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Bulk Conductivity of the Square Lattice
for Complex Volume Fraction
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Abstract. The bulk conductivity o*(p) of the bond lattice in Z? is considered, where
the conductivity of the bonds is 1 with probability p or € > 0 with probability 1 —p. The
behavior of o*(p) for complex p is investigated numerically and analytically. We find
numerical evidence that the phase transition occurring at the percolation threshold p,
is characterized by a domain “splitting,” where ¢*(p) = 0 in a region containing (0, pc]
while 0*(p) # 0 in a region containing (pc,1]. Furthermore, the loss of analyticity at
p. does not appear to arise from a “pinching” of zeros around pc, as in the Lee-Yang
picture of phase transitions. A partition function for ¢* is introduced and is similarly
analyzed.

1. Introduction.

Random resistor networks [1-3] based on the percolation model provide an excellent
setting in which to study disordered conductors. In particular, we consider the bulx
conductivity o*(p) of the bond lattice in Z?, where the conductivity of the bonds is
either 1 with probability p or ¢ > 0 with probability 1 — p. What is particulacly
interesting about this model is that for € = 0 it exhibits a phase transition at a critical
probability p, € (0,1), i.e. for p < pe,0"(p) = 0, while ¢*(p) > 0 for p > p.. This
critical probability p, coincides [4,5] with the percolation threshold p., below which
Po.(p) = 0, where Po.(p) is the probability that the origin belongs to an infinite cluster
of occupied (conductivity 1) bonds, and above which P.(p) > 0. As p — pf, it is
believed that ¢*(p) exhibits critical scaling, o*(p) ~ (p — pc), where t is called the
conductivity critical exponent.

It is interesting both mathematically and physically to understand the exact nature
of the conducting phase transition at p.. In previous work [8] we proved that for every
€ > 0, o*(p) is analytic in an open neighborhood of {0,1] in the complex p-plane. This
result establishes that for € > 0, no phase transition can occur. As ¢ — 0, 0”(p) loses
analyticity, at least at p = p.. Analogously, with e = 0, the finite volume version 77 (p)
of o*(p), where L is the length of a side of a box of volume L% is a polynomial in
p, which is an (entire) analytic function of p. As the infinite volume limit is taken,
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analyticity is again lost, at least at p = p.. The question arises as to exactly how this
analyticity is lost.

In the Lee-Yang picture of phase transitions [see, e.g., ref. 7], the finite volume par-
tition function is a polynomial in the fugacity, whose zeros lie off the positive real axis,
reflecting the absence of a phase transition for finite volumes. As the infinite volume
limit is taken, these zeros coalesce into a curve, and “pinch” the real axis, causing a loss
of analyticity at the critical fugacity. For certain systems, even for small volumes the
zeros lie on a well defined curve.

In this work we investigate o} (p) for complex p in the case of the d = 2 square
lattice. If the lattice has N bonds, then o} (p) is an N** order polynomial in p. We
use the computer to calculate the conductivities of realizations of the random network,
which yields the coefficients of the polynomial. Then the program Mathematica is used
to obtain various graphs of ¢*(p) in the complex p-plane. We have only considered
lattices of size up to 9 x 9, with e = 0.001, but there are certain discernible features of
o*(p) which are common to all the graphs. The principal feature is that there appears
to be a region W, which can be very roughly described by

Wx{p0<Rep<p.,—-01<Imp<0.1},

such that o (p) appears to vanish in W. Apparently the domain of analyticity of o*(p)
around [0,1] appears to be split around p. (although it is not rigorously known that o*{p)
is analytic anywhere), This splitting of the domain (or the splitting of the function into
two separate analytic pieces) is part of the Lee-Yang picture, where the line of zeros
splits the domain of analyticity of the partition function. However, we have as yet found
no eviden:ze of zeres pinching the Re p axis around p.. In addition to s7{p), we shall
define a partition function for the problem, and note that it has a similar behavior to
c;(p) for complex p.

2. Formulation.

We formulate the bond conductivity problem for an arbitrary graph. Let G be a finite
graph consisting of V bonds {b;} and M vertices {z;}. Assigned to G are V independent
random variables ¢;, 1 < ¢ < N, the bond conductivities, which take the values 1 with
probability p and ¢ > 0 with probability 4 = 1 — p. Distinguish two vertices, say z; =z
and zar = y, and connect them to a battery which keeps the voltage drep between them
equal to 1. The effective conductivity &(w) of the network for any realization w of the
bond conductivities is just the total current i{w) that flows through the network, which
is obtained via Kirchoff's laws. We define ¢(p) =< g{w) >, where the expectation < - >
is over all 2% realizations. For example, a two bornd network has
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= 2~/ ) -y — oy L T
olp) =P T L )+ pgl Tt e) + T 1)) + 9 0(5¢)



Bulk conductivity of the square lattice for complex volume fraction 73

where 7(1,1) = (w) with w = (1,1), and so on. For N bonds, o(p) is an Nth order
homogeneous polynomial in p and g,

N
o(p) = Y arp"H"
k=0

ap = Z E(wk), g=1-p,

wk EQ"

(2.1)

where O = {wk = (W1,-.,WN)lwe =€ for exactly k of the we’s}.

The cases of most interest are when G is a square, cubic, or hypercubic lattice.
Then, with d = 2 for simplicity, we take an L x L sample of the lattice and attach
a perfectly conducting bus bar to each of two opposite edges of the sample. This
can be accomplished [4] in the above language by attaching to each vertex of these
opposing edges a perfectly conducting bond. All of these bonds from one edge meet at
a new vertex z and all the bonds from the other edge meet at a new vertex y. Then
z and y are connected again with the unit battery. Random bond conductivities are
assigned only to the bonds in the original L x L sample. Let o1(p) denote (2.1) for the
effective conductivity measured between z and y. Then for d > 1, the finite voiume

bulk conductivity o} (p) is defined as
o(p)=L**ar(p) - (2.2)
Finally, we define the bulk conductvity o=(p) by

o*(p) = lim o7 (p) (2.3)

For ¢ > 0. the infinite volume limit in (2.3) has been shown to exist [8-11], and for
¢ — 0 the existence of o* has recently been proven in the continuum {12},

3. Analyticity for € > 0.

For completeness, we state and prove here the analyticity result which motivates
the present investigation. The analysis is based on an integral representation which
was proved for twe component stationary random media in {10] (see also [13]). The
formulation there is in the continuum, but applies in the present context by replacing
the continuum equations for the electric and current fields with their discrete analogs,
i.e., Kirchoff’s laws. We repeat here only the relevant features.

Let s = 1/{1—¢). We shall consider s to be a complex variable. It can be shown that
7*(p, s) is analytic everywherein the s-plane except for the interval [0, 1}. Furthermore,
o*(p,s) maps the upper half plane to the upper half plane, i.e., Im ¢*{(p,s) > 0 when
Ims > 0. As a consequence of these analytic properties, o*{p,s) has the fellowing

o) = [ dulz) | (3.1)

8§ —Z

integral representation,
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where p is a positive Borel measure on [0,1] which depends on p. Notice that this
representation separates the dependence of o*(p,s) on s from its dependence on p.
(In fact, (3.1) applies even when ¢ = 0.) The dependence of u on p is most easily
obtained through its moments, as follows. For |s| > 1, (3.1) can be expanded about a
homogeneous medium (s = oc or € = 1), yielding

(ps) = PoLP) pa(p) | pa(p) |

+ + T+ (3.2)

1—0o"
$ s2 83

Ln =/{; z"du(z) . (3.3)

By equating (3.2) to a similar expansion of a resolvent representation for ¢*, one can
obtain a formula for un(p) in terms of the iterates of a self adjoint operator on L* (©2 =
set of realizations of the bond conductivities) involving the Green’s function of the
discrete Laplacian. Because the bond conductivities are independent, these moments
can be computed in principle, but they become very complicated. The first two are

mo(p)=1-p
p(l - p) (3.4)
m(p) = —a

In general, pn(p) is an (n + 1)-order polynomial in p.
We are now ready to state

THEOREM 3.1:{d > 1 bond problem) For every € > 0, there exists an open reigh-
borhood V. in the complex p-plane such that [0,1] C V. and ¢*(p) is analytic in V,.

Proof. Fix s =1/(1—¢€) > 1. The idea is to produce a neighborhood containing [0,1] in
which (3.2) converges uniformly. Since for p = [0,1], polp) = 1 —pand u.(0) > w12
for ali n (via (3.3)),
pnlp) <1, p2 1. (3-5)
Now we must extend what we can of (3.5) into the complex plane. Consider E = {p €
Ip ¢ 10,1]}. Conformally map E onto the unit disk D in the z-plane. so that p = oc
gets mapped to z = 0, and {0,1] gets mapped to the unit circle |z} =1. Let m =n + 1.
Since pn(p) is an mth order polynomial in p, pn(z) has at worst an mth order pole at
z =0, Thus z™un(2) is analytic in D. Since {p,(z)} <1 for |z] = 1, by the maxdmum

modulus principle,
1

2™

en(2)] < z

N

D. (3.6)

For any small § > 0, there is a small § > § > 0 such that in the annulus A5 defined
byl>lzl>1-4
ln(z <A +86)™, z€ Ay . (3.7)

For our given s > 1 (or € > 0), we can choose § and &' such that

(P S (1 +8)™ <s™, peVs, (3.8)

where V. conformally maps to As. Then {3.2) converges uniformly in V,, which proves
the theorem.
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Remarks. Theorem 3.1 and its proof hold for a large class of continuum systems as
well, namely infinitely interchangeable media, which have recently been introduced by
O. Bruno [14]. This class is a generalization of Miller’s cell materials [15], where all
of space is divided up into cells, such as spheres of all sizes, and then the conductivity
of each cell is a random variable {(independent from the others) taking two (or more)
values with probability p and 1 — p. While the integral representation (3.1) holds in
great generality, along with (3.5), what is needed to make the proof go through is that
the pn(p) are polynomials in p. The proof of this fact for infinitely interchangeable
media is contained in [16] (along with rigorous upper and lower bounds on *(p) for the
d = 2 bond problem with € > 0). We also note that Theorem 3.1, and its generalization
to infinitely interchangeable media, provides a rigorous basis for the volume fraction
expansions of o*(p), which have been widely used for a long time {16]. Finally, Theorem
3.1 presumably does not hold for all composite media. For example, a*(p) for a periodic
array of spheres of volume fraction p embedded in a host material is believed to be
analytic at p = 0 only in the variable p3, so that ¢*(p) has a branch cut there (see, e.g.,

(17]).

4. Calculation of o7 (p).

In order to investigate the behavior of o} (p) for complex p, we numerically calculate
the ax in (2.1), which depend on the effective conductivities of realizations of the lattice
with random bond conductivities. It is first useful to describe a beautiful formula which
gives the effective conductivity of any graph with any set of conductivities on the bonds.

Let G be a graph with M vertices and N bonds. Without loss of generality we can
assume that any two vertices are joined by only one bond, since if there are n bonds
Joining two vertices, they can be replaced by one bond whose conductivity is the same
as the sum of the conductivities of the n bonds. We denote the conductivity of bond b&;;
joining vertex z; to vertex z; by c;;. As in section 2, we distinguish two vertices =1 = z
and zpr = y, with ¢;y = 0, and we are interested in the effective conductivity of G
(with bond conductivities ¢;;) measured between vertices z and y, denoted by ¢.,(G).
Our subsequent calculations are based on the following exact formula [18,19], which in
some form was known to Kirchoff himself,

¥
= S ey (4.1)
T,

where the sum in the numerator is over all spanning trees in G, and the sum in the
denominator is over all spanning trees T, in G with the vertices z and y identified.
Another way of viewing the trees T, is by considering a new graph G’ obtained from
G by adding a bond b;ar between z and y (the battery bond) with ¢;pr = h. The set of
trees T, are then those trees of G' which include by, and the denominator of (4.1) is
obtained by setting h = 1 for those trees.
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To implement formula (4.1) on the computer, it is useful to write it in terms of an
adjacency matrix [20]. Let the M x M matrix A be defined by

Aij=—c; , 4ij=1,..., M

Ay = Zcij y H3=1,..., M |
FE
with cipr = h. We define two associated matrices as follows. Let A’ be the (M — 1) x
(M —1) matrix formed from A by removing the first row and first column, corresponding

tozy = z. Thenlet A” be the (M —2) x (M —2) matrix formed from A’ by subsequently
removing its last row and last column, corresponding in 4 to zar = y. Finally, define

Z(h) = det (4')

' - 4.3)
Z'(h) = det (A") (43)
where “det” means determinant. Then (4.1) can be written as
det (4') |
02y(G) = ——=1 1.4)
A= S (

Recalling the statistical mechanics of the Ising model [see also ref. 21}, we can also write
(4.4) as

7 /
i 1G~x-1_uko)_(a - -,);.«\ (4.5
g\ — ~\ g Y v .
zZ(0) Ok
which leads us to think of Z{kR) a5 a nartition functiog, 5 2 fres energy, and

In Z7hY a
the resistance [7.,(G )~} as a magnetization. Note that if all the bonds of G hava 1ol
conductivity then Z{U) is the number of trees of G.
To calculate o} (p), we let G be the graph described below (2.1), that is, G is an
L x L sample of the d = 2 lattice, where L measures the number of vertices on a sida.
Included in G are the two vertices ¢ = z; and y = zar, which are attached to the
vertices of two opposite sides by perfectly conducting bonds. Then M = L2 42, and
the number of bonds which have random conductivities Loreis N = 2((L~1)"+ L -1}.
To calculate the o in (2.1) we use the following procedure, which was carried out on
a Sun 3/60 computer. First, ap is just the conductivity of G with the N bonds all
assigned the conductivity 1. Then we randomly choose one bond and assign to it the
conductivity € = 0.001 (e must not be chosen too close to zero in order to avoid singular
matrices), and calculate the resulting conductivity. Of the temaining

repeat this procedure 30 times, let*ing T; be the averags
there are k bonds of conductivity €. Then we take




Bulk conductivity of the square lattice for complex volume fraction 71

which yields a reasonable numerical approximation to (2.1). The determinants in (4.4)
are calculated by an IMSL routine. Plots of ¢} (p) for complex p are obtained using
Mathematica.

Using an analogous procedure to the above, we can define a polynomial Z1(p) for
h = 0 by replacing the aj above by

8= ()7 ()

where J, is the average value of det A'(k)/det A'(0), A'(k) is A’ for G with k bonds of
conductivity €, and the normalization factor 1/det A’(0) is to make Zp(1) =1 (otherwise
Z1(1) is huge ).

5. Results.

Our principal results are the figures below. Figure 1 (a-e) shows contour plots of
lo; (p)l for lattices with sizes ranging from 5 x 5 to 9 x 9. In each case, the range of
lo; (p)| shown is [0,2], and there are 10 contour levels. One of the main features of these
plots is the persistence of a region W in which lo;(p)i is very small. It is known, of
course, that ¢*(p) = 0 for 0 < p < p.. What is intriguing about the plot is that the
vanishing appears to extend in the Im p direction to at least Im p| < 0.1 in all cases
shown, supporting the description of ¢*(p) given in the Introduction. Figure 2 shows
the fine structure in the 9 x 9 case, with a range for |o3(p)| equal to [0, 0.1] with 10
contour levels again. Figure 3 shows a three dimensional plot of |o7 (p)| for the 9 <G case
with vertical range [0,2] again, so that the surface describing |77 (p)| has been choproed
off above |7} (p)| = 2, giving the flat top in the outer fringes seen in the picture.

Here we should make a technical remark about “p.,” i.e., the threshold below which
7;{p) “vanishes” for real p. Since we are using ¢ = 0.001 and finite L, this threshold is

sopizwhat il defined. Furthermore, since we ars averaging over realizations of sequential
“removals,” as long as there is one realization where a conducting path remains as k is
increased beyond A/2 (or as p is decreased below p = 1), this realization will dominate
the average and produce an abnormally low “p;,” as seen in Figure 2. We chose to leave
these realizations in to preserve randomness, and because we are only interested in the
gualitative behavior of 0*(p), not in determining p., which is known to be i.

One feature of the graph of |} (p)| which can be seen in Figure 1o a certain extent,
and to a greater extent in plots having a much larger range, is that at the outer fringes
of the plots, |o}(p)! is growing very rapidly — the contours are very close together. At
this point it is not clear if o*(p) really has some sort of pole structure on this outer
rectangular ring, as indicated in the 8 x 8 and 9 x 9 case, or if this is a manifestation
of the series expansion (2.1) that we have used. It would be very interesting to plot
o (p) via (3.2) with s = 1 to see if this divergent structure persists. However, the
determination of the p(p) is somewhat more involved than finding the ax in (2.1).

In addition to the Agures shown here, we have analyzed the zeros of o7 (p) by plotting
the zero contours of Re[o}(p)] and Im[s}(p)], and finding where they intersect. The
zeros seem to congregate on the fringes in the divergent structure, and somewhat in
the region W. We have found, however, no evidence of the zeros lying on any particular

curves through p., as would be the case in a Lee-Yang type transition.
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Finally, in Figure 4 we show a contour plot of the fine structure (range = [0,0.1]) of
|ZL(p)| for L = 9, where Z1(p) is defined by (2.1) with the oy replaced by (8:)V/*°.
(We have taken the 15! root in particular because it forces the transition for Z1(p) to
occur approximately at p = 3.) The region W for the partition function is similar to
that for ¢ {p), but appears to be somewhat larger.

Acknowledgements. I would like to thank G. Milton, P. Doyle, C. Newman, and
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assistance, and to S. Barbu for preparing the manuscript.
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Figure 2. Contour plot of [o](p)] for L = 9 with 10 contour

levels over a range of [0,0.1].

Figure 3. Three dimensional plot of o (p} for L = 9 with
vertical range [0,2], corresponding to Figure le.
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Figure 4. Contour plot of ;ZL(p)! for L = 9 with 10 contour
levels over a range of [0,0.1..
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