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ARBITRARILY SLOW APPROACH TO LIMITING BEHAVIOR 

K. GOLDEN AND S. GOLDSTEIN 

(Communicated by R. Daniel Mauldin) 

ABSTRACT. Let f(k, t): RN x [0, oo) -+ R be jointly continuous in k and t, 
with limtM0O f(k, t) = F(k) discontinuous for a dense set of k's. It is proven 
that there exists a dense set IF of k's such that, for k E F, If(k, t) - F(k)l 
approaches 0 arbitrarily slowly, i.e., roughly speaking, more slowly than any ex- 
pressible function g(t) -- 0 . This result is applied to diffusion and conduction 
in quasiperiodic media and yields arbitrarily slow approaches to limiting be- 
havior as time or volume becomes infinite. Such a slow approach is in marked 
contrast to the power laws widely found for random media, and, in fact, implies 
that there is no law whatsoever governing the asymptotics. 

1. INTRODUCTION 

Many systems exhibit a well-defined limiting behavior as time or volume 
becomes infinite. It is often difficult, however, to obtain rigorous information 
on the rate of approach to the limiting behavior, which is of much physical 
interest. Here we prove a very general (superficially paradoxical) result which 
yields situations under which this approach is arbitrarily slow, i.e., so slow that 
it cannot be described by any law, be it algebraic, logarithmic, or any other. The 
key ingredient for such behavior is that the infinite time or volume limit depends 
discontinuously on some parameter k which characterizes the microstructure 
of the system and that the discontinuities are dense. We then produce a dense 
set of k's for which the approach is arbitrarily slow. 

The result described above is applied to diffusion and conduction in quasiperi- 
odic media, which exhibit well-defined limiting behavior. For example, diffu- 
sion XK in a quasiperiodic potential V(x), x E R d, behaves on a macroscopic 
scale (lime,o 8Kt/e2) like Brownian motion with some effective diffusion ten- 

sor D*(V) [1-3]. We analyze 2(t) = E[X2]/t and associated functions as 
t -- 00, where E denotes averaging over diffusion paths and the phase in the 
potential (see ?3) with limt to0(t) = D = tr(D*). In the case of conduc- 
tion, the conductivity tensor * (L) of a cubic sample of size L of a medium 
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with quasiperiodic local conductivity a(x) converges as L -) oc to some ef- 
fective conductivity tensor &* [4], and we analyze &*(L) as L -- oc. The 
required discontinuity in the infinite time or volume limit is provided by the 
discontinuous dependence of D* or a* on the wavelengths of V or a, which 
was observed in [5]. For example, with V(x) = cosx + coskx in d = 1, 
D*(k) has the same value D for all irrational k, but differs from D and de- 
pends on k for k rational, where it is thus discontinuous. (In fact, D*(k) 
is continuous at irrational k.) Applying our general result about approach to 
limiting behavior, we prove, for example, that when V(x) = cos x + cos kx, 
there is a dense set F such that for each k E F, 51(k, t) - D*(k)I, roughly 
speaking, approaches zero as t -- oc more slowly than any positive function 
g(t) -- 0 which can be explicitly written down (is expressible). For example, 
for k E F, 51(k, t) - D*(k)I -- 0 more slowly than 1/log... logt, for any 
fixed number of iterations of the logarithm. (Note that the k's in F are not ex- 
pressible.) As a consequence, the associated "velocity" autocorrelation function 
(VAF) c(t) = E[VV(Xt) * VV(X0)] decays to 0 as t -- oc more slowly than 
any positive, expressible function integrable on [0, oc], such as l/tl+8, for 
any e > 0. The Laplace transform of the VAF corresponds to the frequency- 
(wo-) dependent effective diffusivity D(Z) of the medium, with static value 
D* = D(O). For k E r, ID(k, c) - D*(k)I approaches 0 as co - 0 more 
slowly than any positive expressible function of co with limit 0 as co - 0. For 
the L-dependent conductivity &*(L) of a quasiperiodic medium, we obtain a 
similar result about Ia*(L, k) - a*(k)I as L - oc . 

The arbitrarily slow approach that we obtain greatly contrasts with the rates 
of approach that have been previously obtained. It has been observed for parti- 
cle motion in a variety of random systems [6-1 1 ] that the relevant VAF exhibits 
a power-law long time tail. For example [9], it is believed that the VAF for diffu- 
sion in stationary random media in Rd decays in time like t-(1+d/2) as t -) 00, 
while D(X) approaches its static value D* like od/2 . Our results demonstrate 
that, for diffusion in quasiperiodic media, the decay of these functions obeys 
no such universal law, indeed, no law whatsoever. 

In addition to the classical transport phenomena considered here, there has 
been much recent interest in quantum transport in quasiperiodic potentials [ 12, 
13]. It is found there that the nature of the wave functions satisfying the time 
dependent Schr6dinger equation with a potential q(x) = cos x + a cos(kx + 0) 
depends very sensitively on the rationality of k. Presumably, an appropriately 
defined quantum ballistic coefficient displays a discontinuous behavior similar 
to what we have found in the classical case. Due to the generality of the results 
proven here, similar arbitrarily slow decay results concerning an appropriately 
defined, time-dependent quantum ballistic coefficient would then follow. 

The main ingredient in our analysis is the observation that any (real-valued) 
function f (k, t) jointly continuous in k and t with limt 0. f (k, t) densely 
discontinuous in k has arbitrarily slow decay for a dense set of k's. 
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2. GENERAL RESULTS ON APPROACH TO LIMITS 

Let f(k, t): RN x [0, oc) -- R satisfy the following conditions: 

(2.1) (i) f(k, t) is continuous in k E RN and t E [O, x), 

(2.2) (ii) limt-00 f (k, t) = F(k) exists for all k E RN , and 

(2.3) (iii) the set A c RN of k's at which F is discontinuous is dense 
N 

in RN. 

We begin our analysis with the basic observation that given k E A, there exists 

a k' E A such that F(k') differs from F(k) by a substantial amount with k' 

arbitrarily close to k, so that f(k', t) can be made as close as we like to f (k, t) 

for as long as we like. More precisely, 

Lemma 2.1. Let f(k, t) satisfy (2.1)-(2.3), and let 

(2.4) G(k, T5 e, A) ={k'I| If(k', t) -f(k, t)I 
<e, 

Vt < T 

(and F(k) - F(k)I >A J 

If 0 < A < limkI, IF(k') - F(k)l I =(k), then 

(2.5) k E G(k, , , A) nA. 

Proof. Clearly there exists k' E G arbitrarily close to k. If k' is not also in 

A, then k' is a point of continuity of F, and, because of the density of A, 

there is a k" E G n A arbitrarily close to k'. 

Lemma 2.2. Let f(k, t) satisfy (2.1)-(2.3), and let 4 (t) be any sequence of 
functions with 4 (t) 1 O, t - ocx, for all n = 0, 1, 2 . Then the set F of 
k's for which there exists a sequence tn -) X0 such that 

(2.6) If (k tn) - F(k) I > g (tn) 

is dense in RN 

Proof. Fix any ko E A and e' > 0. We will show that there exists k such that 

(2.6) is satisfied for some sequence tn -- oc and Ik- kol < l'. 

Let 

(2.7) T(k, e) = sup{t > ?1 If(k, t) - F(k)I > E} 

(if the set on the right is empty, set T(k, e) = 0). Let e0 = (k(ko)/9, with 

(5(ko) as in Lemma 2.1, let 

(2.8) s5 = T(k0 e0) + inf{t > O401(t) <so} + 1, 

and choose kI E G(ko, so, 5 g 5(ko) - 80) n A satisfying IkI - koI < e'/ 2. 

Suppose now that ko, kl,..., kn have been chosen, using e0, ... n- 
Let 

(2.9) en = inf(eo * n-I (k )/9), 

(2.10) Sn = Sn-I + T(kn 5en) + inf{t > ?1 n(t) <g I + 1 (> n + 1), 
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and choose kn+1 E G(kn s Sn E2-n n 5(kn) - en) n A satisfying Ikn+I- kn < 
e 1/2n1 

Let k = limn ,2 o kn . Then k - ko < ', and 
(2.11) 

00 

If(k, s5) - F(kn)I < E If(km+1, SO) - f(km E S)j + if(kn 5 S) - F(kn)I 
m=n 

< 28 n + en = Un 

so that 

(2.12) 

jf(k, Sn) - f(k, Sn+01 

> IF(kn+l) - F(kn)I -If(k, S) - F(kn)I - fj(k, Sn+) -F(kn+j)I 

> (3(kn) -en)-3 -8n 38n+1 > 5(kn) -78n 
and 

(2.13) If (k t)- F(k) I > (kn)2 -7n > en > , 
(tn) 

either for tn = Sn or for tn = sn+1 1 
To state the main theorem, we require the following: 

Definition. Let h (t) and g(t) be real-valued functions on [0, oc) . We say that 
h(t) is greater than g(t) infinitely often and write h(t) > g(t) if there exists 

1.0. 

a sequence tn -- oo such that h(tn) > g(tn) for all n. 

Theorem 2.1. Let f(k, t) satisfy (2.1)-(2.3) and let {gn(t)} be any sequence of 
functions on [O, o) with gn(t) -0, t ox, for all n. Then the set F of k's 
for which 
(2.14) If(k, t) - F(k)I > gn(t) Vn, 

1.0. 

is dense in RN. 

Proof. Without loss of generality we may assume that the gn's are bounded, 
and, by replacing gn(t) by supt,>t gn(t'), that gn(t) l 0, t -+ oc . Then we let 

= sup(go, g1, ... , gn) and apply Lemma 2.2. 

In order to state a striking consequence of Theorem 2.1, we utilize the no- 
tion of an expressible function, i.e., one which can be defined, either explicitly 
or implicitly, using standard mathematical symbols. An example of such an 
implicitly defined function is one that satisfies, say, an explicit differential or 
integral equation which has a unique solution. Since any expressible function 
is determined by a finite string of symbols from a finite alphabet, there are only 
countably many such functions. For example, the reader should note well that 
most of the functions f (x) = ax, a E RX, are not expressible - there are only 
a countable number of expressible reals. (This notion of expressibility depends, 
of course, upon a fixed choice of "standard mathematical symbols," i.e., upon 
a choice of formal language.) From Theorem 2.1 we immediately obtain the 
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following: 

Theorem 2.2. Let f(k, t) satisfy (2.1)-(2.3). Then the set F of k's for which 

(2.15) lf(k, t) - F(k)I |> g(t), 
1.0. 

for every expressible function g(t) with g(t) -- 0 as t -- oo is dense in RN. 

Remark. To appreciate how slowly If(k, t) -F (k) decays when k E r, observe 
that for k E F, If(k, t) - F(k)I > (log... logt) l,for any fixed number of 

1.0. 

iterations of the logarithm. Indeed, no law, be it algebraic, logarithmic, or any 
other, can express such slow decay. 

Remark. Theorem 2.2 remains true if t is allowed to approach an endpoint 
of any interval (a, b) for which the conditions (2.1)-(2.3) are satisfied in the 
obvious sense. 

It is natural to ask about the size of the set F of k's for which f (k, t) ap- 
proaches its limit "arbitrarily slowly" as t -- 00, whose existence and density 
follow from the above theorems. In all situations where we have been able to 
check conditions (2.1)-(2.3) for a concretely realized f(k, t), such as for diffu- 
sion in one dimension, F is presumably of Lebesgue measure zero. However, 
in these situations, a further condition, stated below, is also satisfied, which 
implies that F is nonetheless (topologically) generic. 

Theorem 2.3. Suppose f(k, t) satisfies, in addition to (2.1)-(2.3), 

(2.16) (iv) Ac is dense, and there exists a continuous function (k) on 
RN such that F(k) = (k) X k E AC. 

Then for any sequence offunctions gn(t) I 0, t 0, the set r of k's for which 

(2.17) lf(k 5 t) -F(k) I > gn (t) Vln 
i.0. 

contains a dense . 

Proof. Let G(k, T, e, 5A) be as in Lemma 2.1 and for g(t) 0?, t - 00, let 

(2.18) G(g) = U G(k, t(g, k), e(k), (k)-e(k)), 
kEA 

where 

(2. 19) 3 (k) = lim I F (k )-F (k) l, 
kI--+k 
kIEAC 

(2.20) e(k) = 3(k)/4, 

and 

(2.21) t(g, k) = T(k, e(k)) + inf{t > Olg(t) < 8(k)} + 1, 

where T(k, e) is defined in (2.7). By virtue of (2.16), 

(2.22) k E Int(G(k, T, e, .5A)), 

provided 0 < A < 3(k). Therefore G(g) contains a dense open set. 
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Given a sequence gn (t) l 0, define 

(2.23) gn = sup(gl, g) 
We may assume without loss of generality that limn ,0 g (t) = ox for all t > 0. 
Let 

(2.24) G=nG(- 
n 

Then, by the Baire category theorem, G contains a dense 9,, and by construc- 
tion G c F. 

Remark. With condition (2.16), the set F in Theorem 2.2 also contains a dense 

3. 

3. DIFFUSION IN QUASIPERIODIC POTENTIALS 

a. Formulation. Let V(x), x E Rd , be uniformly bounded and smooth, i.e., 
let it have uniformly bounded derivates to the third order. Given V(x), we 
consider the IRd-valued process Xt governed by 

(3.1) dXt = -VV(Xt) dt + dWt, 

where XO = 0 and Wt is standard Brownian motion with mean 0 and covari- 
ance matrix tI, where I is the identity. The transition density u(x, t) satisfies 
the (forward) equation 

(3.2) au = L u, lim u(x, t) = (x), 

where 

(3.3) L =A + V (VV.). 

We shall be interested in quasiperiodic V, with n frequencies, defined in 
the following way. Let V(0) be a smooth function on the unit n-torus Tn = 
RIn/Zn , 6 E Tn, which we identify with the obvious periodic function on R . 

d The local potential field V(x) _ Vk(X, 0), X E R , is obtained from V via 
1_ ^ _ k 

(3.4) ) = + kx) = V(0) 

with translations on R n given by 
d 

(3.5) Tk6 = 0 + kx = 0 +Ex, 
i=l1 

where k is an n-by d-matrix k = [kl ,... kd'], k*k =O, i$], ke E kE . 
The flow on Tn defined by (3.5) leaves invariant Lebesgue measure dO on 

T . It is also ergodic relative to dO when the equations kl] = 0, ... , = 0 
have no simultaneous integral solutions i E Zn, 0 [14]. We say that k is 
"irrational" in this case, i.e., when Tk iS ergodic, and is "rational" otherwise. 
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When n = 2, d = 1, and k = k = [kl, k2]T, k is "irrational" when k2/k1 
is irrational. When n > d + 1, k can have various degrees of rationality, 
depending on the dimension of the ergodic components of T . 

For Xt the process governed by (3.1) with V = Vk (X, 0), CKXt/2 converges 

[1-3] as e -- 0 to Wt(D*(k)), with D*(k) = limt ooD(k, t), Dij(k, t) = 

E[XtXj]/t, where E denotes expectation over Brownian motion paths in (3.1) 
as well as an average over Tn with respect to the equilibrium measure 

(3.6) u(dO) = e 2V(O) dO fT/ e 2V(o) dO 

Let Q (k, t) = tr(D* (k, t)), and let D* (k) = tr(D* (k)). It follows easily from 

(3.1) [1, 11] 

(3.7) D*(k)= 1 -f c(t)dt, 

where c(t) = E[V V(X) VV(X)] > 0, and that 

(3.8) 0(k, t) = D*(k) + t f ds c(u)du. 

b. Long time/low frequency asymptotics. In order to apply the results of ?2 to 
Q (k, t), we need only discuss the discontinuous behavior of D* (k), as the 
continuity of 0 (k, t) in k and t is routine. In one dimension, there is an 
exact formula (see, e.g., [5]) for D*, 

(3.9) D*(k) j [(e2vk (e -2V)kY 1(d0) 
Tn _ _ 

where (O)k denotes averaging over a trajectory of the flow 0 = k, which is 
ergodic only when k is irrational. In this case, ()k amounts to integration 

over all of Tn. However, when k is rational, the trajectory degenerates to 
a closed orbit, over which the integration is different from its value over all 
of Tn. Thus [5] there is typically a dense set of rationals on which D*(k) 
is discontinuous, in which case D*(k) in fact satisfies condition (2.16), with 
(p(k) = D, the common value of D* (k) for irrational k . 

While there is no such general argument in higher dimensions, where an ex- 
plicit formula for D* (k) does not, to our knowledge, exist, the integrals involved 
in representation formulas for D* involve averages over trajectories similar to 

()k above, and similarly discontinuous. Thus we believe that, as in one dimen- 
sion, there should typically be a dense set of k's at which D* (k) is discontinuous 
[5] (see also [15] for a concrete example). Accordingly, we shall state our results 
for systems with this property and state the following definition: 

Definition 3.1. A potential V on Tn is typical if D*(k) is discontinuous in k 
N on a dense set in R~ 
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Now as an immediate consequence of Theorem 2.2, we have the following: 

Theorem 3.1. Let V on T be typical. Then for diffusion X in R satisfing -t saifyin 
(3.1) with Vk(x, 0) = V( + kx), x EId, and 0 E Tn, the set F of k's for 
which 

(3.10) 1(k, t) - D* (k)l ? g(t) 
1.0. 

for every expressible function g(t) with limt 0o g(t) = 0, is dense (in I nd). 
Remark. In one dimension, and presumably in higher as well, the set F in 
Theorem 3.1 contains a dense , set. 

As another immediate consequence of Theorem 2.2 (with t = 1/co), we state 
the corresponding results about the frequency dependent diffusivity 

(3.11) D(k ) = ewtELKt]dt, 

which can also be written in terms of the velocity autocorrelation function c(t), 

-ot (3.12) D(k, co) = 1 - e tc(t)dt. 

We note that limc,, 0 D(k, co) = D*(k) . 

Theorem 3.2. Let V on Tn be typical with Xt E R as in Theorem 3.1. Then 

the set of k's for which 

(3.13) Ib (k , co) -D *(k) I?~ g (co) , co O, 
1.0. 

for every expressible function g(co) with limc,, >0 g(co) = 0 is dense. 

From Theorem 3.1 we can prove 

Theorem 3.3. Let V on Tn be typical with Xt E R , as in Theorem 3.1. Then 

the set F of k's for which 

(3.14) Ck (t) ;> h (t),5 t -- 
x,5 

1.0. 

for every expressible function h (t), which is integrable on [O, oc), is dense. 

Proof. Fix k, and let y (k, t) = 12(k, t) - D*(k)L . Suppose there is an ex- 

pressible function h(t) integrable on [O, oc) such that 

(3.15) c(t) < h(t), 5 Vt> T>O. 

Then there is an expressible function h(t) integrable on [0, oc) such that c(t) < 

h(t) Vt E [O, oc), so that 

(3.16) f dsf c(u)du < t j ds h(u)du. 

By (3.8), 

1 = t Vt0 
(3.17) yJ(k5 t) < g(t) = ds /h(u) du , vt > O. 
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Since h is expressible and integrable, g(t) is expressible with g(t) -) 0 as 
t -- 00, so that k is not in F, the dense set described in Theorem 3.1. Thus 

In order to state our results about the spectral measure, we introduce the 
environment process St = Tk 0 (mod Zn), which determines the potential field 
seen by the particle at time t. This process is reversible with respect to the equi- 
librium measure ,u(d0) and is generated by Lk 2k Vk V* Vk, where Vk is 
gradient on T' arising from the flow Tx. Lk is selfadjoint in L2 (T', dM) and 
has negative spectrum in (-00, 0] with a family of projection-valued measures 

P. on (-0, 0]. (Lk is unitarily equivalent to Hk = 2Ak + q on L2(T , dO) 

with qH= =V V v - AV),via e He- L.) Weconsidertheparticular 
spectral measure v of P. associated with VkV, zV = (VkV * PtVkV), where 
(.) here means integration over Tn with respect to ,u. Using the semigroup 
exp(Lkt) one can write 

(3.18) c(t) = e tdv(A). 
-00 

Now we can state 

Theorem 3.4. Let V on Tn be typical with Xt E R as in Theorem 3.1. Then 
the set F* of k 's for which 

(3.19) vk (dA) ?l(dA), i A O,+ 
1.0.~~~~~ 

for every expressible measure i on (-00, 0) with f?00 n(dA)/Ilj < 0, is dense. 

(By v(dA) ? n(dA), i -- 0- , we mean that there is a sequence of intervals 
1.0. 

(tn, sn) 
c (-00, 0), tn -+ , such that v (tn, s) > i (tn, sn), Vn.) 

Proof. Fix k. Suppose there is an expressible measure n(dA) with 

J (dA)/IJA < ox 
-00 

such that 

(3.20) v ?< 

on [A, 0) for some A < 0. Then 

(3.21) c(t) = f eAt dv(A) < eAt v((-xo A] + f eAt d1(AL). 
-00A 

Thus, since v(- o, 0] < o and f%O llI < 0, there exists an expressible, 

integrable function h(t) such that c(t) < h(t), 5Vt > 0. Therefore k ? r (of 
Theorem 3.3); i.e., F c IF*. 
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4. CONDUCTION IN QUASIPERIODIC MEDIA 

a. Formulation. Let v(0) be a smooth function on Tn . Analogous to Vk5 we 

define ak(x, 0) = '( + kx) . Given ak on Rd, we take a finite cubic sample 

CL={x: -L<xi<L, i= 1,..., d} of side 2L centered at the origin. Let 
UL be the solution of 

(4.1) V * (akVUL) = O, X E CLE 

(4.2) fUL -=Oonx =L orx =-L, i $4 1, -L < xl < L, 
ax1 

(4.3) UL = -L on xl = -L, -L < xi < L, i$ 1, 

(4.4) uL=Lonxl =L, -L<xi<L, i$ 1. 

Thendefine a*(kLO0) by 

(4.5) a (k, L, 6)e = (2L)d fck(x )VuLdx 

We shall be interested in averaging o* (k, L, 0) over Tn to obtain 

(4.6) a (k,L)= a*(k,L,6)dO, 
Tn 

which is continuous in k, as well as L. It is easily obtained from [4, Appendix] 

that 

(4.7) lim a* (k,5 L) =a(k),5 
L--coo 

where v* (k) is the effective conductivity of the medium ak(x, 0). (See [4] for 

the precise definition of v*.) 

b. Large sample size asymptotics. As in ?3, we say that a on Tn is "typical" 
N 

if v* (k) is discontinuous in k on a dense subset of RN. We have again as an 

immediate consequence of Theorem 2.1 the following theorem: 

Theorem 4.1. Let a on Tn be typical. Then for conduction satisfying (4.1)-(4.5) 
in a cubic sample CL of a medium with local conductivity ak(x, 0) = (O +kx) 
the set F of k's for which 

(4.8) a* (k,5L) - a* (k? g(L),5 L , 
1.0. 

for every expressible function g(L) with limL 0o g(L) = 0, is dense. 

Remark. In one dimension, and presumably in higher dimensions, the set F in 

Theorem 4.1 contains a dense ,. 
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