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Bounds on the complex permittivity of sea ice 
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Abstract. An analytic method for obtaining bounds on effective properties of 
composites is applied to the complex permittivity •* of sea ice. The sea ice is 
assumed to be a two-component random medium consisting of pure ice of permittivity 
½• and brine of permittivity •2. The method exploits the properties of e* as an analytic 
function of the ratio El/e2 . Two types of bounds on •* are obtained. The first bound 
R1 is a region in the complex e* plane which assumes only that the relative volume 
fractions Pl and P2 - i -Pl of the ice and brine are known. The region R1 is bounded 
by circular arcs and •* for any microgeometry with the given volume fractions must 
lie inside it. In addition to the volume fractions, the second bound R 2 assumes that the 
sea ice is statistically isotropic within the horizontal plane. The region R 2 is again 
bounded by circular arcs and lies inside R1. Built into the method is a systematic way 
of obtaining tighter bounds on •* by incorporating information about the correlation 
functions of the brine inclusions. The bounding method developed here, which does 
not assume any specific geometry for the brine inclusions, offers an alternative to the 
classical mixing formula approach adopted previously in the study of sea ice. In these 
mixing formulas, specific assumptions are made about the inclusion geometry, which 
are simply not satisfied by the sea ice under many conditions. The bounds R1 and R 2 
are compared with experimental data obtained from artificially grown sea ice at the 
frequencies 4.8 and 9.5 GHz. Excellent agreer0ent with the data is achieved. 

1. Introduction 

The remote sensing of sea ice generates many inter- 
esting technical and theoretical problems. A central 
question in the application of remote sensing techniques 
to studying sea ice is how the physical microstructure 
of the ice determines its scattering and effective elec- 
tromagnetic properties. This question plays a funda- 
mental role in correctly interpreting scattering data and 
images from sea ice. The determinatio.n of the electro- 
magnetic properties from microstructural information 
is particularly interesting in the case of sea ice, which 
is a complex random medium consisting of pure ice 
with brine and air inclusions. The details of the mi- 

crostructure, namely the geometry and relative volume 
of the inclusions, depend strongly on the temperature of 
the ice, the conditions under which the ice was grown, 
and the history of the sample under consideration, as 
discussed by Weeks and Ackley [1982]. Owing to the 
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wide variety of possible microstructures and the high 
dielectric contrast of the components, it is, in'general, 
quite difficult to accurately predict the effective com- 
plex permittivity of sea ice. Nevertheless, many models 
have been proposed to describe the dielectric behav- 
ior of sea ice, such as those of Addison [1969], Hoek- 
stra and Capillino [1971], $togryn [1985], Tinga et al. 
[1973], Vant et al. [1978], Golden and Ackley [1981], Si- 
hvola and Kong [1988]. Typically, the sea ice is assumed 
to consist of a host medium (pure ice) containing spher- 
ical or ellipsoidal inclusions (brine or air). Various ef- 
fective medium theories, such as the coherent potential 
approximation, have been used to derive "mixing for- 
mulas" for the effective permittivity e* of the system. 
Each formula is judged according to how well it predicts 
experimental data. 

While mixing formulas for e* are certainly useful, 
their applicability to the full range of microstructures 
presented by sea ice is limited. For example, as sea ice 
warms up to aroun. d -5øC, the brine pockets tend to 
coalesce or "percolate" and form a connected matrix 
of brine, in which case the sea ice becomes a porous 
medium. This process represents an important stage 
in the evolution of a sea ice sheet, as it precedes the 
phe•nomenon known as "brine rejection," where some 
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of the brine flows out of the sea ice, due to its poros- 
ity. The electromagnetic properties of the ice following 
the rejection are dramatically changed. Clearly the as- 
sumption that the brine (or air) component of sea ice is 
contained in individual ellipsoidal inclusions, is simply 
not satisfied when the brine forms a connected matrix. 

We must therefore question the validity of these mixing 
formulas for warm ice. 

Another limitation of mixing formulas is that they 
provide only a precise prediction of what e* should be, 
given, say, a value for the brine volume and perhaps 
some information about the distribution of ellipsoidal 
orientations, as considered by Sihvola and Kong [1988]. 
They do not provide any information on the range of 
reasonable values for e*, which would be very useful, 
given that in any experiment, as one measures e* for 
a variety of samples, one obtains a scatter of values in 
the e* plane, which may or may not coincide with the 
precise value predicted by the mixing formula. 

We remark that one of the principal motivating fac- 
tors behind this work is the goal of developing prac- 
tical electromagnetic methods of distinguishing sea ice 
types, such as first-year from multiyear ice. In typi- 
cal inverse scattering algorithms, what is reconstructed 
from scattered electromagnetic field data is the com- 
plex permittivity which is "seen" by the wave. When 
the wavelength is longer than the microstructural scale, 
which for sea ice would correspond to frequencies of less 
than 10 or 20 GHz, this reconstructed permittivity will 
be e*, the effective permittivity. (Of course, e* itself 
can vary throughout any given sea ice sheet as the mi- 
crostructural geometry, such as brine volume, changes 
through the sheet.) One of our principal goals here is 
to study in detail how the statistical properties of the 
sea ice microstructure are connected to these observed 

values of e*. 

We also remark that another motivation for our study 
of sea ice is that from the point of view of the math- 
ematical theory of composite materials, understanding 
the electromagnetic behavior of sea ice pushes the limits 
of currently available mathematical techniques. From 
this point of view, sea ice is an extremely interesting 
example of a composite material, which combines in 
one medium many of the challenges encountered in the 
development of the mathematical theory; it is a mul- 
ticomponent composite, whose components have highly 
contrasting properties characterized by complex param- 
eters and whose microstructure exhibits a wide range of 
geometries. In particular, one of the most mathemati- 
cally intriguing aspects of the microstructure is the co- 
alescing or percolation of the brine cells, which occurs 
around the critical temperature Tc • -5øC, and results 
in a microstructural transition from separated brine 
pockets to a connected brine matrix. The influence of 
the connectedness properties of composite microstruc- 
tures on bulk electromagnetic behavior has been a topic 
of considerable recent mathematical interest. For ex- 

ample, see Kozlov [1989], Golden [1990], Golden [1992], 
Golden [1994], Berlyand and Golden [1994], Bruno [1991] 
and K. Golden [Statistical mechanics of conducting 
phase transitions, submitted to J. Math. Phys., 1995]. 
It is interesting to note in this context that the connect- 
edness properties of a particular component dominate 
the behavior of many technologically important mate- 
rials, including doped semiconductors, porous media 
(e.g., sandstones), piezocomposites, thermistors, solid 
rocket propellants, and cermets. 

2. Description of Theory and Methods 

Owing to the above limitations in the mixing formula 
approach which are caused by the wide variety of rele- 
vant sea ice microstructures, we begin here a new ap- 
proach to stu(]ying the effective complex permittivity 
e* of sea ice by obtaining bounds on e* in the complex 
plane. As a first step in the development of this ap- 
proach, we consider the sea ice to be a two-component 
random medium consisting of pure ice of complex per- 
mittivity el in the volume fraction pl and brine of com- 
plex permittivity e2 in the volume fraction p2 - 1- pl. 
In this paper we will neglect the effects of air inclusions, 
which is a reasonable assumption in many situations, 
such as for first year ice which has not yet undergone 
brine rejection, where air can replace much of the brine. 
To obtain the bounds, we apply a method introduced in- 
dependently by Bergman [1978] and Milton [1979] which 
exploits the properties of e* as an analytic function of 
the ratio el/e2. The method was developed further and 
applied in various settings by both Bergman and Mil- 
ton, and the complex bounds used here were obtained 
independently by Milton [1981] and Bergman [1980]. A 
mathematical formulation of the method was given by 
Golden and Papanicolaou [1983] and some of its impli- 
cations were explored by Milton and Golden [1985]. 

The key step in this formulation is establishing an in- 
tegral representation for e*, which is then used to obtain 
the bounds. As in the case of typical mixing formulas, 
the bounds are derived in the quasi-static limit, so that 
they are valid when the wavelength is long compared to 
the scale of the inhomogeneities-. 

We now describe the bounds more precisely. For the 
simplest bound it is assumed that only ex, es, p•, and 
p2 are known. The bound consists of a lens-shaped re- 
gion in the complex e* plane in which the values of e* for 
all possible mixtures of the two materials in the given 
volume fractions must lie. For the case of sea ice, where 
there is a wide variety of possible microstructures, the 
bound is valid for all of them, given only the brine vol- 
ume. Built into the method, though, is a systematic 
way of obtaining tighter bounds on e* if one knows fur- 
ther statistical information about the geometry beyond 
simply the volume fractions. More precisely, there is a 
hierarchy of increasingly tighter bounds, where the nth 
order bound depends on knowledge of the n-point cor- 
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relation function of the mixture. The bounds described 

above are first order and depend only on one-point cor- 
relation or volume fraction information. For the case of 

second-order bounds it turns out that if the material is 

statistically isotropic, i.e., if e* does not depend on the 
direction of polarization of the electric field, then one 
can obtain the bounds without any direct knowledge of 
the two-point correlation function. 

In the present work we apply the first order and 
isotropic second order bounds to sea ice with given 
salinities and temperatures. These bounds are com- 
pared with the experimental data of Arcone et al. [1986] 
for artificially grown sea ice at 4.8 and 9.5 GHz. Given 
a sample of sea ice at temperature T and of salinity 
$, we estimate the brine volume p•. using the equation 
of Frankenstein and Garner [1967]. Then for each fre- 
quency, 4.8 and 9.5 GHz, and for a given temperature 
T, we find the complex permittivity of the brine e2 us- 
ing the calculations of $togryn and Desargant [1985]. In 
general, we obtain excellent agreement with the exper- 
imental data. Small discrepancies between the bounds 
and the real data are inevitable, though, and may be 
explained with uncertainties in the brine volumes, the 
unaccounted for presence of air, or scattering effects 
when the wavelength is larger but comparable to the 
typical brine length scale. 

realization and not frequency.) For a two-component 
medium with component permittivities el (ice) and e2 
(brine) we write 

e(x, co) - elXl(X, co)+ e•X•(x, co), (1) 

where X•' is the characteristic function of medium j -- 
1, 2, which equals one for all realizations co e f• having 
medium j at x, and equals zero otherwise. Let E(x, co) 
and D(x, co) be the stationary random electric and dis- 
placement fields, respectively, satisfying 

O(x, - (2) 

V. D(x, co) - 0 (3) 

V x E(x, co) - 0 (4) 

< >= (s) 
where ek is a unit vector in the kth direction, for some 
k = 1,...,d. In (5), angle brackets mean ensemble 
average over f• or spatial average over all of IR a. 

In view of the local constitutive law (2) we define the 
effective complex dielectric tensor e* via 

or, 

<D> = e* <E>, k-1,...,d, (6) 
* 

e•k = < Di >, i,k-1,...d, (7) 

3. Bounds on the Effective Permittivity 

We now present the bounds on e* discussed above. In 
this section we first formulate the effective permittiv- 
ity problem, briefly describe the method for obtaining 
the bounds, which is called the analytic continuation 
method, and then state the bounds. A more detailed 
summary of the method is given in the appendix. We 
also refer the interested reader to Golden and Papanico- 
laou [1983], Golden [1986] and Bergman [1982] for more 
detail. 

Let us begin by formulating the effective complex per- 
mittivity problem for a two-component random medium 
in all of I• a, d-dimensional Euclidean space, with trans- 
lation invariant statistics. Formulating the problem in 
this way is for mathematical simplicity but is analo- 
gous to assuming that the brine statistics are the same 
throughout a given sample of sea ice and that the sam- 
ple is large compared to the typical brine length scale, 
which is reasonable for comparison with data taken for 
samples by Arcone et al. [1986]. For real sea ice the 
brine statistics and structure will change with depth 
and might differ from floe to floe. However, for a rel- 
atively small depth interval of, say, 10 cm, and in any 
given floe the assumption should be reasonably well sat- 
isfied. Now let e(x, co) be a (spatially) stationary ran- 
dom field in x • I• a and co • f•, where f• is the set of 
all realizations of our random medium. (We are deal- 
ing here with an ensemble f• of random media, indexed 
by the parameter co, which represents one particular 

where the right side of (7) depends on k via (2) and 
(5). For simplicity we focus on one diagonal coefficient 
e* - * Noting that through the homogeneity prop- •kk' 

erty e*(Ael,Ae2) = Ae*(el,e2), e* depends only on the 
ratio h = el/e2, we may divide (7) by e2 and define 

6' 61 
= - = < + >, = -. (8) 

62 62 

The two main properties of re(h) are that it is •nalytic 
off the interval (-•, 0] in the h plane •nd that it m•ps 
the upper half plane to the upper half plane, i.e., 

Ira(re(h)) > 0, Ira(h) > 0, (9) 

where Im denotes imaginary part. Such functions 
which are analytic off some segment of the real axis 
and obey (9) are called Herglotz functions. 

As mentioned in section 2, the key step in the analytic 
continuation method is obtaining an integral represen- 
tation for e*. For this purpose it is more convenient to 
look at the function 

F(s)=l-m(h), s=l/(1-h), (10) 

which is analytic off [0, 1] in the s plane. It was then 
proven by Golden and Papanicolaou [1983] that F(s) 
has the following representation 

f0 • aU(•) (XX) F(s) - 

where /• is a positive measure on [0, 1]. (Very loosely 
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speaking, we may think of dtt(z) as g(z)dz, for some 
density g(z) which is allowed to have "6 function" com- 
ponents.) One of the most important features of (11) 
is that it separates the parameter information in s - 
1/(1- e•/e2) from information about the geometry of 
the mixture, which is all contained in it, through de- 
pendence on X•. In fact, statistical information about 
the geometry is input into (11) via the moments of/•, 

•01 
. 

This input is obtained by equating an expansion of (11) 
in powers of 1/S, the coefficients of which are the mo- 
ments ;tn, to a corresponding perturbation expansion 
around a hbmogeneous medium (s = ½x: or el = 62) 
of another representation for F(s) involving a resolvent 
formula for E. This procedure, which is described in 
the appendix, yields 

;UO -- Pl, (13) 

if only the volume fractions are known, and 

PiP2 

;ti- d (14) 

if the material is statistically isotropic, where d is the 
dimension of the system as in 6 and (7). In general, 
knowledge of the (n q- 1)-point correlation function of 
the meditiin allows calculation of ;t;• (in principle). 

Bounds on e* or F(s) are obtained by fixing s in (11), 
varying over admissible measures ;t (or admissible ge- 
ometries), such as those that satisfy only (13), and find- 
ing the corresponding range of values of F(s). This 
procedure is described in the appendix. We now give 
formulas for the boundaries of these regions. In addi- 
tion to the first- and second-order bounds described in 

the Introduction, there are zeroth order bounds which 
assume no knowledge of the geometry, not even the vol- 
ume fractions. They exploit only the conditions that 
0 _< ;to _< i and F(s- 1) _< 1. In the F plane, let 
R0 be the region containing the range of values of F(s). 
Then R0 is bounded by a circular arc C(a) and a line 
segment L(a), 

C(a)- a L(a)---a 0<a<i (15) 
s-(1-a)' s' - - ' 

Th6 arc C(a) is circular because as a function of a, 
C(a) is a fractional linear transformation of a, which 
maps the class of circles and lines to itself. When s is 
complex, then the line segment [0, 1] in the a plane gets 
mapped to an arc of a circle. If we transform R0 to 
the e* plane, then its vertices are 61 and ca, L(a) gets 
transformed to the line segment 

(16) 

and C(a) gets transformed to the circular arc 

a 1-a 
- --+• , 0<a<l, (17) C*(a) - - 

so that a plays the role of Pl, the volume Ëaction of 
medium 1. In fact, the expressions in (16) and (17) 
are simply the complex permittivities of laminates (or 
layers) of e• and 62 in the relative volume fractions a 
and 1- • with the applied field parallel and perpendic- 
ular, respectively, to the lamination direction. The arc 
and line segment are parameterized by the relative vol- 
Ume fraction a of 61. Because there are actual geome- 
tries (laminates) which att•n these complex bounds, 
the bounds are s•d to be optimal, in other words, with 
no •sumptions at •l about the geometry, these are the 
best bounds one can obt•n. For real parameters with 
e• • e•, R0 collapses to the interval 

If the volume fractions pl and p• - 1- pl are known, 
then (13) must be satisfied. Let R• be the correspond- 
ing region, which is bounded by circular arcs. In the F 
plane one of these arcs is parameterized by 

C•(z) - pl O • z • p• (19) 
8--Z 

where z is a real parameter •d C(z) is fractional linear 
in z, like C(a) above. To exhibit the other arc, it is 
convenient to consider the auxiliary function 

e• 1-sF(s) 
- _ 

which is a Herglotz function like F(s), analytic off [0, 1]. 
Then in the E plane, we can parameterize the other 
circular boundary of R• by 

½•(z) - P2 0 < 2, < Pl (21) 

In the 6 

p2/62) -1 and is bounded by the arcs 

C 1 (/•) -- 62 + p• 
61 -- 62 

62 -- 61 

* plane, R• has vertices plel +p262 and (p•/61 + 

pl) 
(22) 

(23) 

where/• is a real parameter and C•(/•) and • ([:•) are 
again fractional linear in /•. Again, these bounds are 
optimal and are attained by a number of geometries, 
including coated elliptical cylinders considered by Mil- 
ton [1981]. When 61 and 62 are real, R1 collapses to the 
interval 

(p•/e• + p2/62) -• _< e* _< p•el + p2e2, (24) 
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which are the classical arithmetic and harmonic mean 
bounds. 

If the material is further assumed to be statistically 
, * isotropic, i.e., eik -- e 5ik, then (14) must be satisfied as 

well. The corresponding region R2, again, has circular 
arcs for boundaries. In the F plane one of these arcs is 
parameterized by 

p• (s - z) 
C2(z) - s(s- z-p•/d)' O_• z _• (d-1)/d. (25) 

In the E plane the other arc is parameterized by 

p2(s- z) O •_ z •_ l/d. (26) (•2(z) - s[s- z- p,(d- 1)/d]' 
When e• and e2 are real with e• •_ e2, R2 collapses to 
the interval 

/( 1 p•) el +P2 + • e2 -- el •1 -- 

/( 1 pe) e* < e2 + p• + (27) -- •1 -- •2 • • 

which are the famous bounds of Hashin and $htrikman 

[1962]. The real bounds in (27) are attainable by coated 
sphere geometries, but the complex arcs (25) and (26) 
are not generally attainable, as noted by Milton [1981] 
and Bergman [1982]. 

4. Comparison With Experimental Data 

In this section we consider plots of the bounds R0, R•, 
and R2 and compare them with the experimental data 
of Arcone et al. [1986]. For any given sample of sea ice 
of salinity $ and temperature T the brine volume p2 
may be estimated using the equation of Frankenstein 
and Garner [1967], 

p• _ $ (49.185 + o. 53' . 
To determine e2, the complex permittivity of the brine. 
we use the empirically determined formulas of $togryn 
and Desargant [1985], which are based on a Debye-type 
relaxation equation, 

e.• -- e• + I -i27rf•- + i 2•e0--• ' (29) 
which has only one resonance, ignoring a possible spread 
in relaxation times. In (29), es and e• are the limit- 
ing static and high frequency values of the real part of 
e2, Re(e2), r is the relaxation time, f is the frequency, cr 
is the ionic conductivity of the dissolved salts, e0 is the 
permittivity of free space, and i - (-1)•/2. The ionic 
conductivity is assumed to be independent of frequency. 
Then e2 for brine in equilibrium with sea ice is deter- 
mined by the four real parameters e•, es, r, and or, each 
of which depends only on temperature, and all were 

found experimentally. Compared to the brine, the com- 
plex permittivity of the pure ice e• is basically indepen- 
dent of temperature and frequency, as found by Miitzler 
and Wegmiiller [1987], and we take e• = 3.15 + i0.002. 

In Figure 1 we plot the bound R0 with R• contained 
inside, with the frequency, $,T, and p2 values shown. 
Clearly, knowing the brine volume (R•) yields a tremen- 
dous improvement over the R0 bound, which only as- 
sumes knowledge of the values of e• and e2. In Figure 
2 we have plotted two different regions R• for the same 
sample of sea ice with $ = 50/00, to show how changing 
the temperature shifts the region in the e* plane. Alter- 
natively, we can view Figure 2 as showing how changing 
the brine volume can dramatically affect the location 
and size of R•. In Figure 3 we have plotted the smaller 
R• with T = -11øC from Figure 2 with R2 inside of 
it. For the calculation of R2 here and in subsequent 
figures, whose boundaries are given by (25) and (26), 
we have used d -- 2, since as the wave propagates ver- 
tically down through a slab which is not too thick, the 
properties are reasonably uniform in this direction. In 
this case the electric field only has components within 
the horizontal plane, so that the system is effectively 
two-dimensional. The assumption of isotropy in this 
configuration, which is the configuration used by At- 
cone et al. [1986], is then an assumption about isotropy 
within the horizontal plane, which is a topic considered 
by Cherepanov [1971], Kovacs and Morey [1978], Weeks 
and Gow [1980] and Golden and Ackley [1981]. (We re- 
mark that since the scales on the Re(e*) and Ira(e*) 
axes are not the same, the circular arcs which form the 
boundaries of the regions may not necessarily appear 
circular.) 

In Figures 4a, 4b, and 4c we begin the comparison 
of our bounds with the measured values of e* for ar- 

tificially grown sea ice of Arcone et al. [1986]. The 
data points in Figure 4a were taken from Arcone et al. 
[1986], Figure 8. They represent a range of p• values 
from 0.031 to 0.041, and salinity values from 3.8O/oo 
to 4.4O/oo. To construct the bound, we have chosen 
the midpoint values of p• = 0.036 and S = 4.1 ø/00, 
and then inverted (28) to obtain T = -6øC. The data 
points in Figure 4b range in p2 values from 0.018 to 
0.023, with the same salinity range as in Figure 4a, and 
we obtain the bound through the same midpoint proce- 
dure. In Figure 4c, the data have been taken from the 
85-4 slab measurements of Arcone et al. [1986], Fig- 
ure 17, with a range in temperature from -12.5øC to 
-15.5øC, so that we choose the midpoint T = -14øC, 
with S = 2.4ø/00, to construct the bound. •Ve chose 
this particular slab because there was little difference 
between the measured salinity before and after the ex- 
periments were done, so that we were fairly confident 
that the p• value given by (28) would be representative 
of what was in the sample. By comparison of the data 
with R•, there appears to be some evidence of a small 
degree of anisotropy, which agrees with what was found 
directly by Arcone et al. [1986]. However, these dis- 
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p2=0.12 

0 10 20 30 40 50 60 70 

Re(e*) 

Figure 1. Bounds on complex permittivity e* for sea ice. The large region R0 assumes nothing 
about the microstructure. The small region -R1 inside assumes a brine volume of p•. - 0.12; f is 
frequency, $ is salinity, and T is temperature. 

crepancies may also be accounted for by uncertainties 
in the brine volume, which is discussed below. 

Finally, Figures 5a, 5b, 6a, and 6b were created to 
be able to directly compare with Arcone et al. [1986, 
Figures 16 and 17], in which the real and imaginary 
parts of e* are plotted separately as a function of tern- 

perature. The data shown in our figures are a represen- 
tative set of the data from slabs 85-1, 85-2, and 85-3. 
These three slabs were chosen because their salinity val- 
ues (before the experiment) were all close to each other, 
with $ = 4.8, 5.5 and 5.4 ø/00, respectively. Arcone et 
al. [1986, Figures 16 and 17] plot data for ice which is 

4.5 
f - 4.8 GHz 

4 $ - 5%0 

3.5 

3 
Im(e*) 

2.5 
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1.5 
T 

P2 
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O 3 

Figure 2. Bounds on e 

= -11øC 

-- 0.025 

T 

P2 

= -2øC 

- 0.12 

4 5 6 7 8 9 10 11 
Re(e*) 

* for sea ice with different brine volumes p2 or different temperatures T. 
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•.2 
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f = 4.8 GHz //• 
S = 5ø/•0 T = -11 C • 

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 

Figure 3. Bounds on e* for given brine volume (outer bound R•) and assuming isotropy within 
the horizontal plane (inner bound R2). 

warmed and subsequently cooled down. We only used 
the "warming" data, as once the ice has been warmed 
above -5øC, brine leaks out and air replaces some of 
the brine, which is reflected in the "cooling" data. For 
any given value of T, to create the upper and lower 
bounds shown in our figures, we first computed the R2 

bounds for that value of T and with $ = 5 ø/00. For 
a given value of T, the R2 bound gives a maximum 
and minimum value for both Re(e*) and Im(e*) which 
corresponds to the coordinates of the vertices of R2. 
The upper and lower bounds for any given T shown 
in Figure 5a, for example, correspond to these maxi- 
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• I I I I I I I 

03.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 
Re 

Figure 4a. Comparison of experimental data on e* with/i•l for given brine volume P2 and with 
bound R2 which assumes isotropy as well. 
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Figure 4b. Same as Figure 4a, except for temperature of -11øC and p2 of 0.0205. 

I I I I I I I I I 

f = 4.75GHz 
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_ T = -11øC 

P2 = 0.0205 - 

5 

mum and minimum values of Re(e*) obtained from the 
vertices of R2. Note that by considering Re(e*) and 
Ira(e*) separately, it is easier for data points to lie in- 
side the bounds, compared with plotting the points in 
the complex plane. More precisely, points which lie 
inside the bounds represented in Figures 5a, 5b, 6a, 
and 6b, if plotted in the complex e* plan. e, would only 
be required to lie in the corresponding rectangle (with 

sides parallel to the axes) with two vertices matching 
the two vertices of/{2. Because of this added flexibil- 
ity through plotting Re(e*) and Ira(e*) separately, we 
found that we could obtain good fit with the data by 
using/{2 instead of R1. We remark that the assumption 
of isotropy in the horizontal plane, which is implicit in 
constructing R2, is fairly reasonable, as seen in the pre- 
vious figures. Furthermore, since the sea ice was artifi- 

Im(e*) 

1.8 i i i i 

f - o.s GHz 
:1.t5- S - 2.4 0/00 

T = -14øC 
1.4- 

P2 -- 0.01 
1.2- 

1- 

0.8- 

0.6- 

0'4 1 0.2 

I I I I I I I 

03.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 
Re (e*) 

Figure 4c. Same as Figure 4a, except for frequency of 9.5 GHz, salinity of 2.40/00, temperature 
of-14øC, and P2 of 0.01. 
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Figure 5a. Comparison of experimental data on e* with upper and lower bounds on Re(e*) 
obtained from R2, as a function of temperature, at 4.8 GHz. 

cially grown in an outdoor pool, where there is no well- 
developed, long-term current direction (which is usually 
present when the c axis orientation of sea ice is highly 
anisotropic, as studied by Cherepanov [1971], Weeks and 
Gow [1980] and Golden and Ackley [1981]), we should 
not expect marked anisotropy in the data from Arcone 
et al. [1986]. 

5. Discussion 

In comparing our bounds with the data of Arcone 
et al. [1986], we have found ti/at perhaps the single 
most important quantity which determines the dielec- 
tric properties of sea ice is the brine volume p2, and the 
regions R• and Rs are very sensitive to this value. Un- 

3.5 

2.5 

Im(e*) 
1.5 

0.5 

0 

-0.5 

I 

f - 4.8 GHz 

$ = 50/00 

0 -5 -10 -15 -20 

Figure 5b. Comparison of experimental data on e* with upper and lower bounds on Ira(e*) 
obtained from R2, as a function of temperature, at 4.8 GHz. 
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Figure fla. Comparison of experimental data on •* with upper and lower bounds on Re(e*) 
obtained from R2, as a function of temperature, at 9.$ GHz. 

fortunately, the brine volume is quite difficult to mea- 
sure experimentally. In comparing our bounds with the 
data, it appeared that the largest discrepancies occurred 
when there was the most uncertainty in the calculated 
value of the brine volume. As Arcone et. al. note, brine 
was leaking out of the slabs of sea ice until their temper- 
ature dropped below -24øC, and resumed again with T 
between -5 ø and -6øC. Even though the leaked brine 
was collected so that accurate salinity measurements 
could be made, under such circumstances the equation 
of Frankenstein and Garner [1967], which is based on 
theoretical considerations, cannot be expected to pro- 
vide a very accurate prediction of the actual brine vol- 
ume in the sample. In fact, we noted that adjusting the 
brine volume in the bound R1 could usually capture 
any scatter of data points associated with a particular 
S,T pair. This observation leads one to suspect that 
the brine volume of a given sample of sea ice could be 
deduced by measuring e* at a number of different fre- 
quencies and checking which brine volume yields the 
best correspondence between the bounds and the data. 

As mentioned in section 2, the bounds are derived 
in the quasi-static or infinite wavelength limit and are 
valid when the wavelength A is large compared with the 
typical brine length scale/3, which is of the order of mil- 
limeters. When A becomes comparable to •, we might 
expect that scattering effects become more significant. 
In this case we would expect that measured values of 
Im(e*) should be higher than those predicted by the 
bounds due to scattering losses. For the current fre- 

quencies of 4.8 and 9.5 GHz we have found no evidence 
of any systematic offset of the experimental values when 
compared with the bounds. We conclude then that at 
these frequencies, scattering losses are minimal. In cur- 
rent work with S. Ackley and V. Lytle, we are compar- 
ing the quasi-static bounds with higher-frequency data, 
over a range of 26.5-40.0 GHz, where the validity of the 
quasi-static assumption is uncertain. This work will be 
reported elsewhere. 

Finally, as mentioned in section 4, we did not use the 
"cooling" data of Arcone et al. [1986], as air has re- 
placed some of the brine. The effect this has on e* is 
that it apparently lowers the measured values of both 
Re(e*) and Ira(c*). In order to obtain bounds to model 
this situation, as well as multiyear ice which generally 
has more air volume than does first year ice, we must 
consider the sea ice to be a three-component random 
medium consisting of pure ice, brine, and air. How- 
ever, the mathematical theory of bounding e* for three 
or more components is quite a bit more involved than 
for two, and involves the theory of several complex vari- 
ables in which there arise new mathematical phenomena 
not encountered with functions of a single complex vari- 
able. In fact, the general theory of complex bounds was 
restricted to two components until the work of Golden 
and Papanicolaou [1985], and the first set of comprehen- 
sive bounds on e* in the multicomponent case was found 
by Golden [1986]. Subsequently, Milton [1987a,b] im- 
proved Golden's bounds and significantly extended the 
bounding theory. In subsequent work we would like to 
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Figure 6b. Comparison of experimental data on e* with upper and lower bounds on Ira(e*) 
obtained from/•2, as a function of temperature. at 9.5 GHz. 

'apply the Golden-Milton bounds to three-component 
sea ice. 

Appendix: The Analytic Continuation 
Method 

Here we describe in more detail following Golden 
[1986], how the bounds R0, R1, and R2 are obtained. 
kVe begin with the fundamental representation formula 
presented in section 2, 

f0 • F(s) - , (A1) 

where 

r-l-e*/e2, s--1/(1-e•/e2), (A2) 

and 12 is a positive measure on [0,1]. An alternative 
operator representation for F(s) can be obtained from 
manipulation of (2)-(5), 

F(s) -< ?(•[(s + Fx•)-•e•] ß e• >, (A3) 

where F = V(-A)-iV .. In the Hilbert space 
with y1 in the inner product, FX1 is a bounded self- 
adjoint operator of norm less than or equal to one. The 
integral representation (A1) is the spectral representa- 
tion of the resolvent (s+Fx1) -•, where 12 is the spectral 
measure of the family of projections of FX1, which pro- 
vides a proof of (A1). We then see explicitly how 12 
depends on the geometry through X•. Another proof 
of (A1) exploits the Herglotz property of F(s). 

Now we describe how (A3) can be used to inject ge- 
ometrical information into the measure 12. First, for 
I.sl > 1, (A1) can be expanded about a homogeneous 
medium (s=ooorh=l), 

F(s)- 12-2ø + TM - z'•d12( ) (A4) s '•'+..., 12n z ß 

This is equivalent to a Taylor series expansion of m(h) - 
•*/•2(el/•2) around h = 1. Equating (A4) to the same 
expansion of (A3) yields 

12,• = (-1) '• < X•[(Fx:)'•e•] ß e• >. (AS) 

It is through this moment formula that correlation in- 
formation about the geometry is injected into the inte- 
gral representation. If all the moments 12,• are known, 
then the measure 12 is uniquely determined. Then (A1) 
provides the 'analytic continuation of the power series 
in (A4) to its full domain of analyticity, which is the 
full complex s plane excluding [0,1]. 

Bounds on e* are obtained from (A1) as follows. First 
we describe how R0 is obtained. By (A5), 120 equals p•, 
the volume fraction of medium 1. Then 

0 •_ 120 _< 1. (A6) 

For s • C•[0, 1], where C is the complex plane, F(s, 12) 
in (A1) is a linear functional from the set M of positive 
measures of mass _< 1 on [0,1] into C. Now M is a 
compact, convex set of measures. The extreme points 
(or boundary) of the range of values of F(s, 12) in C are 
attained by one-point (Dirac) measures aSa,0 < a < 
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1, 0 _• a _• 1, since they are the extreme points of M. 
For these measures (which are so-called "5 functions"), 
F has the form 

F(s)-•, 0_•a_• 1, 0•_a•_ 1. (A7) 
$--a 

The condition F(s - 1) •_ 1 determines the allowed. 
region R0 in the F plane. It is the image of the triangle 
in (a• a) space, defined by a +a • 1, 0 _• a '5• I, 9 • a • 
1, under the mapping (A7)i wh{ch is described in (1.5). 
The bounds in (15) •e optimal and can be :•:t•ined 
by laminates of e• and e2 aligned i•erpendicu•ar and 
parallel to the applied field. The arcs are traced out as 
the volume fraction varies. 

If the volume fractions p• and p2 - I -p• are fixed 
as well as s, then •0 is fixed, with 

•0 - P•. (A8) 

Then applying a similar extremal anaJysis as above 

The function Fx (s) is, again, a Herglotz function which 
has the representation 

j•01 F1($ ) -- d•l(z) (A16) 
8-2: 

Under (A14), Fx is known only to first order 

Fi(s) p2 /pl d - +... , (A17) 
$ 

which forces the zeroth moment/z01 of •1 to be 

I• - p2/pld. (A18) 

Then applying the same procedure as for R• yields the 
bound R2, where the boundaries are circular arcs pa- 
rameterized by (25) and (26). We remark that higher- 
order correlation information can be conveniently incor- 
porated by iterating (A15), as done by Golden [1986]. 

shows that the values of F lie inside the circle parametrized 
by Acknowledgments. The author would like to ihank 

Cl(z) pl (A9) 

On the other hand, 

E($) - I - el/e* 1 -sF($) = $[1 - F(s)] (A10) 
is also a Herglotz function like F(s) and has a represen- 
tation 

/0 a-z) = 
$--Z 
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Expansion of E(s) yields v0 - p•, so that the values of 
E lie inside the circle 
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