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Abstract
Perhaps themost iconic feature ofmelting Arctic sea ice is the distinctive ponds that formon its
surface. The geometrical patterns describing howmelt water is distributed over the surface largely
determine the solar reflectance and transmittance of the sea ice cover, which are key parameters in
climatemodeling and upper ocean ecology. In order to help develop a predictive theoretical approach
to studyingmelting sea ice, and the resulting patterns of light and dark regions on its surface in
particular, we look to the statisticalmechanics of phase transitions and introduce a two-dimensional
random field Isingmodel which accounts for only themost basic physics in the system. The ponds are
identified asmetastable states in themodel, where the binary spin variable corresponds to the presence
ofmelt water or ice on the sea ice surface.With the lattice spacing determined by snow topography
data as the onlymeasured parameter input into themodel, energyminimization drives the system
toward realistic pond configurations from an initially random state. Themodel captures the essential
mechanismof pattern formation of Arcticmelt ponds, with predictions that agree very closely with
observed scaling of pond sizes and transition in pond fractal dimension.

1. Introduction

While snow and ice reflectmost of the sunlight incident onArctic sea ice,melt ponds absorbmost of it. The
ponds largely control the albedo, or solar reflectance of sea ice, as well as its transmittance [1–5], which in turn
impact the heat andmass balances of the ice cover and the partitioning of energy in the upper ocean and lower
atmosphere. The ponds play a critical role in ice-albedo feedback, a keymechanism in the rapid decline of the
summerArctic ice pack [6]. In fact, by accounting for ponds in climate simulations, predicted ice pack volumes
are significantly lower [7], and the yearly Arctic sea iceminimumcan be accurately forecast frommelt pond area
in spring [4]. The impact ofmelt pond evolution extends into the biosphere aswell [8–10], where the ponds act
aswindows for light to shine into the upper ocean, affecting Arcticmarine ecology. Typical pond configurations
are shown infigure 1(a).

There has been significant progress on numericalmodels ofmelt pond evolution [7, 3–5], although current
generationmelt pond parameterizations in climatemodels trackmelt water volume, not howmelt water is
distributed on the ice surface. However, the geometry ofmelt ponds and their spatial patterns impacts various
sea ice and upper ocean processes such as albedo evolution, the break-up offloes, the evolution of thefloe size
distribution, and the patterns of light in and under the ice, which can affect photosynthetic activity and the
ecology ofmicrobial communities.

There are two key, benchmark observations ofmelt pond geometry thatmust be accounted for by a
statistical physics theory ofmelt ponds. Thefirst dates back to the 1998 SHEBA expedition and themeasurement
ofmelt pond sizes from images taken fromhelicopters [11]. The pond size distribution function prob(A)
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exhibits power law scaling A Aprob ~ z( ) with the observed value of the exponent ζ for pond areas in the range
10 m2<A<1000 m2 being about−3/2.

Area-perimeter analysis of images ofmelt ponds fromSHEBA aswell as the 2005Healy–OdenTrans Arctic
Expedition (HOTRAX) has shown that as the ponds grow and coalesce intomuch larger connected structures
they display a transition in fractal geometry [12], evolving from simple Euclidean shapes into complex, self-
similar regionswhose boundaries behave like space-filling curves. The fractal dimension of the boundary curves
transitions from1 to about 2 around a critical area of about 100 m2. In addition to constraining the geometry of
melt pond evolution, the area-perimeter relationship is key to quantifying components of pond growth, such as
vertical versus lateralmelt, regulating the extent of thewater-ice interface where lateral expansion of the ponds
can occur.

Recent work shows that these geometrical characteristics are consistent with behavior exhibited by
continuumpercolationmodels [13–15]. In [16] amelt pond boundary is the intersection of a random surface
representing the snow topographywith a horizontal plane representing thewater level. As the plane rises the
ponds grow and coalesce. An autoregressive class of anisotropic randomFourier surfaces with correlation
parameters based on snowdata provides topographies that yield realistic ponds, the observed transition in
fractal dimension, and a framework to analyze how the shape of the fractal transition depends on topographic
characteristics.

In [17] a voidmodel formelt ponds is introduced, where disks of varying size which represent ice and can
overlap are placed randomly on the plane, with the voids between them representing the ponds. Data on pond
sizes, area fractions, and correlationsmeasured fromhelicopter photos ofmelt ponds are incorporated through
parameters input into themodel. Themodel yields the observed fractal transition and pond size distribution,
and can be used to explore the generality of the behavior.

Here we address the challenge of developing a predictive theoreticalmodel ofmelt pondswhich accounts for
themost basic physics of the system, andwhich yields realistic pond configurations obtained through
minimization of the energy of themodel. After all, we are interested in a solid–liquid phase transition from sea
ice to seawater, albeit over large length and time scales.We turn then to the statisticalmechanics of the Ising
model to introduce such an approach [13, 18]. Only themost essential physics is incorporated—in the sameway
that the original Isingmodel includes only themost basic aspects of a ferromagnet in an externalmagnetic field.

We envision a square lattice of surface patches or pixels ofmelt water or ice, corresponding to the classical
spin up or spin down states, respectively. They are collectively influenced by an external forcing field, and
interact onlywith their nearest neighbors. The energy of themelting sea ice system is expressed similarly to how
the energy of a ferromagnet is estimated in the IsingHamiltonian. Pond-like configurations, or connected
regions of ‘up spins,’ result from a series of energy reducing updates of an initially random state. Glauber spin flip
dynamics guide theflowof configurations toward realisticmelt pond states which are local energyminima, or
metastable states.We remark that while we can estimate the time scale associatedwith a spin flip—that is,
melting or freezing a surface patch under certain conditions, we are not using the presentmodel to directly
describe the time evolution of ponds over themelt season.

Our introduction of amelt pond Isingmodel addresses a central issue in climate science, that is, linkage of
scales. How can knowledge of local interactions be used to predictmacroscopic behavior relevant to large scale,
coarse-grainedmodels? This is the type of fundamental problem that is solved in statistical physics [18, 13] and
homogenization for compositematerials [19, 15]. Illustrating the potentially broad applicability of this

Figure 1.Melt pond configurations and the update step inGlauber dynamics. (a)Helicopter photos ofmelt ponds on sea ice in the
western Beaufort Sea (Perovich). On the left, each side of this 15 July 1998 photo is 826m; on the right, each side of this 14August 2005
photo is 193m. (b) Illustration of the tiebreaker update step inGlauber dynamics.Here each site i is assigned a pre-melt ice height hi,
and colored dark blue forwater (si=+1) andwhite for ice (si=−1). SiteP, to be updated, is adjacent to twowater sitesA andD, and
two ice sitesB andC. Sincewater tends to fill troughs, we require that sP=+1 if hP<0, and−1 otherwise.
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approach, an Isingmodel for tropical convectionwas developed [20] to represent atmospheric processes
unresolved by coarse scale climatemodels.

2. Theoretical framework

First, we recall themost general formof the classical Ising free energy

H s J s s , 1
i

i i
i j

ij i j
,

 å å= - -
á ñ

( )

where i ranges over a two dimensional square lattice with periodic boundary conditions, the si are spin variables
taking the values+1 or−1 corresponding to spin up or spin down, and i j,á ñdenotes nearest neighbors. The
parametersHi and Jij represent the externalmagnetic field and coupling constants, respectively. In ourmelt
pond Isingmodel the state variable is a binary (or spin) variable si such that si=+1 corresponds to absorptive
melt water on the surface of our pixelatedmodel sea ice floe and si=−1 corresponds instead to reflective ice or
snowon the surface. In addition, a temperatureT can be definedwhich characterizes the strength of thermal
fluctuations, but herewe setT=0 assuming for simplicity that environmental noise does not significantly
influencemelt pond geometry. The two dimensional nature of the Isingmodel we consider here ismost relevant
to thinner, flatter first year sea ice, rather than thickermultiyear ice where itmay bemore important to include
three dimensional effects.

To describe nontrivial spin clustering at zero temperature, theHi and/or Jij are chosen as randomvariables;
the resultingmodels are collectively known as disordered Isingmodels [21]. In particular, one recovers the
classical randomfield Isingmodel (RFIM) if theHi are independent random variables and the Jij are constant. At
zero temperature, the system is usually assumed to followGlauber single spin flip dynamics [22]: at each update
step, theflip is accepted if decreases and rejected if increases. The spins are updated until no spin flip can
further decrease. At this point, the systemhas found a localminimumof, known as ametastable state. Note
that this state is not necessarily the ground state, which is the globalminimumof.

Metastable states are especially relevant to physical systems near phase transitions, including supercooled
liquids [23] and atmospheric aerosol particles [24]. On a short time scale, the system appears to be at an
equilibrium state, but on longer time scales, it undergoes transitions between differentmetastable states [25].
For disordered Isingmodels,metastable states have been realized experimentally in, for example, doped
manganites [26] and colossalmagnetoresistivemanganites [27]. Despite their importance, there aremany
unresolved issues concerningmetastable states [22], with analytical results largely restricted to one-
dimension [28].

3. Randomfield Isingmodel

The key factor controllingmelt pond configurations is the pre-melt sea ice topography, represented by random
variables hi. In the spirit of creating order fromdisorder, these variables are assumed to be independent Gaussian
with zeromean and unit variance. The lattice constant a=1 m is specified as the length scale abovewhich
important spatially correlated fluctuations occur in the power spectrumof sea ice topography (see
supplementarymaterials available online at stacks.iop.org/NJP/21/063029/mmedia).We use the following
update rule forGlauber dynamics, depending onwhether there is amajority among the four nearest neighbors
of a chosen site. If amajority exists, the site is updated to alignwith themajority due to heat diffusion between
neighboring sites. Otherwise, we introduce a tiebreaker rule that describes the tendency forwater tofill troughs:
the chosen site is updated to ice if its pre-melt ice height is positive, andwater otherwise; see figure 1(b). This
update rule does not depend on any parameters other than hi.

The above update rule can be restated asminimizing the classical RFIM free energy [29, 30]

h H s Js s , 2
i

i i
i j

i j
,

 å å= - -
á ñ

( ) ( )

with the uniformly appliedfieldH=0 and the coupling constant J ; +¥ see supplementarymaterials for a
brief discussion of the H 0¹ case. To facilitate comparisonwith geophysical observations, the order parameter
will be taken as the pond fraction F, which is defined as the fraction of up spins and therefore related to the
magnetizationM by F=(M+1)/2. At J=0, there is a uniquemetastable state, namely the ground state, given
by si=+1 if hi<H, and si=−1 if hi>H. This process can only yield the correctmelt pond geometry if the
randomvariables hi are highly correlated [16]. As J increases,metastable states appear [31] at a wider range of
pond fractions, with the entire range F 0, 1Î [ ] covered for large enough J. As J  +¥, the two ground states
are given by si=+1 or si=−1 for all i.
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4.Geometry ofmetastable states

Belowwe present numerical results for the zero temperature Glauber dynamics of the RFIM,with the lattice size
taken to be 1024×1024. The input spin configurations si are independent binary variables (Bernoulli trials) that
equal+1with probability Fin and−1with probability F1 in- , where Fin denotes the input pond fraction.Note
that these variables are uncorrelatedwith the hi. Following a randomupdate sequence, theGlauber dynamics
eventually yield ametastable state with output pond fraction Fout. Note that thismetastable state is generically
distinct from the two ground states unless Fin=0 or 1. Figure 2 shows the output configurationswith
Fout=0.15, 0.30, and 0.45, which respectively result from Fin=0.34, 0.42, and 0.48. Thismetastability is
consistent with previous findings from a dynamical systems analysis [32].

The visual resemblance between the simulations infigures 2(a), (c) and the photos infigure 1(a) is now
apparent, particularly in thewell developed pondswhere theminimumenergy configurations of themodel are
quite evolved, coarse-grained and ‘pond-like’ in comparison to the purely random initial states. In the following
wewill analyze in detail the up spin clusters in figure 2(c) at Fout=0.45.

Figure 3(a) shows the log–log plot of the perimeter P versus the areaA for these clusters (shown in physical
units as Pa andAa2). Figure 3(b) shows the pond size distribution function prob(A). It exhibits power law scaling

A Aprob ~ z( ) with the exponent ζ=−1.58±0.03 for pond areas in the range 10 m2<A<1000 m2, in
excellent agreement with the observed value [11] of about−3/2.

A key feature ofmulti-cluster systems is the tendency for smaller clusters to have simple shapes and larger
clusters to have complex shapes. This onset of complexity can be quantified by an increase in the fractal

dimensionD, defined in terms of the perimeter P and the areaA as P A D~ . The input spin configuration
corresponds to a site percolation process with occupation probability Fin<0.5, below the site percolation
threshold of about 0.593 [33]. The Isingmodel takes these purely random states as input and produces the
metastable states represented by the cloud of points infigure 3(a). The upper edge of this cloud has an almost
constant fractal dimension close to the theoretical value of 91/48≈1.896 for site percolation clusters right
below the percolation threshold [33]. Therefore, this upper edge represents the unphysical clusters reminiscent
of the original input, which are least affected by theGlauber dynamics. To identify the physical clusters that
resemble realmelt ponds, we thus choose the lower edge, or equivalently the smallest possibleP for eachA, as
highlighted infigure 3(a).Within this data set, we further exclude both the smaller pondswithA<15 m2which
are affected by the discreteness of the lattice, and the larger pondswithA>400 m2which are subject to
substantial sampling variability because of their rareness.

Figure 3(c) compares our IsingmodelD(A) function (thin solid black curve)with the observed fractal
dimension dependence on area for realmelt ponds (thick gray data curve) [12]. Themodel thin black curve is a
bestfit to the data points in the (A,P)-plane formodel ponds, as in [16]. From this best fit curve wefind that the
transition happens around the inflection point A a 90c

2 » m2. This predicted value agrees well with the
observed value [12] of about 100 m2, with the full observedD(A) for real ponds reproduced infigure 3(d). The
width of the transition regime in Alog( ) infigure 3(c) also agrees well withfigure 3(d). Finally, supplementary
figure 2 displays another quantifier of the onset of complexity that accounts for the entire collection of points in
the (A,P)-plane. It yields the same critical transition area as before.

Figure 2.Melt ponds asmetastable islands of like spins in our randomfield Isingmodel. Simulation results are shown formetastable
states of the RFIMatH=0 and J=5. The output spin configurations are shown on a 128×128 portion of the 1024×1024 lattice
with (a) Fout=0.15; (b) Fout=0.30; (c) Fout=0.45. Pixels are colored blue forwater (si=+1) andwhite for ice (si=−1).
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5. A scheme formore realistic pond boundaries

One discrepancywith observations is that our smallermodel ponds are non-Euclidean on average, namely that
they have an average fractal dimension greater than 1 (see figure 2(c)). To address this issue and better describe
the physical process ofmelt pond formation, we can allow the ice topography hi to co-evolve with the spin
configuration si. A possible evolution scheme is outlined next.

Let us introduce a discrete time index n, and denote the ice topography and the spin configuration at time n
respectively by hi

n and si
n. The evolution from time n to time n+1 proceeds as follows. First, si

n 1+ is determined
as before byminimizing the RFIM free energy, with hi

n being the pre-melt ice topography and si
n being the

input spin configuration. Second, hi
n 1+ is determined by the following formula

h f n h s s g, , , , 3i
n

i
n

i
n

i
n

i
n1 1 1= ++ + +( ) ( )

where the function f and the randomfield g
i
n 1+ represent the deterministic and stochasticmechanisms of the

topography evolution, encompassing internal processes ofmelting and freezing, as well as external influences
such as environmental forcing, drainage processes, seasonal patterns, etc. In this evolution scheme, the system
transitions betweenmetastable states of an evolving free energy landscape, with the equilibration time estimated
to be 4–5 d (see supplementarymaterials).

Here, instead of proposing a realistic expression for the function f, we simply consider f=0 for illustration
purposes. In this case, the hi

n at successive time steps n=0, 1, 2,L are independent (in both space and time)
Gaussian variables with zeromean and unit variance. As shown infigure 4, the boundaries become smoother as
n increases. As a result, the fractal dimensions of the smaller ponds become closer to 1, while for the larger ponds
it remains close to 2, as is evident from comparing figures 3(a) and 4(e). The shapes of the simulated ponds in
figure 4(b) closely resemble those of the observedmelt ponds infigure 4(d). The power law scaling exponent of
the pond size distribution function is found to be ζ=−1.71±0.02, as shown infigure 4(f).

6.Discussion

Ourmelt pond Isingmodel—with only onemeasured input parameter—produces ponds that are not only quite
realistic in appearance, butwith geometrical characteristics that quantitativelymatch very closely the
observations on pond sizes and fractal dimension. This one parameter sets the length of a side of a square pixel in
the lattice, and represents the scale abovewhich the variations in snow topography are significant.Moreover, as

Figure 3.Geometrical characteristics of Isingmodelmelt ponds. Simulation data in thisfigure are for the up-spin clusters in
figure 2(c). (a) Log–log plot of the perimeter P versus the areaA, rendered as a (rescaled) density plot. The lower edge of this cloud of
points, highlighted byfilled black circles, is determined by dividing Alog( ) into bins of size 0.2 and computing theminimumof Plog( )
for each bin. The reference lines have slopes 0.5 and 1, which correspond respectively to the fractal dimensionsD=1 andD=2. (b)
Log–log plot of the pond size distribution function prob(A), with bin size 0.2 and very small pondswithA<5 m2 excluded. The
reference line has slope−1.58. (c)Plot of the fractal dimensionD as a function ofA (log scale) for ourmelt pond Isingmodel (thin
solid curve) comparedwith the data curve (gray) for realmelt ponds in (d) [12]. The solid curve is computed by fitting a suitable
smooth function to the lower edge of the data points in panel (a)within the range 15 m2<A<400 m2. (d) (Reproduced [12]with
permission.) Fractal dimension as a function of area (log scale) based on image analysis of realmelt ponds [12]. In panels (a)–(c),A and
P are shown in physical units with the lattice constant a=1 m, and the number of sites is increased to 8192×8192 to improve the
statistics.
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energy isminimized viaGlauber dynamics themodel creates order from disorder,flowing froma random initial
state to a configurationwith long range order.

The description of complexmelt ponds in terms of a simple disordered systemmaywell advance our ability
tomodel the future trajectory of the Arctic sea ice pack, e.g. through parameterizations in climatemodels. Our
approach based on energyminimization in statisticalmechanics potentially opens new avenues for
incorporating ponds, particularly in higher resolution,micro- andmeso-scalemodels for regions up to
hundreds of kilometers across. Efficient numerical algorithmswhich yield not onlymelt water volume but fast,
accurate information about how it is distributed—based on the ambient conditions, would be broadly useful in
sea ice dynamics, thermodynamics, and ecology. Assumptions aboutmelt pond spatial structure influence the
sub-grid scale spatial pattern ofmelt pond depths,meaning howwater is distributed over the sea ice thickness
distribution. These variations inwater depth in turnmarkedly impact grid scale albedo.

The basicmodel presented here can be augmented to incorporatemore detailed processes, such as the effect
of changes in snow topography—potentially relevant in a changing climate. For example, effects of anisotropy in
the topography can be included, as was studied in detail in [16]. Themelt pond Isingmodel also offers the
potential for efficient yet geometrically sophisticated parameterizations ofmelt ponds and their impact in
climatemodels, as well asmore refinedmodels of sea ice physics and biology. In addition, the statistical physics
approach developed heremay be generalizable to other systems near the transition point between ice andwater,
such as tundra permafrost lakes, where themelting front has been described using a curve-shortening flow [34].

Minimalmodels such as the RFIMnecessarily have limitations.Mathematically, the geometry of a fractal
cannot be fully captured by its interpolation on a lattice. Physically, the RFIM is inherently unable to resolve
processes at length scales smaller than the lattice constant. There, onemay expect narrowwater channels
responsible for connecting smaller ponds into larger ponds. The inability to resolve such features likely causes
the percolation threshold of the RFIM to differ fromobservations. For themetastable states obtained from
random inputs, the percolation threshold is very close to 0.5 atH=0 (see supplementarymaterials). This
threshold decreases asH decreases, but likely always exceeds the value for realmelt ponds.

Figure 4.Time evolution ofmetastable states with an evolving ice topography. Simulation results are shown formetastable states of
the RFIMatH=0 and J=10. The hi

n at n=0, 1, 2,L are assumed to be independentGaussian variables with zeromean and unit
variance. The input configuration si

0 has pond fraction Fin=0.495. The output configurations si
n are shown on a 165×165 lattice at

(a) n=2; (b) n=4; (c) n=8. Pixels are colored blue for water (si=+1) andwhite for ice (si=−1). (d)Aerial image of Arcticmelt
ponds. Each side of this photo is 165m. Panels (e),(f) show the geometric characteristics of the up-spin clusters in panel (b). (e)Log–
log plot of the perimeter P versus the areaA, rendered as a (rescaled) density plot. The reference lines are at the same location as those
in figure 3(a) to facilitate comparison. (f) Log–log plot of the pond size distribution function prob(A), with bin size 0.2 and very small
pondswithA<5 m2 excluded. The reference line has slope−1.71.
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Supplementary Materials for “Ising model for melt ponds on Arctic sea ice”

Spatial scale from snow topography data. — The lattice constant a must be small

relative to the 10-20 m length scales prominent in sea ice and snow topography [35].

We set a = 1 m as the length above which the power spectral density (psd) of observed

snow topography exceeds a null red noise spectrum (Supplementary Fig. 1). For this

calculation, we used 13 radar transects collected during the Surface Heat Budget of

the Arctic Ocean (SHEBA) project [36]. To estimate the psd via the Welch modified

periodogram, we calculated the power spectrum for each transect with a Hanning

window and 50% segment overlap, and then averaged the results across the transects.

We calculated the corresponding null red noise spectrum based on lag-one spatial

autocorrelation [37] averaged across the transects.
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Supplementary Figure 1. Snow depth power spectral density (gray curve) with

corresponding null red noise spectrum (black curve). The lattice constant a = 1 m is

indicated by a vertical dashed line.

Temporal scale from vertical energy balance. — The melt pond system can be

modeled as a thin active layer on top of the bulk sea ice floe, subject to incoming

and outgoing radiation and heat exchange with the bulk. Let R+ be the net radiation

received by water, and R− be the net radiation received by ice:

R+ = ISR+ −OLR, R− = ISR− −OLR, (S1)

where ISR and OLR respectively represent the incoming shortwave radiation and the

outgoing longwave radiation. The former is ISR+ = Q(1− α+) and ISR− = Q(1− α−),

where Q = 460 W ·m−2 is the mean solar insolation during polar summer, and α is

the surface albedo with α+ = 0.1 for water and α− = 0.5 for ice. The latter is

OLR = σ(T + 273)4, where σ = 5.67× 10−8 W ·m−2K−4 is the Stefan-Boltzmann

constant, and the temperature T ≈ 0 Celsius for both water and ice. Therefore we

obtain R+ = 99 W ·m−2 and R− = −85 W ·m−2.
Bulk sea ice as a porous composite of brine and ice on the microscopic scale often

has a temperature just below zero Celsius during the melt season. Meanwhile, the heat

transfer between the bulk sea ice and the active layer of melt ponds is known to be

very efficient. As a result, a patch of water in the active layer always has a temperature
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slightly above zero Celsius due to the positivity of R+, and a patch of ice in the active

layer always has a temperature slightly below zero Celsius due to the negativity of R−.

If external influences such as surface topography and interactions with the

surroundings are present, a patch of water in the active layer can transition into ice,

and vice versa. We assume that the transition of a patch of water to ice is facilitated

by changing the net radiation from R+ to R−, and that the transition of a patch of

ice to water is facilitated by changing the net radiation from R− to R+. The required

energies per unit area to freeze water and to melt ice are respectively E+ = −Lρ+h
and E− = Lρ−h, where L = 3.34× 105 J · kg−1 is the latent heat of fusion, ρ+ =

1× 103 kg ·m−3 is the density of water, ρ− = 9.2× 102 kg ·m−3 is the density of ice,

and h = 0.1 m is a realistic value for the height of the active layer. Therefore, the time

scales required to freeze water and to melt ice under these assumptions are respectively

τw→i = E+/R− = 5 days and τi→w = E−/R+ = 4 days. For example, this rough

estimate gives a time scale of about 20 days, or 4 steps of spin flipping, for a well-

developed network of ponds like those in Fig. 4(b) to evolve, which is reasonable.

Alternative quantifier of the onset of complexity. — To account for the entire

cluster of points in the (A,P )-plane in Fig. 3(a), we define a new quantifier of the

onset of complexity as the variance σ of log (P ), hereafter referred to as the elasticity.

As shown in Supplementary Fig. 2, there exists a critical area Ac such that σ(log (P ))

increases with log (A) for simple ponds with A < Ac, and decreases with log (A) for

complex ponds with A > Ac. The onset of complexity may then be identified with

maximum elasticity, which occurs at Aca
2 ≈ 90 m2. This coincides with the critical

area determined from Fig. 3(c) by the inflection point in the best fit.

10
0
10

1
10

2
10

3
10

4

(l
o
g
(P

))

Aa
2
 (m

2
)

0

0.1

0.2

Supplementary Figure 2. Plot of the variance σ(log (P )) as a function of A (log

scale), with bin size 0.2. The maximum occurs at Aca
2 ≈ 90 m2.

Percolation threshold and correlation length exponent. — For a two dimensional

square lattice with occupation probability p, the site-site correlation function g(ri, rj)

gives the probability that a site at rj is a member of the same cluster as a site at ri.

The function g is assumed to decay with large distance d = |ri − rj| according to

g(d) ∼ exp

(
− d

ξ(p)

)
, (S2)
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Supplementary Figure 3. (a) Probability of percolation as a function of area

fraction. The curve is a hyperbolic tangent fit with inflection point close to 0.5

indicating the percolation threshold pc. (b) Comparison of output from the Ising model

(filled circles) to the line with slope−ν = −4/3 given by the universal correlation length

exponent ν.

where ξ(p) is referred to as the correlation length. Theory indicates that ξ(p) should

obey

ln ξ(p) ∼ −ν ln(|p− pc|), p −→ p−c , (S3)

where ν = 4/3 is the universal critical exponent in two dimensions and pc is the

percolation threshold. For the two-dimensional square site lattice, pc ≈ 0.59274621

[38]. For the RFIM, analysis of 5,000 model realizations on 1024× 1024 lattices yields a

value close to pc = 0.5 (Fig. 3a), with correlation lengths aligning reasonably with the

universal exponent ν = 4/3 (Fig. 3b). This result indicates that the spatial correlation

structure of melt ponds in this model is sufficiently short-ranged so that the system falls

within a standard universality class [15].

Nonzero uniformly applied field. — Let us choose H 6= 0 and keep J → +∞ in the

RFIM given by Eq. (2). Then the tiebreaker rule for a chosen site i changes to si = +1

if hi < H, and si = −1 if hi > H, which favors ice for H < 0 and water for H > 0. Here

we only consider two limiting cases when the tiebreaker rule completely favors ice or

water: (I) 0� −H � J ; (II) 0� H � J . In these cases, the random field hi does not

affect the kinetics, so the RFIM reduces to the classical Ising model without disorder,

H = −H
∑
i

si − J
∑
〈i,j〉

sisj. (S4)

The corresponding metastable states are known as Wulff droplets [39]. In case (I) the

up-spin clusters are more elongated, and the percolation threshold is below 0.5. In

case (II) the up-spin clusters are more circular, and the percolation threshold is above

0.5. These geometrical features afforded by varying H (and possibly also J) provide

additional prospects to describe detailed shapes of real melt pond patterns.

Alternative update rule and free energy. — Let us retain the RFIM update rule

when a majority exists among the neighboring sites, but adopt the following tiebreaker
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rule: the chosen site is updated to ice if its pre-melt ice height is larger than the average

between the two neighboring ice sites, and water otherwise. For example, in Fig. 1(b)

we require that sP = +1 if hP < (hB + hC)/2, and −1 otherwise. This new update rule

can be restated as minimizing an interfacial energy between water and ice: if a water

site i neighbors an ice site j, then a penalty W − hj is imposed, where W � 0 is a

constant. The total free energy H can then be written in two equivalent forms,

H =
∑

〈i,j〉:si>0, sj<0

(W − hj) ≡
∑
i

si∆ih−
∑
〈i,j〉

1

2
sisj(W − Ωijh), (S5)

where ∆i and Ωij represent, respectively, the discrete Laplacian at site i and the average

between sites i, j,

∆ih ≡ hi −
1

4

∑
j:〈i,j〉

hj, Ωijh ≡
1

2
(hi + hj). (S6)

The new “effective” random fields ∆ih, being the curvature of hi, are more correlated

than the hi by themselves. As a result, at output pond fraction Fout = 0.45, the critical

area for the transition in fractal dimension and the critical area for maximum elasticity

are both Aca
2 ≈ 120 m2. The corresponding power law scaling exponent for the pond

size distribution is ζ = −1.57± 0.03.
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