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Abstract

Polar sea ice is a critical component of Earth’s climate system. As a material it is a multiscale
composite with temperature dependent millimeter-scale brine microstructure, and centimeter-
scale polycrystalline microstructure which is largely determined by how the ice was formed.
The surface layer of the polar oceans can be viewed as a granular composite of ice floes in
a sea water host, with floe sizes ranging from centimeters to tens of kilometers. A principal
challenge in modeling sea ice and its role in climate is how to use information on smaller scale
structure to find the effective or homogenized properties on larger scales relevant to process
studies and coarse-grained climate models. That is, how do you predict macroscopic behavior
from microscopic laws, like in statistical mechanics and solid state physics? Also of great
interest in climate science is the inverse problem of recovering parameters controlling small
scale processes from large scale observations. Motivated by sea ice remote sensing, the analytic
continuation method for obtaining rigorous bounds on the homogenized coefficients of two phase
composites was applied to the complex permittivity of sea ice, which is a Stieltjes function
of the ratio of the permittivities of ice and brine. Integral representations for the effective
parameters distill the complexities of the composite microgeometry into the spectral properties
of a self-adjoint operator like the Hamiltonian in quantum physics. These techniques have been
extended to polycrystalline materials, advection diffusion processes, and ocean waves in the sea
ice cover. Here we discuss this powerful approach in homogenization, highlighting the spectral
representations and resolvent structure of the fields that are shared by the two component theory
and its extensions. Spectral analysis of sea ice structures leads to a random matrix theory
picture of percolation processes in composites, establishing parallels to Anderson localization
and semiconductor physics, which then provides new insights into the physics of sea ice.

1 Introduction

The precipitous loss of nearly half the extent of the summer Arctic sea ice cover over the past four
decades or so, since satellite observations started in 1979, is perhaps one of the most visible large-
scale changes on Earth’s surface connected to planetary warming, with significant implications for
the Arctic and beyond [129, 130, 95, 113, 114]. While the response of the sea ice pack surrounding
the Antarctic continent to the changing climate has perhaps not been as clear as in the Arctic,
this past year the summer sea ice extent set a record low [138]. The emerging dynamics of Earth’s
polar marine environments are complex and highly variable. Yet they are increasingly important
to understand and predict, as the sea ice packs form a key component of the climate system, are
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Figure 1: Sea ice as a multiscale composite material. From left to right: millimeter-scale
brine inclusions that form the porous microstructure of sea ice [69]; centimeter-scale polycrystalline
structure of sea ice [2]; melt ponds on Arctic sea ice in late spring and summer (D. Perovich)
turn the surface into a two phase composite of ice and melt water; the sea ice pack as a granular
composite viewed from space (NASA), with “grains” ranging in horizontal extent from meters to
tens of kilometers; the Arctic Ocean viewed from space (NASA).

indicators of our changing climate, and directly impact expanding human activities in these regions.
Sea ice has bearing on almost any study of the physics or biology of the polar marine system, as
well as on almost any maritime operations or logistics. Advancing our ability to analyze, model,
and predict the behavior of sea ice is critical to improving projections of climate change and the
response of polar ecosystems, and in meeting the challenges of increased human activities in the
Arctic [66].

One of the fascinating, yet challenging aspects of modeling sea ice and its role in global climate
is the sheer range of relevant length scales − over ten orders of magnitude, from the sub-millimeter
scale to thousands of kilometers, as indicated in Figure 1. Modeling the macroscopic behavior of
sea ice on scales appropriate for climate models or for process studies depends on understanding
the properties of sea ice on finer scales, down to individual floes and even the scale of the brine
inclusions which control so many of the distinct physical characteristics of sea ice as a material.
Climate models challenge the most powerful supercomputers to their fullest capacity. However,
even the largest computers still limit the resolution to tens of kilometers and typically require
clever approximations and parameterizations to incorporate the basic physics of sea ice [66, 63, 62].
One of the fundamental challenges in modeling sea ice—and a central theme in what follows—is how
to account for the influence of the microscale on macroscopic behavior, that is, how to rigorously
use information about smaller scales to predict effective behavior on larger scales. Here we consider
three different homogenization problems in the physics of sea ice: the classic two phase problem
of brine inclusions in an ice host, sea ice as a polycrystalline material, and advection diffusion
processes such as thermal conduction or nutrient diffusion in the presence of, e.g. convective brine
flow. All of these questions are also of particular interest in polar microbial ecology [134, 121].

We observe that this central problem of studying the effective properties of sea ice is analogous
to the main focus of statistical mechanics where knowledge of molecular interactions or microscopic
laws is used to find collective or macroscopic behavior [135, 36]. Moreover, it also shares fundamen-
tal similarities with homogenization theory for composites where larger scale effective properties
are calculated from knowledge of the microstructure [102, 136, 10, 116, 86]. These fields of physics
and applied mathematics provide a natural framework for treating sea ice in predictive models of
climate, and improving projections of how Earth’s polar ice packs may evolve in the future.

The analytic continuation method (ACM) [12, 100, 56, 60, 102] in particular, yields powerful
integral representations for the effective or homogenized transport coefficients of two component
[56] or multicomponent [57, 53] media. The method exploits the properties of these coefficients
as analytic functions of ratios of the constituent parameters for two phase media, such as the
ratio of the electrical or thermal conductivities, or the complex permittivities. The geometry of
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the composite microstructure is encoded into a self-adjoint operator G through the characteristic
function which takes the values 1 in one component (brine) and 0 in the other (ice). The key
step in obtaining the integral representation, say in the case of electrical conductivity, is to derive
a formula for the local electric field in terms of the resolvent of G, and then apply the spectral
theorem in an appropriate Hilbert space. This representation for the effective conductivity (or
effective complex permittivity) achieves a complete separation between the component parameters
in the variable, and the geometry of the microstructure embedded in the spectral measure of G, the
principal mathematical object in the integral. In a discrete model of a composite, the operator G
becomes a random matrix, whose eigenvalues and eigenvectors can be used to compute the spectral
measure [108].

The Stieltjes or Herglotz structure of the effective parameters and their integral representations
can be exploited to use the moments of the spectral measure, or the correlation functions of the
composite microstructure, to find rigorous bounds on the homogenized transport coefficients [12,
100, 56, 53, 7, 102]. Bounds on the complex permittivity of sea ice as a two phase composite
were first obtained in the context of remote sensing and the mathematical analysis of sea ice
electromagnetic properties [55, 68, 67]. For example, the mass of the spectral measure is the brine
volume fraction. If this is known, then one can obtain elementary bounds in the complex case,
which reduce to the classical arithmetic and harmonic mean bounds for real parameters. If the
material is further assumed to be statistically isotropic, then tighter Hashin-Shtrikman bounds can
be obtained. Even tighter bounds can be obtained when the composite is assumed to have matrix-
particle structure, such as separated brine inclusions in a pure ice host [23, 60], which leads to gaps
in the spectrum of G, and tighter constraints on the support of the spectral measure. In remote
sensing the inverse homogenization problem where knowledge of bulk electromagnetic behavior,
such as measurements of the effective complex permittivity, is inverted to obtain bounds on the
microstructural characteristics such as the brine volume fraction [32, 67, 74] and connectivity [115].
The microscale structure, which determines the spectral measure and the homogenized coefficient,
is thus linked to the macroscopic behavior via the operator G and its spectral characteristics, and
vice versa. In the multicomponent case with three or more constituents, the homogenized transport
coefficients are analytic functions of two or more complex variables, and a polydisc representation
formula was exploited to obtain bounds [57, 53].

The first area of application where the ACM was extended beyond the classical case of two
component and multiphase composites is diffusive transport in the presence of a flow field, which
is widely encountered throughout science and engineering [96, 17, 49, 50, 117, 93, 94, 147]. In
addition to thermal, saline, and nutrient transport through the porous microstructure of sea ice,
large scale transport of ice floes and heat are also advection diffusion processes. Avellaneda and
Majda [3, 4] found a Stieltjes integral representation for the effective diffusivity as a function of the
Péclet number for diffusion in an incompressible velocity field. Based on the approach in [56], they
set up a Hilbert space framework and applied the spectral theorem to a resolvent representation
involving analogues of G and the electric field, where the spectral measure depends on the geometry
of the velocity field, and knowledge of its moments yields bounds on the effective diffusivity. In
[110, 111] we proved novel versions of the Stieltjes formulas, developed a framework to numerically
compute the spectral measures and a systematic method to find its moments − and thus a hierarchy
of bounds, for both the time dependent and independent cases.

In another extension of the ACM to a large class of media, a Stieltjes integral representation and
rigorous bounds for the effective complex permittivity of polycrystalline media were developed in
[75], based on a resolvent formula for the electric field, and earlier observations in [101, 14, 102]. The
bounds assume knowledge of the average crystal orientation and the complex permittivity tensor of
an individual crystal grain. In sea ice, finding the complex permittivity tensor of an individual crys-
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tal involves homogenizing the smaller scale brine microstructure [75]. The polycrystalline structure
of sea ice, as characterized by the statistics of grain size, shape, and orientation, is influenced by
the conditions under which the ice was grown [144, 119, 139]. For example, while sea ice grown in
quiescent conditions tends to have rather large-grained columnar structure, when grown in more
turbulent or wavy conditions it typically has a fine-grained granular structure. These distinctly
different ice types have quite different fluid flow properties [65, 71]. Also, when there is a well-
defined current direction during formation, crystal orientations tend to be statistically anisotropic
within the horizontal plane [145], which can significantly affect the sea ice radar signature, and
measurements of sea ice thickness and properties used to validate climate models [64, 97].

The interaction of ocean surface waves with polar sea ice is a critical process in Earth’s climate
system; its accurate representation is of great importance for developing efficient climate models.
Ice-ocean interactions have become increasingly important in the Arctic with the precipitous de-
clines of summer sea ice extent and increases in wave activity [141], while at the same time the
marginal ice zone (MIZ), which is characterized by strong wave-ice and atmosphere-ice-ocean in-
teractions, has widened significantly [131]. These recent changes can have complex implications for
both sea ice formation and melting [90]. Indeed, the propagation of surface waves through Earth’s
sea ice covers is a complex phenomenon that drives their growth and decay. One of the main
approaches to studying waves in sea ice which is valid when wavelengths are much greater than floe
sizes, is to model the surface layer of the ice-covered ocean as a continuum with effective properties
[9, 84, 140, 106]. Recently this fundamental problem in sea ice physics was homogenized, with
a Stieltjes representation for the effective complex viscoelasticity of the surface layer, based on a
resolvent formula for the local strain field. The integral involves a spectral measure of a self-adjoint
operator depending on the geometry of the floe configurations. If its mass, or ice concentration, is
known then rigorous bounds on the complex viscoelasticity are obtained in [124]. Previously this
effective parameter had only been fitted to wave data. We will leave any detailed discussion of
waves in sea ice to other publications.

Early on in our work in extending the ACM to the above problems in sea ice physics, it was
clear that the classical approach based on bounding effective parameters using the moments of the
spectral measure would in many cases have limited effectiveness. Bounds with only a moment or
two known can be quite wide, particularly for a high contrast in the properties of the constituents,
like in sea ice. We then developed a framework in the classic two phase case for computing the
spectral measure through discretization of the relevant microstructures and finding the eigenvalues
and eigenvectors of the matrix representation of G. By developing the mathematical foundation for
these computations [108] and studying the properties of computed spectral measures for a broad
range of sea ice and other microstructures, like human bone [70], we discovered that the statistics of
the eigenvalues displayed fascinating behavior depending on the connectedness of one of the phases.

The statistical behavior of the spectrum is related to the extent that the eigenfunctions overlap.
A key example is the Anderson theory of the metal-insulator transition (MIT) [1, 48], which provides
a powerful theoretical framework for understanding when a disordered medium allows electronic
transport, and when it does not. Indeed, for large enough disorder the electrons are localized in
different places, with uncorrelated energy levels described by Poisson statistics [126, 88]. For small
disorder, the wave functions are extended and overlap, giving rise to correlated Wigner-Dyson (WD)
statistics [126, 88] with strong level repulsion [73]. In work on the effective complex permittivity
for electromagnetic wave propagation through two phase composites in the long wavelength regime
(or any other transport coefficient like thermal or electrical conductivity), we found an Anderson
transition in spectral characteristics as the microstructure developed long range order in the ap-
proach to a percolation threshold [107]. We observe transitions in localization characteristics of the
field vectors and associated transitions in spectral behavior from uncorrelated Poissonian statistics

4



to universal (repulsive) Wigner-Dyson statistics, connected to the Gaussian Orthogonal Ensemble
(GOE) in random matrix theory. Mobility edges appear, analogous to Anderson localization where
they mark the characteristic energies of the quantum MIT [73]. In [105] a novel class of two phase
composites was introduced, based on Moiré patterns, that display exotic effective properties, and
dramatic transitions in spectral behavior with very small changes in system parameters.

Over the past decade or so we have laid the groundwork for significant advances in the math-
ematical modeling of sea ice processes by developing Stieltjes integral representations for homog-
enized parameters in several new contexts of importance in the physics of sea ice and its role in
climate. We focus on the central role that the spectral measure plays in determining effective be-
havior. The analytic continuation method is a powerful approach in homogenization that provides
a robust mathematical framework for rigorously studying effective properties in the sea ice system.
The body of work that is discussed here will advance our sea ice modeling capabilities and how
sea ice is represented in global climate models, which will improve projections of the fate of sea
ice and the ecosystems it supports. Moreover, the functions we study here in the sea ice context
share the same mathematical properties as effective parameters in many other areas of science and
engineering, so our work will advance knowledge of these other materials as well, as evidenced for
example by [105], [70] and [75].

2 Percolation models.

Connectedness of one phase in a composite material is often the principal feature of the mixture
geometry which determines effective behavior. For example, if highly conducting inclusions are
sparsely distributed, forming a disconnected phase within a poorly conducting encompassing host,
then the effective conductivity will be poor as well. However, if there are enough conducting inclu-
sions so that they form connected pathways through the medium, then the effective conductivity
will be much closer to that of the inclusions. Percolation theory [22, 127, 72, 24] focuses on con-
nectedness in disordered and inhomogeneous media, and has provided the theoretical framework
for describing the behavior of fluid flow through sea ice [65, 69, 62].

Consider the d−dimensional integer lattice Zd, and the square or cubic network of bonds joining
nearest neighbor lattice sites. In the percolation model [22, 127, 72, 24], we assign to each bond
a conductivity σ0 > 0 with probability p, meaning it is open (black), and with probability 1 − p
we assign σ0 = 0, meaning it is closed. Two examples of lattice configurations are shown in Fig. 2.
with p = 1/3 in (a) and p = 2/3 in (b). Groups of connected open bonds are called open clusters.
In this model there is a critical probability pc, 0 < pc < 1, the percolation threshold, at which the
average cluster size diverges and an infinite cluster appears. For the d = 2 bond lattice pc = 1/2.
For p < pc the infinite cluster density P∞(p) = 0, while for p > pc, P∞(p) > 0 and near the
threshold, P∞(p) ∼ (p− pc)

β as p→ p+c , where β is a universal critical exponent. It depends only
on dimension and not on the details of the lattice. Let x, y ∈ Zd and τ(x, y) be the probability
that x and y belong to the same open cluster. Then for p < pc, τ(x, y) ∼ e−|x−y|/ξ(p), and the
correlation length ξ(p) ∼ (pc − p)−ν diverges with a universal critical exponent ν as p → p−c . as
shown in Fig. 2 (c).

The effective conductivity σ∗(p) of the lattice, now viewed as a random resistor (or conductor)
network, defined via Kirchoff’s laws, vanishes for p < pc like P∞(p) since there are no infinite
pathways. as shown in Fig. 2 (e). For p > pc, σ

∗(p) > 0, and near pc, σ
∗(p) ∼ σ0(p− pc)

t, p→ p+c ,
where t is the conductivity critical exponent, with 1 ≤ t ≤ 2 in d = 2, 3 [54, 58, 61], and numerical
values t ≈ 1.3 in d = 2 and t ≈ 2.0 in d = 3 [127]. Consider a random pipe network with fluid
permeability k∗(p) exhibiting similar behavior k∗(p) ∼ k0(p − pc)

e, where e is the permeability
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Figure 2: The two dimensional square lattice percolation model below its percolation threshold of
pc = 1/2 in (a) and above it in (b). (c) Divergence of the correlation length as p approaches pc.
The infinite cluster density of the percolation model is shown in (d), and the effective conductivity
is shown in (e).

critical exponent, with e = t [26, 123, 61]. Both t and e are believed to be universal – they depend
only on dimension and not the lattice. Continuum models like the Swiss cheese model, can exhibit
nonuniversal behavior with exponents different from the lattice case and e ̸= t [76, 52, 127, 122, 85].

3 Analytic continuation for two phase composites.

We now describe the analytic continuation method (ACM) for studying the effective properties of
composites [12, 100, 56, 60]. This method has been used to obtain rigorous bounds on bulk transport
coefficients of composite materials from partial knowledge of the microstructure, such as the volume
fractions of the phases. Examples of transport coefficients to which this approach applies include
the complex permittivity, electrical and thermal conductivity, diffusivity, magnetic permeability,
and elasticity. In [55, 68, 67, 60, 63, 62, 66] rigorous bounds on the complex permittivity of sea ice
were found.

To set ideas we focus on complex permittivity. Consider a two-phase random medium with
local permittivity tensor ϵ(x, ω), a spatially stationary random field in x ∈ Rd and ω ∈ Ω, where Ω
is the set of realizations of the medium. We consider a two-phase locally isotropic medium, where
the components ϵjk, j, k = 1, .., d, of ϵ satisfy

ϵjk(x, ω) = ϵ(x, ω) δjk , (1)

where d is dimension, δjk is the Kronecker delta and

ϵ(x, ω) = ϵ1 χ1(x, ω) + ϵ2 χ2(x, ω) . (2)

Later, we will consider a polycrystalline medium where ϵ is a non-trivial symmetric matrix. Here
χi(x, ω) is the characteristic function of medium i = 1, 2, equaling 1 for ω ∈ Ω with medium i at
x, and 0 otherwise, with χ1 + χ2 = 1. The random electric and displacement fields E(x, ω) and
D(x, ω) satisfy

∇× E = 0 , ∇ ·D = 0 , D = ϵE . (3)

A variational problem establishes that E can be written as E = Ef + E0 satisfying

E = Ef + E0 , ∇× Ef = 0 , ⟨D · Ef ⟩ = 0 , ⟨E⟩ = E0 , (4)

This basically amounts to saying curl-free and divergence-free fields are orthogonal (Helmholtz’s
theorem), but is rigorously established via the Lax-Milgram theorem [56].
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The effective permittivity tensor ϵ∗ is defined as ⟨D⟩ = ϵ∗⟨E⟩, where ⟨·⟩ is ensemble averaging
over Ω or, by an ergodic theorem, spatial average over all of Rd [56]. We prescribe that E0

has direction ek, the kth direction unit vector, and focus on the diagonal coefficient ϵ∗ = ϵ∗kk, with
ϵ∗ = ⟨ϵE ·ek⟩. The key step of the method is to obtain the following Stieltjes integral representation
for ϵ∗ [11, 100, 56, 102],

F (s) = 1− ϵ∗

ϵ2
=

∫ 1

0

dµ(λ)

s− λ
, s =

1

1− ϵ1/ϵ2
, (5)

where µ is a positive Stieltjes measure on [0, 1]. In the variable h = ϵ1/ϵ2, F (s) is a Stieltjes function
[59, 27, 112]. This formula arises from a resolvent formula for the electric field (in medium 1) [108],

χ1E = s(sI −G)−1χ1ek , G = χ1Γχ1, (6)

yielding F (s) = ⟨[(sI −G)−1χ1ek] · ek⟩, where Γ = −∇(−∆)−1∇· is a projection onto the range of
the gradient operator ∇ and ek is the standard basis vector in the kth direction. Formula (5) is the
spectral representation of the resolvent and µ is the spectral measure of the self-adjoint operator
G = χ1Γχ1 on L2(Ω, P ).

A critical feature of equation (5) is that the component parameters in s are separated from the
geometrical information in µ. Information about the geometry enters through the moments

µn =

∫ 1

0
λndµ(λ) = ⟨Gnχ1ek · χ1ek⟩. (7)

Then µ0 = ϕ, where ϕ is the volume or area fraction of phase 1, such as the brine volume fraction,
the open water area fraction or melt pond coverage and µ1 = ϕ(1−ϕ)/d if the material is statistically
isotropic. In general, µn depends on the (n + 1)–point correlation function of the medium. This
integral representation yields rigorous forward bounds for the effective parameters of composites,
given partial information on the microgeometry via the µn [12, 100, 56, 13]. One can also use the
integral representations to obtain inverse bounds, allowing one to use data about the electromagnetic
response of a sample, for example, to bound its structural parameters, such as the volume fraction
of each of the components [98, 99, 32, 27, 148, 20, 31, 41, 70], see Section 5 for more details.

3.1 Spectral measure computations for two phase composites

Computing the spectral measure µ for a given 2D composite microstructure geometry first involves
discretizing a two phase image of the composite into a square lattice filled with 1’s and 0’s corre-
sponding to the two phases. On this square lattice the action of the differential operators ∇ and
∇· are defined in terms of forward and backward difference operators [58]. Then the key operator
χ1Γχ1, which depends on the geometry of the network via χ1, becomes a real-symmetric matrix
M [108]. Here Γ is a (non-random) projection matrix which depends only on the lattice topology
and boundary conditions, and χ1 is a diagonal (random) projection matrix which determines the
geometry and component connectivity of the composite medium [108].

The following theorem provides a rigorous mathematical formulation of integral representations
for the effective parameters for finite lattice approximations of two component composite media.
The electric field decomposition in this theorem is established in Theorem 4 of Appendix A below
and the integral representation in equation (8) is established in Theorem 2.1 of [108].

Theorem 1. For each ω ∈ Ω, let M(ω) = W (ω)Λ(ω)W (ω) be the eigenvalue decomposition of
the real-symmetric matrix M(ω) = χ1(ω) Γχ1(ω). Here, the columns of the matrix W (ω) consist
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Figure 3: Electric field and spectral function for sea ice brine microstructure. Electric fields for
X-ray CT images of 2D cross sections of 3D brine structures in sea ice (top) and corresponding
spectral measures (bottom). As the brine fraction increases the fluid phase becomes increasingly
connected and a delta function singularity in the spectral functions µ(λ) develops at λ = 0. This
provides an electrical signature of brine connectivity, with a substantial increase in the strength
of the electric field as the system attains global connectivity. Here, E0 is taken to be vertically
oriented.

of the orthonormal eigenvectors wi(ω), i = 1, . . . , N , of M(ω) and the diagonal matrix Λ(ω) =
diag(λ1(ω), . . . , λN (ω)) involves its eigenvalues λi(ω). Denote Qi = wiw

T
i the projection matrix

onto the eigen-space spanned by wi and denote δλi
(dλ) the Dirac δ-measure centered at λi. The

electric field E(ω) satisfies E(ω) = E0 + Ef (ω), with E0 = ⟨E(ω)⟩ and ΓE(ω) = Ef (ω), and the
effective complex permittivity tensor ϵ∗ has components ϵ∗jk, j, k = 1, . . . , d, which satisfy

ϵ∗jk = ϵ2(δjk − Fjk(s)), Fjk(s) =

∫ 1

0

dµjk(λ)

s− λ
, dµjk(λ) =

N∑
i=1

⟨δλi
(dλ) χ1Qiêj · êk⟩ . (8)

From Theorem 1, the integral and χ1E in equations (5) and (6) have explicit representations
in terms of the eigenvalues λi and eigenvectors ui of M [108],

χ1E = s
∑
i

√
mi

s− λi
ui , F (s) =

∑
i

〈
mi

s− λi

〉
, mi = |χ1ui · êk|2, (9)

where êk plays the role of a standard basis vector on the lattice. To compute µ a non-standard
generalization of the spectral theorem for matrices is required, due to the projective nature of the
matrices χ1 and Γ [108]. We developed a projection method that shows the spectral measure µ in
(8) depends only on the eigenvalues and eigenvectors of random sub-matrices of Γ of size N1 ≈ ϕN
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Figure 4: Sea ice melt ponds. Melt ponds on the surface of the sea ice (top) (images courtesy
of Don Perovich) and corresponding spectral functions (bottom). As the melt pond area fraction
increases the ice/water composites become increasingly connected and a delta function singularity
in the spectral functions µ(λ) develops at λ = 0.

corresponding to diagonal components [χ1]ii = 1, as the spectral weights mi (Christoffel numbers)
associated with eigenvectors satisfying χ1ui = 0 are themselves zero, mi = 0 [108]. Fortunately,
since these submatrices are much smaller for low volume fractions, this method greatly improves
the efficiency and accuracy of numerical computations of µ.

The measure µ exhibits fascinating transitional behavior as a function of system connectivity.
For example, in the case of a RRN with a low volume fraction p of open bonds, as shown in
Fig. 2a, there are spectrum-free regions at the spectral endpoints λ = 0, 1 [112]. However, as p
approaches the percolation threshold pc [127, 136] and the system becomes increasingly connected,
these spectral gaps shrink and then vanish [112, 82], leading to the formation of δ-components of
µ at the spectral endpoints, precisely [112] when p = pc (and p = 1 − pc in d = 3). This leads
to critical behavior of σ∗ for insulating/conducting and conducting/superconducting systems [112].
This gap behavior of µ has led [59, 112] to a detailed description of these critical transitions in
σ∗, which is analogous to the Lee–Yang–Ruelle–Baker description [6, 59] of the Ising model phase
transition in the magnetization M . Moreover, using this gap behavior, all of the classical critical
exponent scaling relations were recovered [112, 59] without heuristic scaling forms [46] but instead
by using the rigorous integral representation for σ∗ involving µ.

This spectral behavior emerges in all the systems mentioned above, such as the brine microstruc-
ture of sea ice [65, 69, 62] as shown in Fig. 3, melt ponds on the surface of Arctic sea ice [79] as
shown in Fig. 4, and the sea ice pack itself [107]. This also gives rise to critical behavior of the elec-
tric field as shown in Fig. 3 for 2D cross sections of 3D brine microstructure, with E0 taken to be in
the vertical direction. Disconnected and weakly connected examples of brine microstructure have
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small values of the electric field, while strongly connected brine microstructures are characterized
by a substantial increase in the strength of the electric field. A similar behavior of the temperature
gradient ∇T associated with the Stieltjes integral for the horizontal thermal conductivity of melt
ponds atop Arctic sea ice is shown in Fig. 4.

3.2 Generalization to rank deficient setting

In the periodic setting, for example, the matrix Laplacian is singular so the matrix representation
of (−∆)−1 in Γ is not defined. We now extend the mathematical framework developed in [108] to
this setting. To make the connection to the abstract Hilbert space [56] and full rank matrix [108]
settings, we first give relevant details for these cases. Equation (6) for the abstract Hilbert space
setting follows by applying the operator −∇(−∆)−1 to the formula ∇ · D = 0, yielding ΓD = 0.
Equation (6) then follows by using ΓEf = Ef and ΓE0 = 0 [108], since Ef is in the range of Γ and
E0 is constant [111, 110, 108]. The matrix form of ∇·D = 0 is −∇TD = 0, where ∇ now represents
the finite difference matrix representation of the gradient operator and −∇T is the finite difference
representation of the divergence operator, with negative matrix Laplacian given by ∇T∇ [108]. As
before, in [108] we applied the matrix ∇(∇T∇)−1 to the formula −∇TD = 0, yielding ΓD = 0,
where Γ = ∇(∇T∇)−1∇T , and equation (6) follows the same way as before.

Now consider the singular value decomposition of the matrix gradient [111] of size m× n, say,
∇ = UΣV T . Here U is a m × n matrix satisfying UTU = In, Σ is a n × n diagonal matrix
with diagonal entries consisting of the singular values of ∇, and V is a n × n orthogonal matrix
satisfying V TV = V V T = In, where In is the identity matrix of size n. When the matrix gradient
is full rank it has n strictly positive singular values, so Σ is an invertible matrix and the matrix
representation of Γ is given by Γ = UUT . On the other hand, when the matrix gradient is singular
we have Σ = diag(Σ1, 0, . . . , 0), where the diagonal matrix Σ1 contains the n1 strictly positive
singular values of Σ and the rest of the singular values have value 0. Denoting U1 and V1 to be the
columns of U and V corresponding to the diagonal entries of Σ1, we have ∇ = U1Σ1V

T
1 , where Σ1

is invertable and UT
1 U1 = V T

1 V1 = In1 . This enables us to write −∇TD = 0 as −V1Σ1U
T
1 D = 0,

hence UT
1 D = 0 and U1U

T
1 D = 0. Noting that the columns of U1 span the range of the matrix

gradient ∇, the matrix U1U
T
1 is a projection onto the range of ∇ [111]. Defining Γ = U1U

T
1 ,

equation (6) follows the same way as before. This clearly generalizes the full rank setting. More
details are given in the appendix in Section A.

4 Analytic continuation for polycrystalline media

Sea ice is a composite material with polycrystalline microstructure on the millimeter to centimeter
scale. When sea water freezes under turbulent forcing, granular sea ice forms, having small crys-
tals with isotropic orientation angles. Columnar sea ice forms in quiescent conditions, with large
crystals more strongly oriented in the vertical direction. Examples of granular and columnar sea
ice polycrystal microgeometry are displayed in Fig. 5 (a) and (d).

Our analysis of the transport properties of random, uniaxial polycrystalline media [8] in [75] and
a somewhat new formulation presented below shows the underlying, rigorous mathematical frame-
work is a direct analogue of that for two-phase random media discussed in Sec. 3. For simplicity, we
discuss electrical permittivity ϵ, keeping in mind the broader applicability to thermal conductivity
κ, electric conductivity σ, etc. Polycrystalline materials, are composed of many crystallites (single
crystals of varying size, shape, and orientation) that can have different local conductivities along
different crystal axes. In contrast to equation (1), the local permittivity matrix of such media is
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given by [102, 8]

ϵ(x, ω) = R T ΦR , Φ = diag(ϵ1, . . . , ϵd) , (10)

where R(x, ω) is a random rotation matrix satisfying R T = R−1. For example, for d = 2 we have

ϵ = R T

[
ϵ1 0
0 ϵ2

]
R, R =

[
cos θ − sin θ
sin θ cos θ

]
, (11)

where θ = θ(x, ω) is the orientation angle, measured from the direction e1, of the polycrystallite
which has an interior containing x ∈ Rd for ω ∈ Ω. In higher dimensions, d ≥ 3, the rotation matrix
R is a composition of “basic” rotation matrices Ri, e.g. R =

∏d
j=1Rj , where the matrix Rj(x, ω)

rotates vectors in Rd by an angle θj = θj(x, ω) about the ej axis. For example, in three dimensions

R1 =

 1 0 0
0 cos θ1 − sin θ1
0 sin θ1 cos θ1

 , R2 =

 cos θ2 0 sin θ2
0 1 0

− sin θ2 0 cos θ2

 , R3 =

 cos θ3 − sin θ3 0
sin θ3 cos θ3 0
0 0 1

 .
(12)

In the case of uniaxial polycrystalline media, the local permittivity along one of the crystal
axes has the value ϵ1, while the permittivity along all the other crystal axes has the value ϵ2,
so Φ = diag(ϵ1, ϵ2) for 2D (which is the general setting for 2D) and Φ = diag(ϵ1, ϵ2, ϵ2) for 3D.
Equation (10) can be written in a more suggestive form in terms of the matrix C = diag(1, 0, . . . , 0)

ϵ(x, ω) = ϵ1X1(x, ω) + ϵ2X2(x, ω), (13)

which is an analogue of equation (2). Here X1 = R TCR and X2 = R T (I − C)R, where I is the
identity matrix on Rd. Since R T = R−1 and C is a diagonal projection matrix satisfying C 2 = C,
it is clear that the Xi, i = 1, 2, are mutually orthogonal projection matrices satisfying

X T
j = Xj , XjXk = Xjδjk, X1 +X2 = I, (14)

which are also properties of the characteristic functions χj in Sec. 3.
Equations (3) and (4) are also satisfied in this polycrystalline setting [56]. Similar to the

derivation of equation (6) in Sec. 3, a resolvent representation for X1E follows by applying the
operator −∇(−∆)−1 to the formula ∇ · D = 0, yielding ΓD = 0. Then, using ΓEf = Ef and
ΓE0 = 0 [108] yields the following analogue of equation (6)

X1E = s(sI −G)−1X1ek , G = X1ΓX1, (15)

yielding the integral representation in equation (5) for F (s) = ⟨[(sI − G)−1X1ek] · ek⟩. As in the
two component setting, a critical feature of equation (5) is that the component parameters in s are
separated from the geometrical information in µ. Information about the geometry enters through
the moments in equation (7) with G given in (15) and χ1 replaced by X1. The mass µ0 of the
measure µjk is given by

µ0jk = ⟨X1ej · ek⟩, µ0kk = ⟨|X1ek|2⟩, (16)

where the second equality follows from the fact that X1 is a real-symmetric projection matrix.
The statistical average ⟨|X1ek|2⟩ in (16) can be thought of as the “mean orientation,” or as the
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Figure 5: Spectral analysis of polycrystalline media. (a) Cross sections of polycrystalline microstruc-
ture for granular and columnar sea ice. (b) Discrete checkerboard polycrystal microstructure with
isotropic crystallite orientations within the horizontal plane, with small (top) and large (bottom)
crystallite size. Cool and warm colors correspond to low and high displacement fields. (c) The
spectral function, a histogram representation of the spectral measure µ shown along with it’s the-
oretical prediction for such isotropic media [102]. (d) An example value of the complex effective
permittivity of isotropic polycrystalline media captured by first and second order bounds [75].

percentage of crystallites oriented in the kth direction. For example, in the case of two-dimensional
polycrystalline media, d = 2, equation (11) implies that

µ011 = ⟨cos2 θ⟩, µ022 = ⟨sin2 θ⟩, µ012 = ⟨sin θ cos θ⟩. (17)

Generalizing equation (12), with R =
∏d

j=1Rj , to dimensions d ≥ 3 shows that µ0jk is a linear
combination of averages of the form ⟨

∏
i cos

ni θi sin
mi θi⟩, where ni,mi = 0, 1, 2, . . ..

The integral representation (5) for this polycrystalline setting yields rigorous forward bounds for
the effective parameters of composites, given partial information on the microgeometry via the µn
[75, 102], as shown in Fig. 5d below. One can also use the integral representations to obtain inverse
bounds, allowing one to use data about the electromagnetic response of a sample, for example, to
bound its structural parameters, such as the average crystallite orientation [75, 102], see Section
?? for more details.

4.1 Spectral measure computations for uniaxial polycrystalline materials

Computing the spectral measure µ for a given polycrystalline microgeometry first involves discretiz-
ing the composite into a square lattice with vertex values in the range [0, 2π] corresponding to the
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crystallite orientation angles at each vertex location. On this square lattice the action of the differ-
ential operators ∇ and ∇· are defined in terms of forward and backward difference operators [58].
Then the key operator X1ΓX1, which depends on the geometry of the network via X1, becomes
a real-symmetric matrix M . Here Γ is as in Sec. 3.1 and X1 is a banded (random) projection
matrix which determines the geometry of the polycrystalline medium. In this setting, the integral
and X1E in equations (5) and (6) have explicit representations in terms of the eigenvalues λi and
eigenvectors ui of M [108] given by equation (9), and similarly the spectral measure is given by
equation (8), with χ1 replaced by X1.

The following theorem provides a rigorous mathematical formulation of integral representations
for the effective parameters for finite lattice approximations of random uniaxial polycrystaline
media.

Theorem 2. For each ω ∈ Ω, let M(ω) = W (ω)Λ(ω)W (ω) be the eigenvalue decomposition
of the real-symmetric matrix M(ω) = X1(ω) ΓX1(ω). Here, the columns of the matrix W (ω)
consist of the orthonormal eigenvectors wi(ω), i = 1, . . . , N , of M(ω) and the diagonal matrix
Λ(ω) = diag(λ1(ω), . . . , λN (ω)) involves its eigenvalues λi(ω). Denote Qi = wiw

T
i the projection

matrix onto the eigen-space spanned by wi. The electric field E(ω) satisfies E(ω) = E0+Ef (ω), with
E0 = ⟨E(ω)⟩ and ΓE(ω) = Ef (ω), and the effective complex permittivity tensor ϵ∗ has components
ϵ∗jk, j, k = 1, . . . , d, which satisfy

ϵ∗jk = ϵ2(δjk − Fjk(s)), Fjk(s) =

∫ 1

0

dµjk(λ)

s− λ
, dµjk(λ) =

N∑
i=1

⟨δλi
(dλ) X1Qiêj · êk⟩ . (18)

We defer the proof of Theorem 2 to Section B, which holds for both of the settings where
the matrix gradient is full rank or rank deficient. To numerically compute µ a non-standard
generalization of the spectral theorem for matrices is required, due to the projective nature of the
matrices X1 and Γ [108]. In particular, in Section B we develop a projection method that shows
the spectral measure µ in (18) depends only on the eigenvalues and eigenvectors of the upper left
N1 ×N1 block of the matrix RΓRT , where N1 = N/d. These submatrices are smaller by a factor
of d, which improves the efficiency and numerical computations of µ by a factor of d3.

In Fig. 5 computations of the displacement field D are displayed for 2D polycrystaline media for
small and large crystal sizes, along side cross sections of polycrystalline microstructure for granular
and columnar sea ice. When the effective permittivity tensor ϵ∗ is diagonal, such as the setting of
isotropically oriented crystallites, the spectral measure for an infinite system is known in closed form
[102] to be dµ(λ) = (

√
(1− λ)/λ)(dλ/π), as shown in Fig. 5 (c). This measure has a singularity

at λ = 0, which indicates that the material is electrically conductive, on macroscopic length scales
[108, 112]. When the polycrystalline material has isotropic oriented crystallite angles, both the
mass and first moment of the measure µ are known, which enables two nested bounds for ϵ to be
computed [75], as shown in Fig. 5 (d).

5 Inverse homogenization: Inverse problem of recovery informa-
tion about the structure of composites

Developed originally for the effective complex permittivity ϵ∗, the integral representation (5) yields
rigorous forward bounds for the effective permittivity ϵ∗ of two-component composites formed of
materials with permittivity ϵ1 and ϵ2, given partial information on the microgeometry via the
moments µn [12, 100, 13, 56]. One can also use the integral representation to recover information
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about the structure of composite material, this is the problem of inverse homogenization. For
the inverse homogenization, it is important that the representation (5) separates information about
the properties of the phases contained in the parameter s from information about the microgeometry
contained in the measure µ and its moments µn = ⟨Gnχ1ek · χ1ek⟩ (7) via higher-order correlation
functions of the geometry function χ1.

Spectral measure µ and its moments µn contain, in principle, all the geometrical information
about the composite. For example, the mass µ0 is the volume fraction ϕ of the first component in
the composite,

µ0 =

∫ 1

0
dµ(z) = ⟨χ1⟩ = ϕ, (19)

and the fraction of the second phase is 1 − ϕ. Connectivity information is also embedded in the
spectral measure.

The basis for inverse homogenization is provided by the uniqueness theorem [27] which formu-
lates the conditions under which the measure µ in the representation (5) can be uniquely recon-
structed from measured data. For instance, electromagnetic data measured for a range of frequency
of the applied electromagnetic field, are sufficient to uniquely recover the measure µ in (5). Such
data are also sufficient for unique reconstruction of the moments µn [33], provided the permittivity
of one of the phases is frequency dependent. Two major approaches to the inverse homogenization
are the reconstruction of the measure µ [27, 33, 40, 148, 20, 21, 31, 41, 39, 70, 30] (and then
calculating its moments) and inverse bounds for the structural parameters, such as, for example,
the volume fraction of each of the components [98, 99, 34, 32, 27, 33], orientation of the crystals
[75] or connectedness [115] of the structure.

When only a few data points are available, though the uniqueness theorem [27] is not immedi-
ately applicable, one can outline a set of measures consistent with the measurements,

M = {µ : Fµ(s) = 1− ϵ∗/ϵ2}, (20)

and determine an interval confining the first moment of the measure µ providing, for instance, an
interval of uncertainty for the volume fraction of one material. For several data points corresponding
to the same structure of the composite, such as for example, measurements at a few different
frequencies, the bounds for the volume fraction are given by an intersection of all admissible intervals
[34, 32, 137]. When the requirements for the measurements needed to uniquely reconstruct the
spectral measure µ established by the uniqueness theorem are satisfied, the set M is reduced to
one point. But the map from the set of measures to the set of the microgeometries is not unique, and
there is a variety of microstructures generating the same response under the applied field. Different
microgeometries corresponding to the same sequence of moments µ0, µ1, ... are the S−equivalent
structures [27] that are not distinguishable by homogenized measurements.

An equivalent representation for function F (s) in (5) using a logarithmic potential of the measure
µ on the complex plane of variable s is [27]:

F (s) =
∂

∂s

∫
ln |s− z| dµ(z), ∂/∂s = (∂/∂x− i ∂/∂y) , s =

1

1− ϵ1/ϵ2
. (21)

The solution to the inverse problem of recovering the measure µ is constructed solving the mini-
mization problem:

minµ ||Aµ− F ||2 , F (s) = 1− ϵ∗(s)/ϵ2 (22)

where A is the integral operator in (21) or in (5), the norm is the L2−norm, F = F (s), s ∈ C,
is the given function of the measured data, and C is a curve on the complex plane corresponding
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to the frequencies of the applied field. The solution of the minimization problem does not depend
continuously on the data. Unboundedness of the operator A−1 leads to arbitrarily large variations
in the solution, and the problem requires regularization to design a stable numerical algorithm [27].
Regularized inversion schemes and stable reconstruction algorithms to recover µ and its moments
from data on the effective complex permittivity were developed in [27, 28, 33, 20, 31] based on
L2,TV , and non-negativity constraints, and constrained Pade approximation of the measure µ [148].
In application to imaging of bone structure, spectral measures µ computed with the regularization
algorithms based on L2 constrained minimization, from electromagnetic [20, 31, 70] and viscoelastic
[19, 21, 31] data allow to distinguish the samples of healthy and osteoporotic bone via the different
microstructures and the connectivity of the trabecular architecture.

With hydrostatic and deviatoric projections Λh and Λs onto the orthogonal subspaces of the
second order tensors comprised of tensors proportional to the identity tensor and trace-free tensors,
the Stieljtes integral representation was generalized in [31] to the effective viscoelastic modulus
and to two-dimensional viscoelastic polycrystalline materials [29] under the assumption that the
constituents have the same elastic bulk and different (elastic and viscoelastic) shear moduli. This
representation was also used in inverse homogenization [19, 31, 30] for successful recovering the
porosity of a composite from known viscoelastic shear modulus.

Other approaches to the volume fraction bounds include [47, 103, 133] based on estimates for
higher order moments and on variational bounds, as well as direct inversion of known formulas
or mixing rules [14, 89] for effective properties of composites with specific structure, however, an
advantage of the methods discussed here, is their applicability without a priori assumption about
the microgeometry.

Spectral coupling of various properties of composites. An important application of
inverse homogenization is for indirect evaluating properties of materials through cross-coupling
[102]. Different properties of composites are coupled through their microgeometry; this phenomenon
has been known for a long time and used for estimating difficult to measure directly properties, from
available data. The conventional approaches are based on empirical and semi-empirical relations,
such as for instance, Kozeny-Carman or Katz-Tompson. These relations estimate permeability
of a porous material characterizing the microstructure by a ”formation factor” F which relates
properties of one phase in the composite to the effective properties of the material.

In the spectral coupling method [27] based on properties of the Stieltjes representation (5), the
spectral measure µ is associated with the geometric structural function as this is the function that
couples various properties of the same material. The method of spectral coupling [27, 28, 35, 31]
for two component composites based on this coupling of different properties of the composite
through the spectral measure allows us to recover various transport properties of sea ice from the
spectral measures computed using other measured properties. In particular, this approach results
in an indirect method of calculation of the thermal conductivity [35] and hydraulic conductivity of
polycrystalline sea ice, difficult to measure over large scales, from the effective complex permittivity
data (recovered from radar measurements). The spectral coupling was extended to evaluating
viscoelastic properties of two component composite in [31] in application to characterizing bone
properties and microarchitecture.

Inverse homogenization for recovering microstructural parameters from effective property mea-
surements is applicable to problems in remote sensing, medical imaging, non-destructive testing
of materials, and allows for example, to use Synthetic Aperture Radar (SAR) remote sensing for
assessing the structure and transport properties of sea ice.
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Figure 6: Forward and Inverse bounds. (a). Illustration of bounds on the volume fraction of one
component in the mixture derived from first order anisotropic bounds (left panel), and from the
second order isotropic bounds (right panel) for the effective permittivity [32]. The small lens shaped
domains each contain ϵ∗ of the anisotropic (left) and isotropic (right) composites corresponding to
the volume fractions of the first component pl and pu which give the lower and upper bounds for the
fraction of the first material. (b). Center figure shows lower bounds on separation parameter qmin

versus temperature [115], calculated using data of the effective complex permittivity. The inverted
data clearly indicate that as the ice warms, the separations of the brine inclusions decrease. Stars
and squares indicate different sea ice slabs. (c). Polycrystalline bounds [75] for the permittivity
sea ice (left) together with the measured effective permittivity of sea ice in [2]. Comparison of the
polycrystalline bounds with the two-component bounds (right) shows a dramatic improvement over
the classic two-component bounds as the new bounds include additional information about single
crystal orientations. (Notice very different scales on the axes.)

5.1 Bounds for the moments of the spectral measure

The second approach to the inverse homogenization problem is calculating inverse bounds for
the structural parameters, such as, for example, the volume fraction of each of the components
[98, 99, 34, 32, 27], orientation of the crystals [75] or connectedness [115] of the structure. An
analytical approach to estimating the volume fractions of materials in a composite [34, 32, 137]
gives explicit analytic formulas for the first order inverse bounds on the volume fractions of the
constituents in a general composite and second order inverse bounds on the fractions of the phases
in an isotropic composite [32].

The inverse bounds are derived using analyticity of the effective complex permittivity of the

composite. The first order bounds p
(1)
l and p

(1)
u for the volume fraction ϕ give the lower and upper

bounds for the zero moment µ0 of the measure µ or its mass in (19) [34, 32]:

p
(1)
l ≤ ϕ ≤ p(1)u , p

(1)
l = |f |2 Im (s̄)

Im (f)
, p(1)u = 1− |g|2 Im (t̄)

Im (g)
. (23)

Here t = 1− s, f is the known value of F (s), and g is the known value of G(t) = 1− ϵ∗/ϵ1.
First and second order forward and inverse bounds are illustrated in Fig. 6(a) [32] where

first order bounds for the effective complex permittivity of all anisotropic composites that could be
formed from two materials of permittivity ϵ1 and ϵ2 are presented in the left panel, while the second
order isotropic bounds are shown in right panel. The small lens shaped domains each contain the
anisotropic (left) and isotropic (right) mixtures corresponding to the volume fractions ϕ of the first

component equal to p
(q)
l and p

(q)
u , q = 1, 2. The points p

(q)
l and p

(q)
u give the lower and upper bounds

for the volume fraction of the first material in the composite. Superscripts q = 1 and q = 2 indicate
the first and second order bounds.

For a set of data points ϵ∗(k), k = 1, ..., N , corresponding to the same structure the bounds
for the fraction ϕ of the first phase in the composite are given by an intersection of all admissible
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intervals p
(q)
l (k) ≤ ϕ ≤ p

(q)
u (k):

P
(q)
l = max

k
p
(q)
l (k) ≤ ϕ ≤ min

k
p(q)u (k) = P (q)

u , q = 1, 2. (24)

Here p
(q)
l (k) and p

(q)
u (k) are, respectively, lower and upper bounds for the volume fraction ϕ calcu-

lated using the effective complex permittivity ϵ∗(k), and q is the order of the bounds, q = 1 for a
general mixture, q = 2 for an isotropic composite.

In [32] this method was applied to estimating brine volume in sea ice from two data sets of 4.75
GHz measurements of the complex permittivity ϵ∗ of sea ice [2] at −6◦C and −11◦C with fractions
of brine ϕ = 0.036 and ϕ = 0.0205. Sea ice was considered as a composite of three components: pure
ice, brine, and air; the effective complex permittivity of the mixture of ice and air was calculated
with the Maxwell Garnett formula. The first order bounds estimate the brine volume fraction as
0.0213 ≤ ϕ ≤ 0.0664 and 0.0119 ≤ ϕ ≤ 0.0320, for the data set 1 and 2, respectively. The second
order inverse bounds derived with the assumption of 2D isotropy in the horizontal plane give the
following estimates for the brine volume fraction: 0.0333 ≤ ϕ ≤ 0.0422 for the first data set with
brine volume ϕ = 0.036, and 0.0189 ≤ ϕ ≤ 0.0213 for the second data set with volume fraction of
brine ϕ = 0.0205.

First order bounds are further extended to polycrystalline materials and allow to estimate the
mean crystal orientation [75].

5.2 Matrix particle forward and inverse bounds

Another parameter important in characterizing the structure of composite material consisting of
inclusions within a host matrix, is separation between the inclusions. Inclusion separation is an
indicator of connectedness of phases – a key feature in critical behavior and phase transitions; the
separation parameter may be used to estimate closeness to the percolation phase transition.

Composites with non-touching inclusions of one material embedded in a host matrix of different
material are called matrix particle composites. For a matrix particle composite with separated
inclusions tighter bounds on the effective complex permittivity may be obtained. In [115] sea-ice is
considered as a matrix particle composite in which the brine phase contained in separated, circular
discs of radii rb randomly located on a horizontal plane, is surrounded by a “corona” of ice, with
outer radius ri. Such a material is called a q-material, where q = rb/ri. The minimal separation
of brine inclusions is 2(ri − rb) = 2ri(1 − q). In this case, as it is shown in [23], the support of µ
in (5) lies in an interval [sm, sM ], 0 < sm < sM < 1 such that sm = 1

2(1 − q2), sM = 1
2(1 + q2).

The further the separation of the inclusions, the smaller the interval [sm, sM ], and the tighter the
bounds. Smaller q values indicate well separated brine (and colder temperatures as in Fig. 6), and
q = 1 corresponds to no restriction on the separation, with sm = 0 and sM = 1.

Two parameters characterizing the structure of the sea ice composite are volume fraction p
of the brine inclusions and a separation parameter q that quantifies how close the inclusions are
to each other. Using observed values of effective complex permittivity, and inverting the forward
matrix particle bounds, information about these two parameters is obtained in [115] by solving
exactly a reduced inverse spectral problem and bounding the volume fraction of the constituents,
an inclusion separation parameter and the spectral gap of a self-adjoint operator that depends
on the geometry of the composite. Inverse bounds for inclusion separation are shown in Fig. 6
[115], where the lower bound qmin is displayed versus temperature of the sea ice slab. The inverted
data clearly indicate that as the ice warms, the separations of the brine inclusions decrease. It is
remarkable that this important phenomenon is characterized from electromagnetic measurements
through an inversion scheme.
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5.3 Extension to polycrystalline composites

The method of inverse bounds [34, 32, 137] for structural parameters of a composite from mea-
sured effective properties was extended to polycrystalline materials in [75]. In the case of uniaxial
polycrystalline composite, [75] develops bounds for the mean orientation of crystals in the sea ice
from measured values of ice permittivity. As columnar and granular microstructures have different
mean single crystal orientations [144] this inverse approach is useful for determining ice type when
using remote sensing techniques.

The structures of different types of ice formed under different environmental conditions vary
tremendously. For instance, for congelation ice frozen under calm conditions, the crystals are
vertically elongated columns, and each crystal itself is a composite of pure ice platelets separating
layers brine inclusions. The orientation of each crystal is determined by the direction that the c-axis
points, which is perpendicular to the platelets. Finding the bounds for the crystals orientation we
can electromagnetically distinguish columnar ice from granular ice. This is a critical problem in sea
ice physics and biology, as these different structures have vastly different fluid flow properties (with
5% vs. 10% brine volume fraction at the percolation threshold) which affects melt pond evolution,
nutrient replenishment, brine convection, and other mesoscale processes in the ice cover.

Bounds for the effective permittivity of polycrystalline composites are much tighter than those
bounding the permittivity of a general two-component material and statistically isotropic two-
component material for sea ice. Such polycrystalline bounds constructed in [75] are shown in two
right panes of Fig. 6(c). Polycrystalline bounds for the permittivity sea ice (left) [75] (with the
measured data on permittivity of sea ice [2]) provide a much tighter bound than general two-
component material and statistically isotropic two-component material for sea ice given on the
right (notice a different scale). This dramatic improvement over the classic two-component bounds
is due to additional information about single crystal orientations included in the new bounds.

As was discussed in the polycrystal section, the zero moment µ0kk in (16) of the measure µ
in the integral representation of the effective properties of a uniaxial polycrystalline material is
µ0kk = ⟨|X1ek|2⟩. The statistical average ⟨|X1ek|2⟩ can be viewed as the “mean crystal orientation”
related to the percentage of crystallites oriented in the kth direction.

Extending the inverse bounds method [34, 32, 137] to polycrystalline materials, the inverse
polycrystalline bounds [75] estimate the mean crystal orientation by bounding the zero moment
µ0kk of the measure µ using measured data on the ice permittivity. This procedure gives an analytic
estimate (the first order inverse bounds) for the range of values of the mean crystal orientation
similar to (23):

⟨eTkX1ek⟩l ≤ ⟨eTkX1ek⟩ ≤ ⟨eTkX1ek⟩u ,

⟨eTkX1ek⟩l = |f |2 Im(s)

Im(f)
, ⟨eTkX1ek⟩u = 1− |g|2 Im(t)

Im(g)
, (25)

Here X1 is defined in the polycrystalline section as X1 = R TCR, f is the known value of F (s) and
g is the known value of G(t) = 1− ϵ∗/ϵ1 with t = 1− s.

Inverse polycrystalline bounds computed in [75] for different types of sea ice, granular and
columnar ice, show that the method allows revealing the type of ice based on electromagnetic data.
For statistically isotropic granular ice shown in Fig. 5(a)-top, the inverse mean crystal orientation
bounds [75] estimate the deviation angle as π/2 ± .02 (with the true value π/2). The inverse
mean crystal orientation bounds [75] for columnar ice (see Fig. 5(a)-bottom), estimate the angle of
deviation of the crystal’s axis from the vertical as 20o ± 8o. These results demonstrate a significant
difference in the reconstructed mean orientations of crystals in columnar and in granular ice and
provide a foundation for distinguishing the types of ice using electromagnetic measurements.
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Generalization of these polycrystalline bounds to the case when c-axis has a Gaussian distri-
bution with known mean angle and the variance in the horizontal plane is developed in [97] as
a method for obtaining bounds on effective permittivity of columnar sea ice that has a preferred
direction in the horizontal plane due to a prevailing ocean current.

6 Analytic continuation for advection diffusion processes.

The enhancement of diffusive transport of passive scalars by complex fluid flow plays a key role in
many important processes in the global climate system [142] and Earth’s ecosystems [44]. Advection
of geophysical fluids intensifies the dispersion and large scale transport of heat [104], pollutants [38,
15, 125], and nutrients [44, 78] diffusing in their environment. In sea ice dynamics, where the
ice cover couples the atmosphere to the polar oceans [142], the transport of sea ice can also be
enhanced by eddy fluxes and large scale coherent structures in the ocean [143, 91, 45]. In sea ice
thermodynamics, the temperature field of the atmosphere is coupled to the temperature field of
the ocean through sea ice, a composite of pure ice with brine inclusions whose volume fraction and
connectedness depend strongly on temperature [134, 69, 62]. Convective brine flow through the
porous microstructure can enhance thermal transport through the sea ice layer [92, 146, 87].

Over the years a broad range of mathematical techniques have been developed that reduce
the analysis of complex composite materials, with rapidly varying structures in space, to solving
averaged, or homogenized equations that do not have rapidly varying data, and involve an effective
parameter. Motivated by [116], the effective parameter problem was extended to complex velocity
fields, with rapidly varying structures in both space and time, yielding the effective (eddy) viscosity
and the effective (eddy) diffusivity tensors [96]. The effective parameter problem of (anomalous)
super–diffusion and sub–diffusion is given in [17, 51]. Based on [96], Avellaneda and Majda [3,
4] adapted the ACM [56] to the advection diffusion equation and obtained a Stieltjes integral
representation of the effective diffusivity tensor D∗, for flows with zero mean drift, involving the
Péclet number ξ of the flow. This representation encapsulates the geometric complexity of the
flow in a spectral measure associated with a random Hermitian operator (or matrix). Mimicking
methods developed for composite media [102], they obtained rigorous bounds on the components
of D∗. Moreover, in direct analogue of methods developed for composites [102], they also found
velocity fields which realize these bounds, such as the famous confocal sphere configurations which
realize the Hashin–Shtrikman bounds of composites [77, 4]. Remarkably, this method has also been
extended to time dependent flows [5], flows with incompressible nonzero effective drift [117, 49],
flows where particles diffuse according to linear collisions [118], and solute transport in porous
media [16], which has a direct application to diffusive brine advection in sea ice. All yield Stieltjes
integral representations of the symmetric and, when appropriate, the antisymmetric part of D∗.

We now briefly describe our recent results on this framework [87, 110, 111]. It is an important
example of how Stieltjes integral representations can provide a rigorous basis for analysis of problems
for sea ice involving advection diffusion processes. The dispersion of a cloud of passive scalars with
density ϕ(t, x) diffusing with molecular diffusivity ε and being advected by a incompressible velocity
field u(t, x) satisfying ∇·u = 0 is described by the advection-diffusion equation

∂ϕ

∂t
= u · ∇ϕ + ϵ∆ϕ, ϕ(0, x) = ϕ0(x). (26)

Here, the initial density ϕ0(x) and the fluid velocity field u are assumed to be given. In equation (26),
the molecular diffusion constant ε > 0, d is the spatial dimension of the system, ∂t denotes partial
differentiation with respect to time t, and ∆ = ∇·∇ = ∇2 is the Laplacian. Moreover, ψ·φ = ψ Tφ,
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ψ T denotes transposition of the vector ψ, and φ denotes component-wise complex conjugation,
with ψ·ψ = |ψ|2. Later, we will use this form of the dot product over complex fields, with built in
complex conjugation. However, we emphasize that all quantities considered in this section are real-
valued. The random paths of the tracer particles are determined [50] by the stochastic differential
equation

dx(t) = u(t, x(t))dt+
√
2ε dW (t), x(0) = x0, (27)

with the initial tracked tracer particle location x0 given and W (t) is standard Brownian motion
(the Wiener process). Non-dimensionalizing and homogenizing (26) shows [96] that the effective
behavior of thermal transport in sea ice is described by a diffusion equation involving an averaged
scalar density ϕ̄ and a symmetric, constant [117] effective diffusivity tensor κ∗ [132],

∂T̄ (t, x)

∂t
= ∇ · [κ∗∇T̄ (t, x)], T̄ (0, x) = T0(x). (28)

For simplicity, we focus on a diagonal coefficient κ∗kk, k = 1, . . . , d, of κ∗, set κ∗ = (κ∗)kk, and
write u = u0v involving the non-dimensional velocity field v. In these non-dimensional variables
the Péclet number ξ and molecular diffusivity ε are related by ξ = 1/ε [110].

Using a mathematical framework that is strikingly similar to that in Section 3, the effective
diffusivity has the following Stieltjes integral representation [96, 4, 110, 111]

κ∗ = ε(1 + ⟨|∇wk|2⟩), ⟨|∇wk|2⟩ =
∫ ∞

−∞

dν(λ)

ε2 + λ2
, (29)

where ⟨·⟩ denotes averaging over the space-time period cell for periodic flows [110, 111] or statistical
average for random flows [3, 5]. An equivalent statement which emphasizes the connection to the
two component composites setting in equation (5) is

F (ε) = 1− κ∗

ε
=

∫ ∞

−∞

dν(λ)

ε2 + λ2
. (30)

Remarkably, the vector field E(t, x) = ∇wk(t, x) + ek satisfies equation (3) for two-component
composite materials, with D = ϵE, ϵ = εI + S, S = (−∆)−1∂t + H, and ϵ plays the role of the
medium’s electrical permittivity tensor [110, 111]. Here, H(t, x) is the stream matrix, given in
terms of the incompressible velocity field v = ∇·H and satisfies HT = −H [4, 3]. When the flow is
time-independent, v = v(x), then wk = wk(x) and S = H(x). Moreover κ∗ = ϵ∗, with ϵ∗ = (ϵ∗)kk
defined above [110]. The integral representation for κ∗ in Equation (29) follows from the resolvent
formula

∇wk = (εI + iΓSΓ)−1gk, gk = −ΓHek (31)

which is an analogue of Equation (6). The self-adjoint operator iΓSΓ, where i =
√
−1 is the

imaginary unit, involves the same projection operator Γ = −∇(−∆)−1∇· as the setting of two-
component composites. Equation (29) shows that brine advection enhances the thermal diffusivity
(and the thermal conductivity) of sea ice, since κ∗ ≥ ε.

Analytical calculations of the spectral measure ν are extremely difficult except for simple flows
like shear flow [4]. However, Padé approximents [L/M ] provide rigorous, converging upper and
lower bounds [7] for the Stieltjes function f(z) = ⟨|∇wk|2⟩/z = F/z in Equations (29) and (30),
with z = ε−2, using the moments νn of ν, [M − 1/M ] ≤ f(z) ≤ [M/M ], f(z) =

∑∞
n=0(−1)n ν 2n z

n.
However, the lack of a method to calculate the moments νn of ν has impeded progress on obtaining
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Figure 7: Spectral behavior of homogenized diffusivities. (a) Streamlines for BC-flow with
velocity field v = (C cos y,B cosx) and B = C = 1. (b) Padé approximant upper κ∗[M/M ] and
lower κ∗[M − 1/M ] bounds for κ∗, for various values of M , calculated for BC-flow with C = B, as
a function of the flow strength B. (c) The spectral function (spectral masses mj versus eigenvalues
λj) computed via analogues of equations (9) and (18) [110].

explicit bounds for specific flows using this procedure [4, 3] since 1991! We have recently developed
a mathematical framework [109] that can be used to compute, in principle, all of the moments νn
associated with a spatially or space-time periodic brine velocity field v, hence Padé approximant
bounds. Results for BC-flow, with v = (C cos y,B cosx) and B = C are shown in Figure 7(c).

6.1 Spectral measure computations for advection diffusion processes.

We have extended our numerical methods discussed for the two component media to compute the
spectral measure ν for spatially periodic flows [110]. Computing the spectral measure µ for a given
flow involves discretizing the spatially dependent stream matrix H(x), which becomes a banded
antisymmetric matrix satisfying HT = −H. The projection matrix Γ is given by that in Section
3.1 and the key self-adjoint operator is given by G = iΓHΓ, which becomes a Hermitian matrix.
In this case, the integral in (29) and the resolvent in (31) are given in terms of the eigenvalues and
eigenvectors of the matrix

∇wk =
∑
i

√
mi

ε− λi
ui , ⟨|∇wk|2⟩ =

∑
i

〈
mi

ε2 + λ2i

〉
, mi = |ui · gi|2 , (32)

which is analogous to equation (9). We have also developed Fourier methods for computing the
spectral measure ν for space-time periodic flows [110].

These computations show that the origin in the space of the spectral parameter λ for advection
diffusion plays the role of the spectral endpoints 0 and 1 for composite materials, with an increase
in spectral mass giving rise to an advection-driven enhancement of effective diffusivity above the
bare molecular diffusivity ε. For example, the closed streamlines of BC-cell-flow with fluid velocity
field v = (C cos y,B cosx) and B = C = 1 transport tracers in a short range periodic motion so
long range transport is only possible due to molecular diffusion. Consequently, in the advection
dominated regime with ε≪ 1 (or Péclet number ξ ≫ 1) the effective diffusivity scales as κ∗ ∼ ε1/2

[49, 50, 111], vanishing as ε → 0. As shown in Fig. 7(a), this is reflected in the spectral measure
ν by the lack of adequate mass near λ = 0 for the singular integrand 1/(ε2 + λ2) to overcome the
multiplicative factor of ε for κ∗ = ε(1 + ⟨|∇wk|2⟩) in (29).

On the other hand, when B ̸= C the streamlines elongate and connect to neighboring cells
which gives rise to long range advection of tracers, even in the absence of molecular diffusion. This
is reflected in the spectral measure by a buildup of adequate mass near λ = 0 for the singular
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Figure 8: Eigenvalue spacing statistics for the sea ice melt ponds (a) and long range eigenvalue
statistics for brine structures in sea ice (b). (a): Eigenvalue spacing distributions (ESD) P (z) for
melt ponds shown in Figure 4 corresponding to melt water area fractions 9%, 27%, and 57%. (b):
Spectral statistics for brine structures shown in Figure 3 corresponding to area fractions of water
12%, 51%, and 70%. We see the transition to universal Wigner-Dyson statistics as ocean phases
and brine phases become connected over the scale of the sample.

integrand 1/(ε2 + λ2) to overcome the multiplicative factor of ε for κ∗ = ε(1 + ⟨|∇wk|2⟩) in (29),
leading to a non-zero value of κ∗ in the limit ε→ 0. This is a key example of how the behavior of
the spectral measure ν governs the behavior of the bulk transport coefficient κ∗.

7 Random matrix theory for sea ice physics.

In random matrix theory (RMT) [73, 18, 42], long and short range correlations of the bulk eigenval-
ues away from the spectral edge [25, 73] for random matrices are measured using various eigenvalue
statistics [73, 18], such as the eigenvalue spacing distribution (ESD) and the spectral rigidity ∆3

and number variance Σ2. To observe statistical fluctuations of these bulk eigenvalues about the
mean density, the eigenvalues must be unfolded [18, 73, 25, 120]. The localization properties of
the eigenvectors are measured in terms of quantities such as the inverse participation ratio (IPR)
[120, 48].

In [107], we found that as a percolation threshold is approached and long range order develops,
the behavior of the ESD transitions from uncorrelated Poissonian toward obeying universal Wigner-
Dyson (WD) statistics of the Gaussian Orthogonal Ensemble (GOE). The eigenvectors de-localize,
and mobility edges appear [107], similar to the metal/insulator transition in solid state physics.
We explored the transition in the 2D and 3D RRN, as well as in sea ice microstructures such as in
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Figure 9: Eigenvector localization for arctic melt pond microstructure. The IPR’s of eigenvectors
uj associated with the melt pond microstructure shown above plotted versus eigenvalue index j
and increasing connectedness from left to right. The vertical lines define the δ-components of µ
while the horizontal lines mark the IPR value IGOE = 3/N1 for the Gaussian orthogonal ensemble
(GOE) with matrix size N1 ≈ ϕN , where N = Ldd.

2D discretizations of the brine microstructure of sea ice [65, 69, 62], melt ponds on Arctic sea ice
[79], the sea ice pack itself, and porous human bone [70, 83, 20, 31].

For highly correlated WD spectra exhibited by, for example, real-symmetric matrices of the
GOE, the nearest neighbor ESD P (z) is accurately approximated by P (z) ≈ (πz/2) exp(−πz2/2),
which illustrates eigenvalue repulsion, vanishing linearly as spacings z → 0 [73, 128, 25]. In contrast,
the ESD for uncorrelated Poisson spectra, P (z) = exp(−z), allows for significant level degeneracy
[73]. In Fig. 8(a) we display the ESDs for Poisson (blue) and WD (green) spectra, along with
the behavior of the ESDs for the matrix M = χ1Γχ1, corresponding to the arctic sea ice melt
ponds in Fig. 4 with fluid area fraction ϕ. It shows that for sparsely connected systems, the
behavior of the ESDs is well described by weakly correlated Poisson-like statistics [25]. With
increasing connectedness, the ESDs transition toward highly correlated WD statistics with strong
level repulsion. This behavior of the ESD reveals a mechanism for the collapse in the spectral gaps
of µ. For sparsely connected systems, the weak level repulsion allows for significant level degeneracy
and resonances in µ as shown in [108] for the 2D percolation model an in Fig. 4 for arctic melt pond
microstructure. As the system becomes increasingly connected, the level repulsion increases causing
the eigenvalues to spread out which, in turn, causes the gaps in the measure near the spectral edges
to collapse and subsequently form δ-components of the measure at the spectral endpoints λ = 0, 1.
Our computations of ∆3 and Σ2 are are shown in Fig. 8(b) for the brine microstructure in Fig. 3,
with a transition toward that of the GOE, as the system becomes increasingly connected, indicating
an increase in the long range correlations of the eigenvalues.

The eigenvectors uj ofM = χ1Γχ1, associated with the N1×N1 sub-matrices of Γ, also exhibit a
connectedness driven transition in their localization properties. The IPR is defined as Ij =

∑
i |uij |4,

i, j = 1, . . . , N1, where u
i
j is the ith component of uj . Eigenvectors of matrices in the GOE are

known to be highly extended [42], with asymptotic value of the IPR given by IGOE = 3/N1 [120].
In [107], we found for the 2D and 3D percolation models that as p surpasses pc and long range order
is established in a RRN “mobility edges” form in the eigenvector IPR with a sudden increase in
the number of extended eigenvectors, which is analogous to Anderson localization, where mobility
edges mark the characteristic energies of the MIT [73]. Remarkably, the mobility edges for RRN are
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due to very extended eigenstates associated with δ-components that form at the spectral endpoints
precisely at the percolation threshold pc (and 1 − pc for 3D) [112], which control critical behavior
in insulator/conductor and conductor/superconductor systems [112, 37, 14]. This phenomenon is
shown for arctic melt pond microstructure in Fig. 9.

8 Conclusions

We have given a tour through various problems of sea ice physics concerned with homogenization
and how they can be rigorously addressed with the powerful analytic continuation method and its
extensions. The effective complex permittivity of sea ice treated as a two phase composite of pure
ice with brine inclusions, or treated as a polycrystalline material, and the effective diffusivity for
advection diffusion problems, are all Stieltjes functions of their variables. We showed how these
functions have integral representations involving spectral measures which distill the mixture or
velocity field geometries into the spectral properties of a self adjoint opeartor like the Hamiltonian
in quantum physics. These spectral representations have been used to obtain rigorous forward and
inverse bounds on effective transport coefficients for sea ice, and to develop a random matrix theory
picture which uncovers parallels with Anderson localization and quantum transport in disordered
media.
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Appendix

A Existence of field decompositions

In this section, for the discrete setting in Sections 3.1 and 4.1, we prove that there exists an electric
field E satisfying discrete versions of equations (3) and (4). Towards this goal, we follow [81] and
consider the finite difference representations of the partial differential operators ∂i → Ci, i = 1 . . . , d,
where d denotes dimension. The matrices Ci depend on boundary conditions which, without loss
of generality, we take to be periodic boundary conditions. Denote the matrix representation of the
gradient operator (using Matlab vertical block notation) by ∇ = [C1; . . . ;Cd]. The discretization
of the divergence operator is given by −∇T and the discrete curl operator is given by [81]

C =

 O −C3 C2

C3 O −C1

−C2 C1 O

 for 3D, (33)

C = [−C2, C1] for 2D.
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The operators Ci, i = 1, 2, 3, in (40) are normal and commute with each other [81],

CT
i Cj = CjC

T
i and CiCj = CjCi, for i, j = 1, 2, 3. (34)

Consequently, the discrete form of equations (3) and (4), which we’ll establish in this section, is

CE = 0, −∇TJ = 0, J = ϵE, E = Ef + E0 , CEf = 0 , ⟨J · Ef ⟩ = 0 , ⟨Ef ⟩ = 0 , (35)

where in this finite size discrete setting, ⟨·⟩ denotes volume average followed by ensemble average
[108, 111]. To set notation, denote by Ran(B) and Ker(B) the range and kernel (null space) of
the matrix B, respectively [80]. Therefore, we seek to prove there exists a vector E satisfying
E ∈ Ker(C) such that E = Ef +E0, where Ef ∈ Ker(C) and ⟨Ef ⟩ = 0 so ⟨E⟩ = E0. Moreover, we
seek to find a vector J ∈ Ker(∇T ) satisfying J = ϵE and ⟨J · Ef ⟩ = 0.

We now summarize some useful identities relating the discrete representations of the gradient,
divergence, and curl operators which follow from these properties of the matrices Ci [81],

∆ = ∇ · ∇ → −∇T∇ , (36)

∆ = diag(∆, . . . ,∆) → Id ⊗ (∇T∇) ,

∇×∇× → CTC ,

∇×∇× = ∇(∇·)−∆ → −∇∇T + Id ⊗ (∇T∇) ,

∇ · (∇×) → −∇TCT = 0 ,

∇×∇ → C∇ = 0 ,

where ⊗ denotes the Kronecker product. The last two identities∇TCT = 0 and C∇ = 0 in equation
(36) indicate that

Ran(CT ) ⊆ Ker(∇T ) , Ran(∇) ⊆ Ker(C) (37)

We can now restate our goal in (35) as, find ”potentials” φ and ψ such that the vectors E and
J in equation (35) satisfy E = Ef + E0 with Ef = ∇φ and E0 ∈ Ker(∇), and J = CTψ + J0,
where J0 ∈ Ker(CT ). The last two identities (36) provide a relationship between rank and kernel
of the operators C, ∇, and their transposes. The fundamental theorem of linear algebra provides
a relationship between the range of a matrix A and the kernel of it’s transpose AT , which will be
useful later in this section.

Theorem 3 (Fundamental theorem of linear algebra). Let A be a real valued matrix of size m×n
then

Rm = Ran(A)⊕Ker(AT ) , Rn = Ran(AT )⊕Ker(A) , (38)

where ⊕ indicates Ran(A) is orthogonal to Ker(AT ), i.e., Ran(A) ⊥ Ker(AT ), for example.

Applying Theorem 3 to the matrices ∇ and CT indicates that Rm = Ran(∇) ⊕ Ker(∇T ) and
Rm = Ran(CT ) ⊕ Ker(C). Therefore, from equation (37) we have that divergence-free fields are
orthogonal to gradients (curl-free fields) and curl-free fields are orthogonal to Ran(CT ) (divergence-
free fields). This is a discrete version of the Helmholz Theorem, which states that curl-free and
divergence-free fields (or, in other words, the gradient and cycle spaces) are mutually orthogonal.
This also establishes the important relationship

Ran(CT ) ⊥ Ran(∇) . (39)
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Orthogonal bases can be given for each of the mutually orthogonal spaces in equation (38)
through the singular value decomposition (SVD) [80] of the matrix A = UΣV T , which also provides
important information relating the matrices C, ∇, etc. Here U and V are orthogonal matrices of
size m×m and n×n satisfying UTU = UUT = Im and V TV = V V T = In, where Im is the identity
matrix of sizem. Moreover, Σ is a diagonal matrix of sizem×n with diagonal components consisting
of the positive singular values νi, i = 1, . . . , n, of the matrix A satisfying ν1 ≥ ν2 ≥ · · · ≥ νρ > 0
and νρ+1 = νρ+2 = · · · = νn = 0, where ρ is the rank of A. Writing the matrix Σ in block form we
have

Σ =

 Σ1 O1

OT
1 O2

O3 O4

 , (40)

where Σ1 is a diagonal matrix of size ρ× ρ with diagonal consisting of the strictly positive singular
values, O1 and O2, are matrices of zeros of size ρ×(n−ρ) and (n−ρ)×(n−ρ), and the bottom block
of zeros [O3, O4] is of size (m−n)×n. Write the matrices U and V in block form as U = [U1, U0, U2]
and V = [V1, V0], where U1 and V1 are the columns of U and V corresponding to the strictly positive
singular values in Σ1, U0 and V0 correspond to the the singular values with value zero, νi = 0, and
U2 corresponds to the bottom block of zeros [O3, O4] in Σ. Taking in account all the blocks of zeros
in Σ, we can write A = U1Σ1V

T
1 . We now state a well known fact about the SVD of the matrix A

[80].

Range(A) = Col(U1), Ker(A) = Col(V0), Range(AT ) = Col(V1), Ker(AT ) = Col([U0, U2]),
(41)

where Col(B) denotes the column space of the matrix B, i.e., the space spanned by the columns of
B.

Applying the SVD to the matrices ∇ = U×Σ×[V ×]T and CT = U•Σ•[V •]T and using the
orthogonality of the columns of the matrices U1 and V1 and the invertability of Σ1, from C∇ = 0
in (36) we have [U•]TU× = 0, and similarly ∇TCT = 0 implies [U×]TU• = 0. The formula
[U•]TU× = 0 is a restatement of equation (39). Writing U× = [U×

1 , U
×
0 , U

×
2 ] and U• = [U•

1 , U
•
0 , U

•
2 ]

we have established the Ran(∇) = Col(U×
1 ), Ran(CT ) ⊆ Ker(∇T ) = Col([U×

0 , U
×
2 ]). Also, since

Ran(CT ) = Col(U•
1 ) and Ran(CT ) ⊥ Ran(∇), we can write

U× = [U×
1 , U

×•
0 , U•

1 ] , U• = [U•
1 , U

×•
0 , U×

1 ] , (42)

where the columns of U×•
0 are orthogonal to both the Ran(CT ) and the Ran(∇). Since U×[U×]T =

Im we have the resolution of the identity

Γ× + Γ0 + Γ• = Im, Γ× = U×
1 [U×

1 ]T , Γ• = U•
1 [U

•
1 ]

T , Γ0 = U×•
0 [U×•

0 ]T , (43)

where Γ×, Γ•, and Γ0, are mutually orthogonal projection matrices onto Ran(∇), Ran(CT ) and
the orthogonal complement of Ran(∇) ∪ Ran(CT ). We are now ready to state the main result of
this section as the following theorem.

Theorem 4. Let the electric and current fields E and J satisfy

CE = 0, −∇TJ = 0, J = ϵE. (44)

Then, there exists a ”potential” φ and vector E0 such that E = Ef + E0, where Ef = ∇φ,
Id ⊗ (∇T∇))E0 = 0, CEf = 0, ⟨J · Ef ⟩ = 0, and ⟨Ef ⟩ = 0.
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Proof. From the resolution of the identity in equation (43) we have E = (Γ×+Γ0+Γ•)E. Since Γ•
projects onto the Ran(CT ), Rm = Ran(CT )⊕Ker(C), and E ∈ Ker(C) we have Γ•E = 0. Denoting
by Ef = Γ×E, since U×

1 = ∇V ×
1 [Σ×

1 ]
−1, we can write Ef = ∇φ, where φ = V ×

1 [Σ×
1 ]

−1[U×
1 ]TE.

Denote E0 = Γ0E. Since Γ×E0 = 0, Γ× is a projection onto Ran(∇), and Rm = Ran(∇)⊕Ker(∇T ),
we have E0 ∈ Ker(∇T ). Similarly, since Γ•E0 = 0, Γ• is a projection onto Ran(CT ), and Rm =
Ran(CT )⊕Ker(C), we have E0 ∈ Ker(C). Since E0 ∈ Ker(C) ∩Ker(∇T ) we have from (36) that

0 = CTCE0 = (−∇∇T + Id ⊗ (∇T∇))E0 = Id ⊗ (∇T∇))E0. (45)

From Ran(∇) ⊆ Ker(C) in equation (37) and Ef = ∇φ we have CEf = C∇φ = 0. We also have
from ∇TJ = 0 that J · Ef = J · ∇φ = ∇TJ · φ = 0. Finally, the volume average of ∇φ is a
telescoping sum, so ⟨Ef ⟩ = 0. This concludes our proof of the theorem.

Corollary 1. Let the electric and current fields E and J satisfy

CE = 0, −∇TJ = 0, J = σE. (46)

Then, there exists a ”potential” ψ and vector J0 such that J = Jf + J0, where Jf = CTψ, Id ⊗
(∇T∇))J0 = 0, ∇TJf = 0, ⟨Jf · E⟩ = 0, and ⟨Jf ⟩ = 0.

Proof. From the resolution of the identity in equation (43) we have J = (Γ×+Γ0+Γ•)J . Since Γ×
projects onto the Ran(∇), Rm = Ran(∇)⊕Ker(∇T ), and J ∈ Ker∇T we have Γ×J = 0. Denoting
by Jf = Γ•J , since U•

1 = CTV •
1 [Σ

•
1]
−1, we can write Jf = CTψ, where ψ = V •

1 [Σ
•
1]
−1[U•

1 ]
TJ .

Denote J0 = Γ0J . Exactly the same as in the proof of Theorem 4, we have J0 = Id ⊗ (∇T∇))J0.
From Ran(CT ) ⊆ Ker(∇T ) in equation (37) and Jf = CTψ we have ∇TJf = ∇TCTψ = 0. Exactly
the same as in the proof of Theorem 4, we also have Jf · E = 0 and ⟨Jf ⟩ = 0. This concludes our
proof of the theorem.

We end this section by noting that in the full rank setting, where Σ has all strictly positive
singular values, so Σ1 = Σ, then

Γ× = ∇(∇T∇)−1∇T , Γ• = CT (CCT )−1C .

The original formulations of this mathematical framework was given in terms of these projection
matrices, or continuum generalizations [56, 108]. The formulation given in this section generalizes
the discrete setting to cases where the matrix gradient is rank deficient, such as the case of periodic
boundary conditions. This is necessary

B Proof of Theorem 2

In this section we provide the proof for Theorem 2 and a projection method for a numerically
efficient projection method for computation of spectral measures and effective parameters for uni-
axial polycrystalline media. We will use the results from Section A but for notational simplicity we
will use Γ instead of Γ×. Corollary 2 below follows immediately from the proof of Theorem 2 and
the results of Section A, which provides an integral representation for the effective resistivity ρ∗

involving the matrix X2Γ•X2 and is analogous to the representation of ρ∗ for the two-component
composite setting in [108].

From the close analogues of this polycrystalline setting with the two-component setting discussed
in Sec. 3, the proof of this theorem is analogous to Theorem 2.1 in [108]. To shorten the theorem
proof here, we will refer to [108] for some of the technical details. From Section A and the paragraph
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in [108] containing equations 2.39 and 2.40, with χ1 replaced by X1, we just need to prove that
the functional Fjk(s) = ⟨(sI − X1ΓX1)

−1X1êj · êk⟩ has the integral representation displayed in
equation (18). In the process, we will also establish a projection method for the numerically
efficient, rigorous computation of µjk. This projection method is summarized by equations (55)–
(57) below.

In equation (14) we defined the real-symmetric mutually orthogonal projection matrices Xi,
i = 1, 2, in terms of the spatially dependent rotation matrix R and C = diag(1, 0, . . . , 0), all
matrices of size d × d. The paragraph in [108] containing equations 2.28–2.30 describes how to
bijectively map these d × d matrices to N × N matrices that are not spatially dependent, where
N = Ldd. Under this mapping, R becomes a banded rotation matrix satisfying RT = R−1 and
C becomes C = diag(I1, 01, . . . , 01), where I1 and 01 are the identity and null matrices of size
N1 = Ld, and the vector e1 is mapped to ê1 = (1, 1, . . . , 1, 0, 0, . . . , 0), with Ld ones in the first
components and zeros in the rest of the components. Writing X1ΓX1 = RT (CRΓRTC)R we have

X1ΓX1 = RT

[
Γ1 012
021 022

]
R = RT

[
W1Λ1W

T
1 012

021 022

]
R

= RT

[
W1 012
021 I2

] [
Λ1 012
021 022

] [
W T

1 012
021 I2

]
R, (47)

where I2 is the identity matrix of size N2 ×N2, with N2 = N −N1 = Ld(d− 1), and 0ab denotes a
matrix of zeros of size Na ×Nb, a, b = 1, 2. Moreover, Γ1 is the N1 ×N1 upper left principal sub-
matrix of RΓRT and Γ1 = W1Λ1W

T
1 is its eigenvalue decomposition. As Γ1 is a real-symmetric

matrix, W1 is an orthogonal matrix [80]. Also, since RΓRT is a similarity transformation of a
projection matrix and C is a projection matrix, Λ1 is a diagonal matrix with entries λ1i ∈ [0, 1],
i = 1, . . . , N1, along its diagonal [80, 43].

Consequently, equation (47) implies that the eigenvalue decomposition of the matrix X1ΓX1 is
given by

X1ΓX1 =WΛW T , W = RT

[
W1 012
021 I2

]
, Λ =

[
Λ1 012
021 022

]
. (48)

Here, W is an orthogonal matrix satisfying W TW = WW T = I, I is the identity matrix on RN ,
and Λ is a diagonal matrix with entries λi ∈ [0, 1], i = 1, . . . , N , along its diagonal.

The eigenvalue decomposition of the matrix X1ΓX1 in equation (48) demonstrates that its
resolvent (sI − X1ΓX1)

−1 is well defined for all s ∈ C\[0, 1]. In particular, by the orthogonality
of the matrix W , it has the following useful representation (sI − X1ΓX1)

−1 = W (sI − Λ)−1W T ,
where (sI − Λ)−1 is a diagonal matrix with entries 1/(s − λi) along its diagonal. This, in turn,
implies that the functional Fjk(s) = ⟨(sI −X1ΓX1)

−1X1êj · êk⟩ can be written as

Fjk(s) = ⟨(sI − Λ)−1 [X1W ]T êj · W T êk⟩. (49)

Since RT = R−1 and X1 = RTCR, equation (48) implies that

X1W = RT

[
W1 012
021 022

]
=⇒ X1wi =

{
wi, for i = 1, . . . , N1,

0, otherwise.
(50)

This and the formula for W in (48) imply that

[X1W ]T êj · W T êk = [X1W ]T êj · [X1W ]T êk. (51)
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We are ready to provide the integral representation displayed in (18) for the functional Fjk(s) in
equation (49). Denote by Qi = wiw

T
i , i = 1, . . . , N , the symmetric, mutually orthogonal projection

matrices, QℓQm = Qℓ δℓm, onto the eigen-spaces spanned by the orthonormal eigenvectors wi.
Equation (50) implies that X1Qi = QiX1 = X1QiX1, as X1Qi = Qi for i = 1, . . . , N1, X1Qi = 0
otherwise, and X1 is a symmetric matrix. These properties allow us to write the quadratic form
[X1W ]T êj · [X1W ]T êk as

[X1W ]T êj · [X1W ]T êk =W T êj · W T êk =
N∑
i=1

(wi · êj)(wi · êk) =
N∑
i=1

Qiêj · êk =
N∑
i=1

X1Qiêj · êk .

(52)

This and equations (49) and (51) yield

Fjk(s) =

∫ 1

0

dµjk(λ)

s− λ
, dµjk(λ) =

N∑
i=1

⟨δλi
(dλ) X1Qiêj · êk⟩ . (53)

This concludes our proof of Theorem 2

Corollary 2. For each ω ∈ Ω, let M(ω) = W (ω)Λ(ω)W (ω) be the eigenvalue decomposition
of the real-symmetric matrix M(ω) = X2(ω) Γ•X2(ω). Here, the columns of the matrix W (ω)
consist of the orthonormal eigenvectors wi(ω), i = 1, . . . , N , of M(ω) and the diagonal matrix
Λ(ω) = diag(λ1(ω), . . . , λN (ω)) involves its eigenvalues λi(ω). Denote Qi = wiw

T
i the projection

matrix onto the eigen-space spanned by wi. The curent field J(ω) satisfies J(ω) = J0+ Jf (ω), with
J0 = ⟨J(ω)⟩ and Γ•J(ω) = Jf (ω), and the effective complex resistivity tensor ρ∗ has components
ρ∗jk, j, k = 1, . . . , d, which satisfy

ρ∗jk = σ−1
1 (δjk − Ejk(s)), Ejk(s) =

∫ 1

0

dηjk(λ)

s− λ
, dηjk(λ) =

N∑
i=1

⟨δλi
(dλ) X2Qiêj · êk⟩ . (54)

C Projection method

In this section we provide a formulation for a numerically efficient projection method for computation
of spectral measures and effective parameters for uniaxial polycrystalline media. Note that the sum
inequation (53) runs only over the index set i = 1, . . . , N1, as equation (50) implies that the masses
X1Qiêj · êk of the measure µjk are zero for i = N1+1, . . . , N . Denote by λ1i and w 1

i , i = 1, . . . , N1,
the eigenvalues and eigenvectors of the N1 ×N1 matrix Γ1 = W1Λ1W

T
1 , defined in equation (47).

Now, write

Rêj =

[
ê r1j
ê r2j

]
, (55)

where ê r1j ∈ RN1 and ê r2j ∈ RN2 . Therefore, writing the matrix X1W in equation (50) in block

diagonal form, X1W = RTdiag(W1, 022), we have that

[X1W ]T êj · [X1W ]T êk = [diag(W T
1 , 022)Rêj ] · [diag(W T

1 , 022)Rêk] = [W T
1 ê

r1
j ] · [W T

1 ê
r1
k ]. (56)

Denote by Q1
i = w 1

i [w
1
i ]

T , i = 1, . . . , N1, the mutually orthogonal projection matrices, Q1
ℓ Q

1
m =

Q1
ℓ δℓm, onto the eigen-spaces spanned by the orthonormal eigenvectors w 1

i . Equations (49), (51),
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and (56) then yield

Fjk(s) = ⟨(sI1 − Λ1)
−1[W T

1 ê
r1
j ] · [W T

1 ê
r1
k ]⟩ =

〈
N1∑
i=1

Q1
i ê

r1
j · ê r1k

s− λ1i

〉
. (57)

Equation (57) demonstrates that only the spectral information of the matrices W1 and Λ1

contribute to the functional representation for Fjk(s) in (49) and its integral representation in (18).
From a computational standpoint, this means that only the eigenvalues and eigenvectors of the
N1×N1 matrix Γ1 need to be computed in order to compute the spectral measures underlying the
integral representations of the effective parameters for finite lattice systems. This is extremely cost
effective as the numerical cost of finding all the eigenvalues and eigenvectors of a real-symmetric
N ×N matrix is O(N3) [43], so N1 = N/d implies the computational cost of the projection method
is reduced by a factor of d3.
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