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Bounds for Effective Parameters of
Heterogeneous Media by Analytic Continuation

K. Golden* and G. Papanicolaou**
Courant Institute, New York University, New York, NY 10012, USA

Abstract. We give a mathematical formulation of a method for obtaining
bounds on effective parameters developed by D. Bergman and G. W. Milton.
This method, in contrast to others used before, does not rely on a variational
principle, but exploits the properties of the effective parameter as an analytic
function of the component parameters. The method is at present restricted to
two-component media.

1. Introduction

Once the notion of an effective parameter of a composite or heterogeneous medium
has been properly established, it becomes clear that even in simple cases, for example
in periodic structures, these effective parameters are very difficult to calculate.
Consequently one turns to the determination of qualitative properties such as
bounds for these parameters under various assumptions about the microscopic
properties of the medium under study.

Recently Bergman [1-6] introduced a method for obtaining bounds which does
not rely on the availability of variational principles. The method of Bergman has
been elaborated upon in detail and applied to several problems by G. W. Milton [7-
10]. Bounds obtained previously, in particular the Hashin-Shtrikman bounds [11-
13] required variational principles. The scope and utility of variational methods for
obtaining bounds is analyzed in [14], while extensive analysis and use of variational
methods has been made by Willis [15, 16], Dedericks and Zeller [17], as well as
many other authors referred to in these papers.

Our purpose here is to give a mathematical basis for Bergman's method, in
particular for the key step in it which is a representation formula for the effective
parameter. This formula is restricted at present to two-component inhomogeneous
media.
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The reason the representation formula is important is as follows. When the
microscopic medium is nearly homogeneous (its parameters differ little from
constant values), one can derive approximations for the effective parameters by
direct perturbation analysis. The information contained in the perturbation
expansion can then be used together with the representation formula to yield global
results not restricted to nearly homogeneous media.

Our interest in Bergman's method was stimulated by the very interesting lectures
of Bergman and Milton given during a meeting in New York in June 1981 and by
discussions with Luc Tartar who has yet another very interesting method for
obtaining bounds without the use of variational principles.

2. Formulation of the Problem

We shall consider the determination of bounds for the effective dielectric constant
(or conductivity) of a two or several-component microscopically isotropic material.
For the formulation of effective parameters we shall consider a general dielectric (or
conducting) medium.

Let (Ω, J ,̂ P) be a probability space and let eί7 (x, ω) be strictly stationary random
fields of xe Ud, ij=l,2,...9d such that

d d d
α Σ &= Σ εij(χ>ω)ξiξj = β Σ £'2? (2>1)

where α and β are constants independent of x and ω and ξ fe(R, i = 1 , . . . , d.
By strict stationarity we mean that the joint distribution of £ij(xl9ω),
εij(x29ω)9...9εij(xN9ω) for any points x i ? x 2 , . . . , xNεUd and that of
εij(χι + Λ, ω),..., εij(xN + Λ, ω) for any he (Rd are the same. More specifically, we shall
assume as in [18] that there is a group of transformations τχ9 xeUd, from Ω into Ω
that is one to one and preserves the measure P. That is, τxτy = τx+y and for any Ae3P,
P(τ_xA) = P(A). We shall suppose that there are measurable functions εtj(ω) on Ω
satisfying (2.1) such that

ε t j ( x 9 ω) = ε0 (τ_xω), xeRd, ωeΩ, ij = 1,2,..., d. (2.2)

We consider the following problem in electrostatics. Find two stationary
random vector fields Et(x9 ω) and D.(x, ω), i = 1,2,..., d such that

/>,.(*, ω) = X eιv(x, ω)Ej(x, ω), i = 1,2,..., d9 (2.3)

-j-Et(x, ω) = ^-Ej(x9 ω) ί j = 1,2,..., d, (2.4)
oXj dx{

Σ — D j ( x 9 ω ) = 09 (2.5)
j = L d X j

j P(dω)Ei(x, ω) = Ei9 i=\,2,...,d. (2.6)
Ω

The constant vector E is given. The existence of a unique solution to (2.3)-(2.6) is
proved in the next section since the setup of the proof will be needed for the
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representation formula we want. Once Ei and Di have been obtained, the effective
dielectric constant εfj is defined by

d
£ εfjEj = f P ( d ω ) D i ( x 9 ω ) , i=l,2,...,d. (2.7)

Problem (2.3)-(2.6) is the usual electrostatic problem for the electric field E and
the dielectric displacement D (or the negative temperature gradient and the heat flux
respectively for the thermal conductivity problem) in a stationary random dielectric
medium when the mean electric field E is a given constant vector. The average
dielectric displacement for unit mean electric field is the effective dielectric constant
as expressed by (2.7) and is independent of xeUd.

In the appendix, we show that the above definition coincides with the usual and
perhaps more intuitive one. There, a finite cube of dielectric material with edges of
length 2N is considered and the average dielectric displacement D^ is computed
under suitable boundary conditions. If εfj>N(ω) denotes the average dielectric
displacement in the Ith direction due to a unit mean electric field in the 7th direction,
we show that as N -> oo it tends to the εfj of (2.7), which is what one expects.

The reason that we consider an infinite stationary medium and work with it
directly is because ε? is a local quantity that has nothing to do with macroscopic
boundaries. Moreover, the finiteness of a domain conflicts with the properties of
stationarity and isotropy which simplify the analysis considerably.

The microscopic dielectric constant ε (or tensor εI7) must be positive in
accordance with (2.1). In some situations the fields as well as ε can be complex-
valued and (2.3)-(2.6) is still well posed. Complex dielectric constants arise from the
time harmonic form of Maxwell's equations when ε is replaced by ε + σ/iγ, where σ is
the conductivity and γ is the radian frequency of oscillation of the fields.

The object of this paper is the determination of the range of values of εfj under
various hypotheses on εij(x,ω). We return to this in Sects. 5 and 6.

3. Existence and uniqueness for the Electrostatic Problem

We shall show that (2.3)-(2.6) suitably formulated has a unique stationary solution
Eι(x9ω)9 Df(x,ω). The analysis is similar to the one in [18].

The group of transformations τx acting on Ω induces a group of operators on the
Hubert space of real-valued functions H = L2(Ω, J%P) with inner product

(7 3) = f P(dω)J(ω)g(ω\ 7 §eH.
Ω

The group of operators Tx on H is given by

(Tj}(ω)=J(τ_xω\ xeUd. (3.1)

Since τx is measure preserving, the operators Tx form a unitary group. Therefore
they have closed densely defined infinitesimal generators Li in each direction
i=\929...9d9 with domain Q)i c H. Thus

, i = l,2,...,d, (3.2)
x = 0
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with differentiation defined in the sense of convergence in H for elements of S>t. The
closed subset of H

(3-3)
ϊ = l

becomes a Hubert space with the inner product

(u9 v) = j P(dω)ύ(ω)ϋ(ω) + £ J P(dω)Liύ(ω)Liϋ(ω). (3.4)
Ω i=lΩ

We return to (2.3)-(2.6). Since everything involved with this problem is to be
stationary, we look for solutions Ei9 D in the form

) = Di(τ_xω). (3.5)

In fact, let 2? be the Hubert space

# = {7;(ω)e//, i=l ,2 , . . . ,d\Ljj = L& weakly and J Ji(ω)P(dω) = 0},
Ω

(3.6)

and consider the following variational problem: find Gt(ω) in 3? such that

\P(άω) £ είj(ω)(Gj(ω) + Ej)fi(ω) = 0 (3.7)

for all JLe^. In view of (2.1) this problem has a unique solution by the
Lax-Milgram lemma. Clearly

Et(ω) = e£(ω) + Ei9 D.(ω) - Σ ε£J(ω)£/ω) (3.8)
j = ι

is the unique solution of (2.3)-(2.6) via (3.5).
The effective dielectric constant defined by (2.7) can also be written in the form

Σ εfjEj= Σ !P(dω}SiJ(ω)£J(ω). (3.9)
j=l j=lΩ

Choosing the components of the constant vector Ej equal to δjkj = 1, 2, . . . , d for
some k = l,2,...,d, and denoting the corresponding field E by Ek

j9 (3.9) is
transformed to

4= Σ JP0ω)filV(ω)£J(ω) i , fc= 1,2,...,A (3.10)
7 = 1 β

In view of (3.7) we can write (3.10) also in .the symmetric form

4= Σ f/WMω)fi}(ω)Eί(ω), U= 1,2,..., d. (3.11)
», j=l Ω

One can equally well formulate (2.3)-(2.5) with (2.6) replaced by

J P(dω)Dt(x9 ω) = Di9 i = 1, 2, . . . , d, (2.6')
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where now we focus attention on the D field and find a suitable Hubert space for it
(analog of j^ in (3.6) but "divergence free" vectors now) and a suitable variational
equation analogous to (3.7). This is quite straightforward, the principal conclusion
being that the tensor (ε*)^ 1 is given by

Σ (β*)f/^ = Σ ίP0ω)(έ)Γ/(ω)βχω). (3.9')
7 = 1 7 = 1

4. The Representation Formula for Two Component Media

Problem (2.3)-(2.6) was put in the variational form (3.7) over the Hubert space jf
defined by (3.6). Let us restrict attention to a two-component medium of the form

etj(x9 ω) = ε(x, ω)δip (4.1)

where ε(x,ω) takes only two values ε1 and ε2 with 0 < ε1 < ε2 < oo. We write

ε(x,ω) - βtfifoω) + ε2χ2(x,ω), (4.2)

where χ7.(x,ω), 7 = 1 , 2, is the indicator function of the region occupied by the
dielectric material labeled by j. In the notation of Sect. 3 we put

έ(ω) = ε^iM + ε2χ2(ω), (4.3)

where, for example, χ^ω)^ I for all realizations ωeΩ for which the origin is
occupied by dielectric material of type one and equals zero otherwise.

From (4.3) and the definition of E. in (3.7) and (3.8), it follows that the field
depends only on the ratio

Λ=A (4.4)
ei

Hence, from (3.10) we have

εj = fil f P(dω)(*ι(ω) + /ιχ2(ω))Ef(ω), ί, k = 1, 2, . . . , J, (4.5)
Ω

so that ε^ = εfk(h). Our first observation about it is that

εfk(h) is an analytic function of the complex variable

h everywhere except on the negative real axis.

To prove this statement we look at the quadratic form associated with (3.7) and seek
an α > 0 such that

7 = 1

\Gj\2, (4.7)

where G (ω) is complex-valued when h is complex. If we set

|G,|

A — "

_ i-;2

7 = 1

lP(dω) Σ \δj\
7 = 1
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so that 0 ̂  λ ̂  1, the inequality (4.7) becomes

| /α+l-/ ί | ^α. (4.8)

This means that (4.7) will hold for some α > 0 if and only if the origin is not on the line
segment joining h and 1, i.e. if and only if h is not on the negative real axis including
zero.

Thus for any complex h off the negative real axis, (3.7) is coercive and by
differentiation with respect to h one deduces easily that G^ω) is analytic in h with
values in 3?. Consequently from (3 . 1 0), εfk(h) is analytic in h off the negative real axis.

Dividing (4.5) by ε1 we write

mik(h) = βf 1 ε J(A) = J P(dω)(χί (ω) + Aχ2(ω))£? (ω), (4.9)
Ω

where E\ (ω) = Gf(ω) + δik and (3.7) holds, or somewhat formally

Σ ^[(iι(ω) + Aχ2M)(Gf(ω) + δΛ)]=0, /e= 1,2,. ..,</. (4.10)
i= 1

We are now ready to state the following

Representation Theorem. Let

s = τ^-jι9Fik(s) = δik-mik(h). (4.11)

There exist finite Borel measures μik(dz) defined onO^z^l such that the diagonals
μu(dz) are positive measures satisfying

*=l,2, . . . ,d (4.12)
o s z

for all complex s outside 0 :g Res ̂  1, Ims = 0.

Remarks

1 . In [ 1 ] Bergman assumes that F± 1 (s) (or any other Fu(s) i = 1 , 2, . . . , d) is a rational
function with simple poles at points in z1 , z2, . . . , ZN in [0, 1] on the real axis. Milton
[7, 8] correctly observes that this need not be so and cites examples to the contrary.
However the calculation of bounds can be carried out correctly with only a rational
form for Fa(s) as Milton notes. The mathematical reason for this will be seen in the
next section.

2. From the symmetric formula (3.1 1) it follows that mik(h) of (4.9) becomes

»fc(O = Σ ίP(^)(Xι(^) + hχ2(ω))E^E\. (4.9')
i = l Ω

From (4.9r) it follows that Immz..(/z)>0 when Im/z>0. Therefore the function
— Fit(s) = mit(h) — 1 with 5 given by (4.1 1) also has positive imaginary part when
Im s > 0. Moreover there is a constant M such that
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since mu(h) is analytic near h = l. But by a general representation theorem in
function theory [19, Vol. II, p. 8] it follows that there exists a positive measure μu(dz)
on ( — oo, oo) such that

This is precisely (4.12) provided we use the additional information that mu(h) is
analytic everywhere except on the negative real axis in order to limit the support of
μ f ί to the interval [0, 1]. Thus we have proved (4.12) directly (at least when i = k) but
it is instructive to prove it also using the spectral theorem as we do below. Of course,
the spectral theorem itself is proved using the above function theoretic repre-
sentation formula so the proofs are not all that different.

Proof. The formal equation (4.10), understood to hold in the variational form (3.7),
can be rewritten as

Σ L(e* + ( Λ - l ) £ Li[χ2(Gf + ̂ )]=0. (4.13)
ί = l ι = l

Let us define the elliptic operator

and formally the operators

Άj^L^-AΓ1^ i j=l,2,...,i (4.15)

One can verify by spectral theory (the L commute with each other) that the
operators Ajt are well defined and bounded in L2(Ω,^, P) and have norm less than
or equal to one, just as in the usual case where L = d/dxt.

Define the Hubert space jf by

jf=={7ί(ω)eL2(Ω,.F,P), ί= 1,2,. ..,<*}, (4.16)

but now with the inner product

<f,9> = $P(dω)χ2(ω) £ /f(ω)&(ω). (4.17)
Ω ί = l

The operator J? on JΓ defined by

(BT)j(ω)= Σ^,(χ2/;)(ω) (4.18)
ι = l

is again bounded in norm by one and is selfadjoint under the inner product (4.17).
Recall that the operators Lf are skew adjoint.

We can rewrite problem (4.13) in terms of Άji9 hence in terms of 5, as follows

e + δ f c + ( i - Ό Σ i[χ2(Gf + δΛ)] = ̂ , ;,fc = i ,2, . . . ,A (4.19)
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The equivalence of (4.19) to (4.13) is seen by applying L3 to (4.19) (in distribution
sense) and summing on/ Recalling the notation (4.1 1), we may solve (4.19) when s is
outside [— 1, 1], obtaining

Gk

j + δjk = sl(s + BΓίek ]p (4.20)

since B is selfadjoint and \\B \\ < 1 . Here ek are the unit vectors with components (δik).
Moreover there exist projection-valued measures Q(dz) on [ — 1,1] such that

&j(ω) + δjk = s } (Q(dz]e^^ outside [-1,1]. (4.21)
_ 1 S ~r Z

We know already from (4.7) that G*(ω) + δjk exists for all complex h outside the
negative real axis and hence by (4.1 1) for all a outside [0,1]. This means that the
integral in (4.21) runs only over [ — 1,0]. Therefore, after redefining the Q(dz\ we
have

+ δjk = s f t J , s outside [0, 1]. (4.22)
jk " <? - 70 S Z

From (4.9) we have that

mik(h) = δik -f (h — 1) §P(dω)χ2(Gi + <>ik)

1
ik s*

or from (4.11)

1
L(GΪ + δft) (4-23)

s

Now using (4.22) and recalling the form (4.17) of our inner product, we obtain

Fjk(s) = \^^-, j,k=l,2,...,d (4.24)
o s z

with

μjk(dz) = $P(dω)χ2(ω)(Q(dz)ek)j(ω)
Ω

From this last statement the positivity of the diagonal measures μu(dz) follows and
the proof is complete.

By considering the problem for Dj described briefly at the end of Sect. 3 (problem
(2.3)-(2.5) and (2.60) f°r a two component medium, one arrives at the fact that the
inverse matrix (ε*)^L(h) is analytic in h except on the negative real axis. Hence
(m~ i)ίj (/z) is analytic in h except on the negative real axis. In the iso tropic case where
mij(h) = δ^π^h), this means that if πι(h} is meromorphic, which is not true in general,
then all of its zeroes and poles lie on the negative real axis.
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5. Perturbation Calculations about ελ = ε2 in a Two Component
Medium and Their Analytic Continuation

Perhaps the only case in which εffc can be calculated rather simply, without special
hypotheses about the form of εt j(x, ω), is when the stj is close to dtj uniformly in x and
ω. Such calculations are reported in [13] and we reproduce a few here for the two-
component case (4.1).

From (4.4) and (4.9) it suffices to calculate mίk(h) and its derivatives with respect
to h at h = 1 . Physically it is clear that

mίk(l) = δik, (5.1)

which is also implied by (4.11) and (4.12) since /z-> 1 corresponds to s-> oo. Since
mik(h) is analytic, it has a power series expansion

d \n

(5-2)
π= 1 f un

which converges for |Λ - 1 1 < 1. Using (4.11) we may rewrite (5.2) in the form

fftW = - Σ \"®(l)(—}n, 1*1 > 1. (5.3)n=ι n. \ s j

But from (4.12) we have for |s| > 1,

F*®= Σ-U Γ1', (5.4)
n = l ύ

where

^Γ'^J^'W^λ » = 1,2,... (5.5)
o

are the moments of the measure μik(dz). Comparing (5.4) and (5.3) we see that

(5.6)

When i — k the moments of the positive measures are completely determined by
(5.6). Since positive finite measures on a compact set are uniquely determined by
their moments, it follows that:

The values of (d/dhfm^h) at h = 1 completely

determine mu(h) everywhere in the complex h (5.7)

plane except on the negative real axis.

The conclusion (5.7) shows the usefulness of the representation (4.12) in
converting local information at h = 1 to global information.

Now we calculate m^}(/ι) at h = 1. Differentiating (4.9) we have

A = l " L "" J/ι=l

$2(<»)δΛ = p2δΛ, (5.8)
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where p2 is the volume fraction occupied by the dielectric ma
defined by the last equality. Using (5.8) in (5.6) we obtain
where p2 is the volume fraction occupied by the dielectric material of type two and is

" 3 last equality. Using (5.8) in (5.6) we obtain

(5.10)

(5.9)
o

To compute m($(l) we differentiate (5.8) again and obtain

d2 Γ a
-jτjinik(h) = \ P(dω)\ 2χ2(ω)-
dh2 β |_ άi

d

Ω dh Λ = 1

We must now calculate (d/dh)E^\h = 1. We differentiate (4.10) with respect to ft,
evaluate at ft = 1 and get

/ Λ

9ιδΛ]=0.

(5.11)

(5.12)

M Al* i Λ

\dh fc-1

Thus, in terms of the operators Άj{ of (4.15),

±&dhEj

Using (5.11) in (5.8) yields

d2 ..

: — 1

To evaluate the integral on the right of (5.12) we note the following. The
boundedness of the operators Άjk in L2(ί2,J^,P) implies that the differential
operators

Ajt =—(-zl)"1—, ij= l,2,...,d, (5.13)
dXj oxt

which are bounded on L2((Rd), are also bounded operators on square integrable
stationary random fields. Thus we may write (5.12) in the form

= 2jP(dω)χ2(x,ω)—
h=\ Ω ϋxi€

(-Δ) 1(χ2(x,co)-p2)

(5.14)

where Γih(y) i
correlation function

= ίΛΓik(y)R(y)dy9

is the kernel of the singular integral operator Aik of (5.13) and R(y) is the
function

(5.15)R(y) = ί P(dω)χ2(x + y, ω)(χ2(x, ω) - p2). yj. i j )

If R(y) depends on\y\ only, the case of statistically isotropic random geometry, then

Λ2 O ">n „

dh
-mik(h) (5.16)

h=l
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where pi = 1 — p2 is the volume fraction of dielectric material of type one.
Thus from (5.6) and (5.16) we have in the isotropic random geometry case

In the anisotropic case μ^} depends on the full correlation function R(y) and not just
its value at zero. Moreover, the higher moments μ(£\ n^2 depend on (n + l)-point
correlation functions in general. A formula can be derived for them, in the same way
as above, with the use of the kernel Γik(y) and its iterates.

6. Range of Values of the Effective Coefficient

We shall now fix attention at one diagonal coefficient mn(h) and call it m(h). We
rewrite (4.1 1) and (4.12) in this case as

1 - m(h) = F(s) = } ̂ ,̂ s outside [0, 1],
o s — z

Evidently F(s) depends also on μ which belongs to Ji^ the set of positive finite Borel
measures on [0,1]. We shall therefore write F(s,μ).

For s fixed outside the unit interval on the real axis, F is a linear mapping of M to
the complex plane as can be seen from (6.1). Let

1
(6.2)

provided that the numbers μ(0), μ ( 1 ),..., μ(N) form a positive definite sequence [20] so
that they can represent the moments of a measure. From (6.1) we see that for fixed 5,
F(s, μ) is a linear mapping of Jί(μ(®\..., μ(Λr)) to the complex plane C. We denote by

(6.3)

we call the subset A of C the range of values of the effective (relative) dielectric
constant m(h) when h is given along with μ(0), μ(1),...,μ(Λ° and μ varies over all
measures with given first N moments. The problem is to characterize this set
because, as pointed out at the end of Sect. 5, if we have information about the first
N + 1 correlation functions of the random medium then we can determine the first
N moments of μ. The set A represents the possible values of m(h) compatible with
this information about the medium.

Actually, A is not the precise range of the values of m(h) as our terminology
suggests because although each random geometry gives rise to a measure μ in the
representation (6.1), we know that not every measure μ in (6.1) gives a function m(h)
that is the effective (relative) dielectric constant of a random medium. For example,
in dimension d = 2 Keller [21] showed that

\, (6.4)
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and Schulgasser [22] showed that for d ̂  3 and h ̂  1

l . (6.5)

Both of these statements are proved in [14] in a very simple manner. From (6.4) or
(6.5) we see that not every measure μ in (6.1) comes from a random geometry.
Therefore the set A will in general contain the exact range of values of the effective
dielectric constant. For simplicity, we shall continue to refer to A as the range of
values.

The set of measures Jΐ(μ(0\μ(l\ . . . ,μ(N)) is a compact, convex subset of Jt with
the topology of weak convergence. Since the mapping (6.1) is linear in μ it follows
that the range of values A of (6.3) is a compact convex subset of the complex plane C.
The extreme points of the set Jί(μ(Q}) are the one point measures uδy(dz\ 0 rg y < 1,
α ̂  0, since they cannot be expressed as convex combinations of other measures
while all other measures are convex combinations of one point measures. One can
verify [23] that the extreme points of JP(μ(0\ μ(1), . . . , μ(N)) are weak limits of convex
combinations of (N + l)-point measures, i.e. measures of the form

μ(dz)= £ *kδzt(dz\ (6.6)

where

k z t

fc= i

N + l

k= 1

We conclude from the above that in order to determine the extreme points of
A(h,μ(0\...,μ(N)) it suffices to determine the range of values in C of

N + l i

m(h)=\- Σ ——, s = > (6 8)
k=ls-zk l-h

as αk and zk vary while (6.7) holds. This is exactly the point at which Bergman and
Milton begin their analyses, by postulating essentially that m(h) should have the
form (6.8), perhaps in some approximate sense. We see that actually no approxi-
mations are involved. While (6.8) may not run over all points in A, it certainly runs
over all extreme points of A9 which is sufficient to characterize this set since it is
convex.

In the remainder of this section we shall consider some consequences of (6.8). Let
Cι> £2* ' CN+ i be the zeroes of m(h) which are necessarily real. Then we can write

N + l _ _ r

Π ^ ^j i

S^Γ

and hence

N+ i

Π <*,-£>

JΪP



Heterogeneous Media 485

This implies that

0£zN+1£ζN+^...£ζ2£zl£ζi£l. (6.10)

Let us consider the form of the set Λ(/z,μ(0)), where by (5.9), μ(0) = p2. We have

=l - - - , ^ z ^ - p2s~z }

When h is real and bigger than one, then 5 is negative. In this case one sees easily that
Λ(h,μ(0}) is the interval

which is equivalent to

^ m ^ 1 -p2 + hp2. (6.11)

1 - -h —

These are the classical arithmetic and harmonic mean bounds for the effective
dielectric constant of a two-component dielectric material. They are achieved by
plane parallel configurations of the material. When h is complex, the convex hull of
the set yi(//,μ(0)) is bounded by a circular arc and a cord.

One can describe also the set /t(/z,μ(0),μ(1)) in the isotropic case when μ(0) =p2

and μ(1) = p{p2/d by (5.9) and (5.17). When h is real and bigger than one, the Hashin
Shtrikman inequalities are obtained

1 +—- ^m(/z)^/z+—- . (6.12)
1 PL 1 P2

h - 1 d 1 - h dh

In the complex case the convex hull is bounded again by circular arcs.

Appendix. Existence of Effective Dielectric Constant

In Sect. 2 we pointed out that the definition of effective dielectric constant via (2.3)-
(2.7) (or more precisely (3.7)-(3.10)) is consistent with the more usual definition
where a finite volume of material is taken at first and then ε?- is obtained in an infinite
volume limit. We shall analyze in detail in this appendix this limit. For simplicity we
shall consider the two-dimensional isotropic case; the general case goes through the
same way. The analysis follows [18] suitably modified to the present case.

Let the material with dielectric constant ε(xl9x2,ω) such that 0 < α ^
ε(x l5 x2, ω) ̂  β < oo occupy the square — N ̂  Xj ^ N,j = 1, 2. Let u(N)(xl9x2, ω) be
the solution of

V (εVw(N)) = 0, -N<Xj<N, 7 = 1,2, (A.I)

du(N)

= 0 on x2 = N or x2 = - N, - N ̂  xl ^ N, (A.2)
dx2
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#*> = - N on χA = - N, - N ̂  x2 ^ N, (A.3)

uW = + jv on x± = + N, - N ̂  x2 ^ N. (A.4)

ω) dX2. (A.5)
έ lV _ jy i

We note that this quantity is independent of x1 in view of (A.I).
We introduce also the problem (2.3)-(2.6) and (2.7) suitably specialized in R2

with iso tropic εί7 .

D(x, ω) = ε(x, ω)E(x9 ω), x = (x1? x2), (A.6)

V x E = 0, (A.7)

V D = 0, (A.8)

ω) = 5 1 7J=l,2, (A.9)
Ω

ε* = $P(dω)Dί(x,ω). (A. 10)
Ω

of course here £ and D are stationary fields and (A.6)-(A.9) is taken in variational
form as in Sect. 3.

We shall show that, when ε(x, ω) is stationary and ergodic then

j P(dω)(f N(ω) - ε*)2 -> 0, as N -> oo, (A.1 1)
Ω

which means that the average dielectric displacement over a vertical line for a square
of material of side 2N tends to the effective dielectric constant ε* as N-> oo in mean
square.

To prove (A. 11) we first transform (A.1)-(A.4) as follows. Let

^(xi9x29ω) = ̂ (Nxt9Nx29ω). (A. 12)

Then u(N)(xl9x2,ω) is defined in |xj ^ I,|x2 | ̂  1 and we have

V (ε(Nx1,Nx2,ω)Vw ( N )(x l ίx2,ω))=0,|x1 |<l,|x2 |<l, (A. 13)

<3x2

(x1,x2,ω)
2= ±1

Now let

(A.16)

where the stationary field £ of (A.6)-(A.9) is written in the form

Ej(x, ω) = Gj(x, ω) + δ1 Jtj =1,2, $P(dω)Gj(x, ω) = 0. (A. 1 7)
Ω
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It is easily seen that because of (A.7) we have that

G(x,ω) = Vχ(x,ω). (A. 18)

Moreover, since ε(x,ω) is ergodic, so is G(x,ω), and thus

Ω \X\

— χ(x,ω) ^Oas|x |^oo, (A. 19)

because G in (A. 16) has mean zero. Let

^(xl9x2,ω) = ̂ χ(Nxl9Nx29ω). (A.20)

We want to prove (A.I 1). First we note that since the process ε(x,ω) is ergodic

-Lf J f dxA2ε(*ι.*2.ω)(l+aχ(XrX2'ω)NU* (A.21)
(ZN) -N-N \ OX1 /

as N -> oo in mean square (or with probability one), and hence

9x29ω))^ε* (A.2Γ)
4 _ ι - ι GX\

as N-> oo, where

ε(N)(x!,x2,ω) - ε(Nxl9Nx29ω). (A.22)

In view of (A.21) or (A.2Γ) it suffices for (A.I 1) to prove

0= lim

But

Γ l i i
JP(dω) - J j
β t^-l -1

Γdiί(N) r5
(Xl,X2,ω)\ f -- /-(x1

L ^1 ^1

x^ω)!2, (A.24)
Ω -1 -1

where we have used the fact that α ̂  ε ̂  j? < oo, Schwarz's inequality and

z^(x1?x2,ω) = ̂ (xl9x29ω) - (x, + χ(N)(xl5x2,ω)). (A.25)

Let τ(N) be a function of N tending to zero as N -> oo in a manner that will be
made precise later. Let y(s), s ̂  0 be a C°° function such that
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and put

so that ι/f<iV) vanishes identically near the boundary of |xj < 1, |x2| < l Let

> χ2, ω) = «W(Xl, χ2> α>) - Xl - £<">(*!, x2, ω) (A.27)

(x,, x2, ω) = χ(Λί)(xι, x2, ωW>(Xl,x2\ (A.28)
so that

£W = Z<"> + χW(l_,^>). (A29)

From (A. 13), (A. 17), (A. 18), (A.6), (A.8) and (A.29) it follows that

= V [ε(iV>V(χ(iV)(l - «/r(iV)))], (A.30)

= 0 on x 2= + 1,1x^1, (A.31)
0X2

#"> = 0 on Xl = ± I,\χ2\ g 1. (A.32)

We shall now transform the right side of (A.30) suitably. Let ev and e2 be unit
vectors in the direction x t and x2 respectively. From the definition of χ it follows that

Moreover from (A. 10)

ε* = J[ε^(Vχ(N) + ej e^dω). (A.34)
Ω

We have assumed, without loss of generality, that the effective dielectric tensor ε?. is
isotropic ε,* = δ^ε*. This implies that

0 = J [ε(N)(Vχ(N) + e^e2-\P(dώ). (A.35)
Ω

With these observations in mind we rewrite the right side of (A.30).

= V [ε(N)Vχ(N)](l - \

)]. (A.36)

Now we multiply (A.30) by z ,̂ integrate both sides over |xj ^ 1, |*2I ̂
integrate by parts. Because of (A.31) and (A.32) and the fact that ψ(N) vanishes
identically near the boundary of the square, there are no boundary contributions.
Thus

} } ^(V^^dx.dx^ } j (ε*-
-1 -1 -1 -1

J
-1 -1

(A.37)
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We note that because of (A.34) and (A.35)

ί [ε(ΛΓ)(Vχ(Λr) + ej - ε*el']P(dω) = 0. (A.38)

From the right side of the inequality in (A.24) it suffices to prove that

i i
/("> = JP(dω) J j dx^dx^Vz^)2 -> 0 as N -> oo. (A.39)

Ω - 1 - 1

But from (A.29)

1 1

/ ^2JP(αω) J J dx^dxi
Ω -i -i

+ 2\P(dω)} } dx,c
Ω -1 -1

= /(*) + j(N) (A 40)

From (A.37) and the uniform upper and lower bounds for ε(x, ω) we see that we have
to get a bound for Ϊ(N) in terms of objects from the right side of (A.37). To proceed
further we must rewrite the middle term on the right side of (A.37) as follows.

Let

h2(xί9x2,ω) = ε(x1,x2,ω)(Vχ(x1,x2,ω) + e^-e2.

These fields are stationary and have mean zero by (A.34) and (A.35). By a process
similar to the one that goes from G to χ (cf. (A. 16), (A. 18)) we can find vector fields Hί

and H2 such that

V H1=hl9V H2 = h2. (A.42)

These fields are not stationary but can be normalized to be zero at (xl9 x2) = 0 and

JPί<Mr^|tf/*,ω)|2->0 as |x |->ooj= 1, 2. (A.43)
Ω \X\

Defining

we see that

Thus,

ί ί
-i -i
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dx2. (A.45)
-1 -1

We now return to ( A.37) and notice that when (A.45) is used to rewrite the middle
term on the right and then Schwartz's inequality is used, the result /(N) -> 0 (cf. (A.40))
will follow from Poincare's inequality for z(N) and

J J (l-ψm)2dxιdx2-*09 (A.46)
-1 -1

JP(dω) } } dxίdx2\HW\2\V(eί'VψW)\2^QJ=l,29 (A.47)
Ω -1 -1

JP(dω) j j dx1dx2\HM\2\e1-VpIi>\2^09j=l929 (A.48)
Ω -1 -1

fP(dω) J } dx1dx2(χ(N))2(Vιl/(N))2-^09SisN^oo. (A.49)
Ω -1 -1

We note in addition that J(N) in ( A.40) will also go to zero provided ( A.46) and ( A.49)
hold. Let

sup
x i l ^ l
*2|^ι

sup ^P(dω)\H^(xi9x29ω)\2

9

sup ίP(dω)\H<P(xl9x29ω)\2}. (A.50)
jcι|^lβ J

From (A. 19) and (A.43) (slightly extended), it follows that σ(N)->0 as N-> oo. Now
since 1 — ψ(N) is zero except in a strip of width 2τ(N) near the boundary of the square
and from (A.29),

i i

i f ί\ I (N)^
J U -Ψ t

-1 -1

where (Wψ(N))2 stands for the sum of the squares of all second derivatives of ψ(N\
With these facts (A.46)-(A.49) will follow provided
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We now choose τ(N) = (σ(N))ί/s, for example, so that (A.52) clearly holds. This
completes the proof of the theorem.
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