velocity field, where A = ∆−1[∂t + u·∇] and ∂t denotes partial
differentiation in time. Furthermore, we used abstract methods of functional analysis
to generalize Lemma 7.1 to the continuum, steady and dynamic settings. The Fourier
methods in [37] were also generalized to the setting of a time-dependent fluid velocity
field. Since we already treated BC-cell flow in [37], and for the sake of brevity, we
now turn our attention to a discussion regarding our results for “cat’s eye flow.”

Since the streamlines for cat’s eye flow in Figure 1 are symmetric about the line
y = x, as discussed above, we anticipate that µ11 = µ22. Our computations of the
components µjk, j, k = 1, 2, of the spectral measure displayed in Figures 3 and 4, for
non-random A, indicate that this is indeed the case. A closer look at these figures
reveals a deeper symmetry, namely that µ11 = µ22 = |µ12|, where |µ12| = µ+

12 + µ−
12 is

the total variation of the signed measure µ12 introduced in equation (3.23).

Since the operator A = ∆−1[∇·u] is compact [8], its spectra is discrete except
for a limit point at the spectral origin λ = 0 [48]. This limit point behavior of the
measures µjk, j, k = 1, 2, can be seen in all of the panels of Figure 3. When the
parameter A = 0, the streamlines of cat’s eye flow are closed cell structures, as shown
in Figure 1, so that large scale transport occurs only when ε > 0 [15]. In this case,
the magnitude of the spectral weights mkk(n) and m±

jk(n), n = 1, . . . , K1, associated

with this limit point at λ = 0 are . 10−28, as shown in Figure 3. When A > 0, open
channels connect neighboring cells and large scale transport takes place both in thin
boundary layers and within the channels [15]. This is reflected in the spectral measure
by a dramatic increase in the magnitude of the spectral weights mkk(n) and m±

jk(n)
associated with the limit point at λ = 0, by more than 15 orders of magnitude for
a change of only 10−6 in the magnitude of A, while the spectral weights associated
with the bulk of the spectrum change only subtlety, as shown in Figure 3.

As the value of A increases into the range (10−2, 100), the limit point near λ = 0
persists. However, the increase in the magnitudes of the associated spectral weights
stops, with values in the range (10−11, 10−5) for all A ∈ (10−2, 100). In this regime,
the limit point of the spectral measure is closely surrounded by spectrum in the
bulk having spectral weights with comparable magnitudes. As A increases in the
range (10−1, 100), a significant transitional behavior arises in the spectral measure
in the bulk of the spectrum, as shown in Figure 4. In particular, a plateau forms
in the spectral measure for λ ∈ (−1,−0.5) ∪ (0.5, 1) with spectral weights having
magnitudes . 10−13. Another feature also arises that has a more significant influence
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Fig. 3. Transition away from cat’s eye cell flow. The spectral weights mjk for the components
Reµjk , j, k = 1,2, of the spectral measure are displayed with increasing values of the free parameter
A from left to right. As the parameter A increases, the streamlines of the flow transition away
from cell structures to open channels. This is reflected in the measure by a dramatic increase in the
magnitude of the spectral weights mjk associated with the limit point of the measure at λ = 0, while
the other weights change only slightly.

on the behavior of the effective diffusivity S∗. Namely, the appearance of spectra
λ ∈ (−0.5,−0.2)∪ (0.2, 0.5) with measure masses in the range (10−10, 10−2), as shown
in Figure 4. This broadening of the region having spectral weights with magnitudes
as large as 10−2 from λ ∈ (−0.2, 0, 2), present for all A ∈ [0, 1], to λ ∈ (−0.5, 0, 5)
has a significant influence on the behavior of the effective diffusivity S∗, as shown in
Figure 5.

Our computations of the components S∗
jk, j, k = 1, 2, for cat’s eye flow are dis-

played in Figure 5 along with their upper bounds given in the same color and dash-dot
line-style. Since the support of µjk is contained in the interval [−1, 1], the components
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Fig. 4. Transition toward cat’s eye shear flow. The spectral weights mjk for the components
Reµjk , j, k = 1,2, of the spectral measure are displayed with increasing values of the free parameter
A from left to right. As the value of the parameter A increases, the streamlines become more
elongated in the x-y diagonal direction, becoming shear flow when A = 1. This is reflected in the
spectral measure by an increase in the breadth of the spectral region with significant measure mass.

S∗
jk of the effective diffusivity approach their bare molecular diffusivity value ε δjk for

large ε. We discussed above that our computations of the components µjk, j = 1, 2,
of the spectral measure display the symmetry µ11 = µ22 = |µ12|. Since the behavior
of the µjk govern the behavior of the corresponding components of the effective dif-
fusivity S∗

jk, the symmetry µ11 = µ22 = |µ12| between the measures gives rise to the

symmetry S∗
11(ε) = S∗

22(ε) = ε + X(ε; µ+
12) + X(ε; µ−

12) between the components of
the effective diffusivity, where we have denoted by X(ε; ν) =

∫

dν(λ)/(ε2 + λ2), e.g.,
S∗

11(ε) = ε + X(ε; µ11). The symmetry S∗
11 = S∗

22 can be clearly seen in our computa-
tions of S∗

jk, j, k = 1, 2, displayed in Figure 5; The two curves lay right on top of one

34



0

-1

-2

-3

-4

0

-1

-2

-3

-4
-4 -3 -2 -1 0

log ε
-4 -3 -2 -1 0

log ε
-4 -3 -2 -1 0

log ε

A = 0 A = 0.01 A = 0.1

A = 0.3 A = 0.5 A = 1

log S
11

*

log S
22

*

log [S
12

*]+

log [S
12

*] -

log S
11

*

log S
22

*

log [S
12

*]+

log [S
12

*] -

log S
11

*

log S
22

*

log [S
12

*]+

log [S
12

*] -log [S
12

*] +

log S
11

*

log S
22

*

log [S
12

*] +

log S
11

*

log S
22

*

log [S
12

*] -

log S
11

*

log S
22

*

Fig. 5. Transitional behavior of the effective diffusivity from cat’s eye cell flow to shear flow.
The behavior of the components S∗

jk, j, k = 1,2, of the effective diffusivity as a function of the

molecular diffusivity ε and increasing values of the parameter A from left to right and top to bottom.
The upper bounds corresponding to S∗

jk are in dash-dot line-style and are the same color for S∗
kk

and red for S∗
12, while the lower bound ε for S∗

kk is in cyan color and solid line-style. For small
values of the parameter A, the enhancement in the effective diffusivity is more pronounced for small
values of ε. However, as the value of the parameter A increases and the flow transitions from cell
to shear structure, there is a substantial enhancement in the effective diffusivity for larger values of
ε. This is due to the behavior of the spectral measure discussed in Figures 3 and 4.

another, as do their upper bounds as µ0
11 = µ0

22. The lower bounds for S∗
kk, k = 1, 2,

have been omitted in the figure panels, as they are virtually right on top of the looser
lower bound ε (displayed in cyan color) due to the small measure masses . 10−3. We
have also numerically explored the approximate relationship S∗

11 ≈ ε+[S∗
12]

+ +[S∗
12]

−

by plotting S∗
11, S∗

22, and ε+[S∗
12]

+ +[S∗
12]

− on one graph. For most values of A and ε
considered, the three curves lay virtually on top of each other (not shown), and when
there is a deviation of ε + [S∗

12]
+ + [S∗

12]
− from S∗

11, it is slight.

Recall, we demonstrated in Figure 3 that for A ∈ (0, 10−2), the limit point λ = 0 of
the spectral measure µjk has weights mjk with magnitudes that increase dramatically
as A increases from zero, with magnitudes in the interval (10−11, 10−5) when A ∼
10−2. However, in the bulk of the spectrum, the magnitudes of the spectral weights
change only subtlety. Consequently, for A ∈ (0, 10−2) this transitional behavior of the
spectral measure µkk governs primarily the small ε behavior of S∗

kk, as shown in the
panels of Figure 5 corresponding to A = 0 and A = 10−2. The transitional behavior
of S∗

12 is more pronounced due to the lack of the ε δjk term for j 6= k.

Recall, we demonstrated in Figure 4 that when the parameter A increases in the
interval (10−1, 100), spectra λ ∈ (−0.5,−0.2)∪ (0.2, 0.5) appear with measure masses
in the range (10−10, 10−2). This broadens the influence of the spectral measure µjk
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Fig. 6. Migration of positive measure mass from the limit point at the spectral origin. As the
free parameter A of cat’s eye flow increases from zero, the magnitude of the spectral weights m±

12

increase dramatically. Moreover, the spectra associated with the positive weights m+

12
migrate away

from the spectral origin until the limit point is comprised only of negative valued mass.

over the effective diffusivity S∗
jk to larger values of ε, greatly enhancing it above its

bare molecular diffusivity value ε δjk, as shown in the panels of Figure 5 for A ≥ 0.1.
Note that, since µ11 = µ22 = |µ12|, we have the inequalities S∗

11 ≥ ε + [S∗
12]

+ and
S∗

11 ≥ ε + [S∗
12]

−, with S∗
11 = S∗

22, as shown in Figure 5.

When the figure panels associated with µ12 in Figure 3 are plotted in log-log
scale as shown in Figure 6, the following is revealed. As A increases from zero, the
spectra of the limit point with positive measure mass migrates away from λ = 0, so
that the limit point eventually consists of spectra with only negative measure mass.
Consequently, as ε decreases below 10−3, this influence of µ12 on S∗

12 becomes more
dominant and S∗

12 changes sign, becoming negative, as shown in Figure 5. As the
value of ε approaches the location of this limit point, the numerical approximation
breaks down due to effects of finite resolution L.

We now discuss our computations of the components µjk and S∗
jk, j, k = 1, 2,

of the spectral measure and effective diffusivity, respectively, for cat’s eye flow with
random parameter A uniformly distributed on the interval [0, p]. For each statistical
trial of a sample space Ω0 of ∼ 103 statistical trials and a system resolution L = 100,
we computed every eigenvalue λ1

n and eigenvector r1
n, n = 1, . . . , K1, of the matrix

−ıUT
1 HU1 to form the spectral measure µjk in equation (9.7). In order to visually

determine the behavior of the function µjk(λ) = 〈Q(λ)êj , êk〉 underlying the spectral
measure µjk, we plot a histogram representation of µjk(λ) called the spectral function,
which we will also denote by µjk(λ). We now describe how we computed this graphical
representation of the measure µjk. First, the spectral interval I ⊇ Σ was divided
into V sub-intervals Iv, v = 1, . . . , V , of equal length 1/V . Second, for fixed v, we
identified all of the eigenvalues that satisfy λ1

n(ω) ∈ Iv, for n = 1, . . . , K1 and ω ∈ Ω0.
The assigned value of µjk(λ) at the midpoint λ of the interval Iv, is the sum of the
spectral weights mjk(ω) associated with all such λ1

n(ω) ∈ Iv. In our computations of
the spectral functions, we typically used V ∼ 102.

Consistent with the symmetries of the random flow, our computations of the
spectral function satisfies µ11(λ) = µ22(λ), hence the ensemble averaged components
S∗

jk of the effective diffusivity also satisfy S∗
11 = S∗

22, as shown in Figure 7. Similar
to our computations for non-random A, when p = 0.1 the measure mass of µjk,
j, k = 1, 2, near the spectral origin is quite small and, on average, the region with
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Fig. 7. Spectral functions and effective diffusivities for randomly perturbed cat’s eye flow. The
random parameter A is uniformly distributed on the interval [0, p]. The spectral functions µjk(λ)
are displayed with corresponding effective diffusivities S∗

jk
directly below for various values of p,

increasing from left to right. As p increases and the streamlines of the flow become more elongated
in the x-y direction, on average, the region about the spectral origin λ = 0 with substantial measure
mass increases in breadth and magnitude. This gives rise to a substantial enhancement in the
components S∗

jk
of the effective diffusivity for larger values of the molecular diffusivity ε. The color

scheme of the panels for S∗
jk

is the same as that in Figure 5.

significant magnitude increases in breadth as p increases. This average increase in the
breadth of the region with significant mass gives rise to a substantial enhancement
of the components S∗

jk of the effective diffusivity above the bare molecular diffusivity
values ε δjk. Our results for cat’s eye flow with random A also demonstrate the
influence of resolution L in the numerical computations. In particular, with a decrease
in resolution L from L = 200 in Figures 3 and 4 to L = 100 in Figure 7, we see that
the accuracy of the numerical computations break down for ε ∼ 10−3 with L = 100
instead of ε ∼ 10−4 with L = 200, indicated by a 1/ε divergence. For the continuum
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setting, the limit point of the spectrum at λ = 0 can be discrete with finite or infinite
multiplicity, and can even be continuous [50].

10. Conclusions. In Section 3 we adapted and extended a method [2, 3] that
provides the rigorous Stieltjes integral representations for the symmetric S∗ and anti-
symmetric A∗ parts of effective diffusivity tensor D∗ shown in equation (3.21). These
integral representations involve the molecular diffusivity ε and a spectral measure µjk

of a self-adjoint operator that acts on the Hilbert space of curl-free vector fields. In
Section 4 we considered the discrete, matrix setting of Section 3 for the case that the
matrix Laplacian is of full rank, hence invertible. A detailed matrix analysis showed
that the spectral measure is given in terms of the eigenvalues and eigenvectors of a
Hermitian matrix. In Section 4.2 we provided a projection method which revealed
that many of the spectral weights of the discrete spectral measure are identically zero,
while the others are determined by a much smaller Hermitian matrix. This method
stabilizes and increases the efficiency of numerical computations of µjk, which enables
more accurate computations of the effective diffusivity tensor D∗.

In Section 5 we returned to the continuum setting, adapting and extending a
different method [8, 40] that provides the rigorous Stieltjes integral representations
in equation (3.21), involving the molecular diffusivity ε and a (possibly different)
spectral measure µjk of a self-adjoint operator that acts on a Sobolev space of scalar
fields. In Section 6 we considered the discrete, matrix setting of Section 5 for the
case that the matrix Laplacian is of full rank. A detailed matrix analysis showed that
the spectral measure is given in terms of the generalized eigenvalues and eigenvectors
associated with a pair of Hermitian matrices of the same size as that arising in the
above mentioned projection method.

In Section 7 we used properties of the singular value decomposition of the matrix
gradient ∇ to reveal symmetries between the two discrete approaches formulated in
Sections 4 and 6, proving in Lemma 7.1 that the two approaches are equivalent for the
case that the matrix Laplacian is of full rank. In particular, we proved in Lemma 7.1
that the eigenvalues and generalized eigenvalues underlying the spectral measures for
each method are in fact eigenvalues of a Hermitian matrix arising in both methods.
Moreover, the eigenvectors wn and generalized eigenvectors zn of the two methods are
related by wn = ∇zn, which leads to the equivalence of the discrete spectral measures
of the two approaches.

In Section 8 we generalized Lemma 7.1 to the case that matrix Laplacian is rank
deficient, hence non-invertible. This extends the numerical methods developed in
Sections 4 and 6 to the setting of periodic boundary conditions, for which the matrix
Laplacian is singular. Analytical calculations of D∗ have been obtained for only a few
simple flows. Our results of Section 8 help overcome this limitation by providing the
mathematical foundation for rigorous computation of D∗.

In Section 9 we employed the numerical method formulated in Section 8 to com-
pute the components Sjk, j, k = 1, . . . , d, of S∗ for some model 2D, periodic flows
by directly computing the associated spectral measure Reµjk. As a baseline result,
we computed Sjk and Reµjk for BC-shear-flow, for which the spectral measure is
known [3], having good agreement with the theoretical result. We also computed the
transitional behavior of Sjk and Reµjk for “cat’s eye” flow, which has a free parameter
A, both for the random and non-random settings. Consistent with the symmetries of
the flow, our computations for non-random A indicate that µ11 = µ22. Moreover, our
computations of the components µjk, j, k = 1, 2, of the spectral measure for cat’s eye
flow indicate a deeper symmetry, namely that µ11 = µ22 = |Reµ12|, where |Reµ12|
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is the total variation of the measure Reµ12. Our computations of Sjk are consistent
with these symmetries, as well as rigorous, elementary bounds that we derived from
the analytic properties of the Stieltjes integrals in equation (3.21) and the associated
measures.

Motivated by the theoretical findings in the current work, in [37] we provided a
rigorous extension of the results given here to the setting of a time-dependent fluid
velocity field u = u(t, x). Furthermore, we used abstract methods of functional
analysis to generalize Lemma 7.1 to the continuum, steady and dynamic settings. We
are currently exploring the extension of these methods to the time-stochastic setting,
which is relevant to atmospheric and oceanic flows.
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Appendix A. Properties of the linear operator A. In this section we derive
various properties of the linear operator A = ∆−1[u·∇] defined in equation (5.4). In
particular, we demonstrate that A is antisymmetric on the Hilbert space H1 defined
in (5.2). Moreover, we show that A is bounded on H1 and we provide an upper bound
for ‖A‖1 when u is uniformly bounded on the period cell V.

We first show that the incompressibility condition ∇·u = 0 implies that the
operator A is antisymmetric on H1 [8], 〈Af, h〉1 = −〈f, Ah〉1. On the Hilbert space
H defined in (5.1) the linear operator ∆−1 satisfies 〈∆∆−1f, h〉 = 〈f, h〉, for all f, h ∈
H. Moreover, the operator ∆−1 is bounded and symmetric [48] on H, hence self-
adjoint [45]. Consequently, for all f, h ∈ H1 we have

〈Af, h〉1 = 〈[∇(∆−1)(u·∇)f ]·∇h〉(A.1)

= −〈[(u·∇)f ] h〉
= −〈[∇·(uf)] h〉
= 〈f [(u·∇)h]〉
= 〈f [∆(∆−1)(u·∇)h]〉
= −〈∇f·[∇(∆−1)(u·∇)h]〉
= −〈f, Ah〉1.

Now, we derive the bound on ‖A‖ given in equation (5.8). From the Cauchy-
Schwartz inequality |〈f, h〉| ≤ ‖f‖ ‖h‖ we have that

‖Af‖21 = |〈∇[∆−1(u·∇f)]·∇[∆−1(u·∇f)]〉|(A.2)

= | − 〈[∆−1(u·∇f)] (u·∇f)〉|
≤ ‖∆−1‖ ‖u·∇f‖2 .

We now provide an upper bound for ‖u·∇f‖ when the components uk, k = 1, . . . , d,
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of the fluid velocity field u are uniformly bounded on the period cell V,

‖u·∇f‖2 = |〈u·∇f, u·∇f〉|(A.3)

≤
∑

jk

|〈uj∂jf, uk∂kf〉| (triangle inequality)

≤
[

max
k

sup
x∈V

|uk|2
]

∑

jk

|〈∂jf, ∂kf〉|

≤
[

max
k

sup
x∈V

|uk|2
]

∑

jk

‖∂jf‖ ‖∂kf‖ (Cauchy-Schwartz)

=
[

max
k

sup
x∈V

|uk|2
]

[

∑

j

‖∂jf‖
]2

≤ d
[

max
k

sup
x∈V

|uk|2
]

∑

j

‖∂jf‖2 (Cauchy-Schwartz)

= d
[

max
k

sup
x∈V

|uk|2
]

‖f‖21.

The result in equation (5.8) is now clear.

Appendix B. Derivation of equation (8.9). In this section we provide a
derivation of equation (8.9). Equation (8.7) allows equation (8.2) to be written as
[V1Σ1R1](εI1 + ıΛ1)[V1Σ1R1]

†χj = uj. This and equation (8.5) imply that

VT
1 χj = Σ−1

1 R1(εI1 + ıΛ1)
−1R

†
1Σ

−1
1 VT

1 uj.(B.1)

This formula and ∇ = U1Σ1V
T
1 imply that

∇χj = U1R1(εI1 + ıΛ1)
−1R

†
1Σ

−1
1 VT

1 uj.(B.2)

Therefore, since UT
1 U1 = I1 and R

†
1R1 = I1, we clearly have the first formula in (8.9)

with Z
†
1 = R

†
1Σ

−1
1 VT

1 . From equation (8.7) we have that

〈∇T H∇χj ·χk〉 = 〈ı[V1Σ1R1]Λ1[R
†
1Σ1V

T
1 ]χj ·χk〉 = 〈ı[Σ1R1Λ1R

†
1Σ1]V

T
1 χj ·V

T
1 χk〉.

(B.3)

This formula, R
†
1R1 = I1, ΣT

1 = Σ1, and equation (B.1) clearly imply the second

formula in equation (8.9), with Z
†
1 = R

†
1Σ

−1
1 VT

1 .
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[5] G. A. Baker and P. R. Graves-Morris. Padé Approximants. Encyclopedia of Mathematics and
its Applications. Cambridge University Press, 1996.

40



[6] A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic Analysis for Periodic Structures.
North-Holland, Amsterdam, 1978.

[7] M.R. Beychok. Fundamentals of Stack Gas Dispersion: Guide. The Author, 1994.
[8] R. Bhattacharya. Multiscale diffusion processes with periodic coefficients and an application

to solute transport in porous media. Ann. Appl. Probab., 9(4):951–1020, 1999.
[9] L. Biferale, A. Crisanti, M. Vergassola, and A. Vulpiani. Eddy diffusivities in scalar transport.

Phys. Fluids, 7:2725–2734, 1995.
[10] R. W. Bilger, S. B. Pope, K. N. C. Bray, and J. F. Driscoll. Paradigms in turbulent combustion

research. Proc. Combust. Inst., 30:21–42, 2005.
[11] K. F. Bowden. Horizontal mixing in the sea due to a shearing current. J. Fluid Mech., 21(1):83–

95, 1965.
[12] G. T. Csanady. Turbulent diffusion of heavy particles in the atmosphere. J. Atmos. Sci.,

20(3):201–208, 1963.
[13] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.
[14] E. Di Lorenzo, D. Mountain, H. P. Batchelder, N. Bond, and E. E. Hofmann. Advances in

marine ecosystem dynamics from us globec: The horizontal-advection bottom-up forcing
paradigm. Oceanography, 26(4):22–33, 2013.

[15] A. Fannjiang and G. Papanicolaou. Convection enhanced diffusion for periodic flows. SIAM
Journal on Applied Mathematics, 54(2):333–408, 1994.

[16] A. Fannjiang and G. Papanicolaou. Convection-enhanced diffusion for random flows. J. Stat.
Phys., 88(5-6):1033–1076, 1997.

[17] G. B. Folland. Introduction to Partial Differential Equations. Princeton University Press,
Princeton, NJ, 1995.

[18] G. B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley–Interscience,
New York, NY, 1999.

[19] K. M. Golden and G. Papanicolaou. Bounds for effective parameters of heterogeneous media
by analytic continuation. Commun. Math. Phys., 90:473–491, 1983.

[20] P. R. Halmos. Finite Dimensional Vector Spaces. Van Nostrand–Reinhold, Princeton, NJ,
1958.

[21] E. E. Hofmann and E. J. Murphy. Advection, krill, and antarctic marine ecosystems. Antarctic
Science, 16(04):487–499, 12 2004.

[22] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1990.
[23] M. B. Isichenko and J. Kalda. Statistical topography II. 2D transport of passive scalar. J.

Nonlinear Sci., 4:375–397, 1991.
[24] J. D. Jackson. Classical Electrodynamics. John Wiley and Sons, Inc., New York, 1999.
[25] J. P. Keener. Principles of Applied Mathematics: Transformation and Approximation. Ad-

vanced book program. Westview Press, Cambridge, MA, 2000.
[26] D. Khoshnevisan. Probability. Graduate studies in mathematics. American Mathematical

Society, 2007.
[27] G. Kullenberg. Apparent horizontal diffusion in stratified vertical shear flow. Tellus, 24(1):17–

28, 1972.
[28] J. V. Lukovich, D. G. Babb, and D. G. Barber. On the scaling laws derived from ice beacon

trajectories in the southern beaufort sea during the international polar year - circumpolar
flaw lead study, 2007–2008. J. Geophys. Res.-Oceans, 116(C9):C00G07 (16pp.), 2011.

[29] A. Majda and P. R. Kramer. Simplified Models for Turbulent Diffusion: Theory, Numerical
Modelling, and Physical Phenomena. Physics reports. North-Holland, 1999.

[30] A. J. Majda and P. E. Souganidis. Large scale front dynamics for turbulent reaction-diffusion
equations with separated velocity scales. Nonlinearity, 7(1):1–30, 1994.

[31] D. McLaughlin, G. Papanicolaou, and O. Pironneau. Convection of microstructure and related
problems. SIAM J. Appl. Math., 45:780–797, 1985.

[32] R. M. McLaughlin and M. G. Forest. An anelastic, scale-separated model for mixing, with
application to atmospheric transport phenomena. Phys. Fluids, 11(4):880–892, 1999.

[33] R. C. McOwen. Partial differential equations: methods and applications. Prentice Hall PTR,
2003.

[34] G. W. Milton. Theory of Composites. Cambridge University Press, Cambridge, 2002.
[35] H. K. Moffatt. Transport effects associated with turbulence with particular attention to the

influence of helicity. Rep. Prog. Phys., 46(5):621–664, 1983.
[36] N. B. Murphy, E. Cherkaev, C. Hohenegger, and K. M. Golden. Spectral measure computations

for composite materials. Commun. Math. Sci., 13(4):825–862, 2015.
[37] N. B. Murphy, E. Cherkaev, J. Xin, J. Zhu, and K. M. Golden. Spectral analysis and com-

putation of effective diffusivities in space-time periodic incompressible flows. Submitted,
2016.

41



[38] G. Papanicolaou and S. Varadhan. Boundary value problems with rapidly oscillating coeffi-
cients. In Colloquia Mathematica Societatis János Bolyai 27, Random Fields (Esztergom,
Hungary 1979), pages 835–873. North-Holland, 1982.

[39] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1998.

[40] G. A. Pavliotis. Homogenization theory for advection-diffusion equations with mean flow. PhD
thesis, Rensselaer Polytechnic Institute Troy, New York, 2002.

[41] G. A. Pavliotis. Asymptotic analysis of the Green–Kubo formula. IMA J. Appl. Math., 75:951–
967, 2010.

[42] N. Peters. Turbulent Combustion. Cambridge Monographson Mechanics. Cambridge University
Press, 2000.

[43] P. Rampal, J. Weiss, D. Marsan, and M. Bourgoin. Arctic sea ice velocity field: General
circulation and turbulent-like fluctuations. J. Geophys. Res.-Oceans, 114(C10):C10014
(17pp.), 2009.

[44] P. Rampal, J. Weiss, D. Marsan, R. Lindsay, and H. Stern. Scaling properties of sea ice
deformation from buoy dispersion analysis. J. Geophys. Res.-Oceans, 113(C3):C03002
(12pp.), 2008.

[45] M. C. Reed and B. Simon. Functional Analysis. Academic Press, San Diego CA, 1980.
[46] W. Rudin. Real and Complex Analysis. McGraw-Hill, Inc., New York, NY, 1987.
[47] P. J. Samson. Atmospheric transport and dispersion of air pollutants associated with vehicular

emissions. In A. Y. Watson, R. R. Bates, and D. Kennedy, editors, Air Pollution, the
Automobile, and Public Health, pages 77–97. National Academy Press (US), 1988.

[48] I. Stakgold. Boundary Value Problems of Mathematical Physics. Classics in Applied Mathe-
matics. SIAM, 2000. 2-volume set.

[49] T.-J. Stieltjes. Recherches sur les fractions continues. Annales de la faculté des sciences de
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