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Abstract. The bulk conductivity σ*(p) of the bond lattice in TLd is considered, where
the bonds have conductivity 1 with probability p or ε^O with probability 1 — p.
Various representations of the derivatives of σ*(p) are developed. These represen-
tations are used to analyze the behavior of σ*(p) for ε = 0 near the percolation
threshold pc, when the conducting backbone is assumed to have a hierarchical
node-link-blob (NLB) structure. This model has loops on arbitrarily many length
scales and contains both singly and multiply connected bonds. Exact asymptotics

-Γ-=
dp2of -Γ-=- for the NLB model are proven under some technical assumptions. The.2

proof employs a novel technique whereby 7 7 for the NLB model with ε = 0 and p
dp2

near pc is computed using perturbation theory for σ*(p) (for two- and three-
component resistor lattices) around p = 1 with a sequence of ε's converging to 1 as
one goes deeper in the hierarchy. These asymptotics establish convexity of σ*(p)
(for the NLB model) near pc, and that its critical exponent t obeys the inequalities
1 ̂  ί ̂  2 for d = 2,3, while 2 ̂  t ̂  3 for d ̂  4. The upper bound t = 2 in d = 3, which is
realizable in the NLB class, virtually coincides with two very recent numerical
estimates obtained from simulation and series expansion for the original model.

1. Introduction

The transport properties of disordered media play an important role in many
branches of science and engineering. For example, disordered conductors arise
naturally in fields as varied as biology, geology, and solid state physics, yet also
serve as key building blocks of advanced composite materials. Of particular
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practical and theoretical interest are those systems which undergo an insula-
tor/conductor transition as some parameter is varied. The simplest model which
exhibits this complex macroscopic behavior is the random resistor network [1-3]
based on the percolation model [4]. Introduced in the late 1960's as a model for
impure semiconductors, this network is very simply defined, yet displays the above
type of phase transition, and thus occupies a central place in the theory of
disordered conductors.

In particular, consider the bulk conductivity σ*(p) of the bond lattice in Zd,
where the conductivity of the bonds is either 1 with probability /?, or ε ̂  0 with
probability 1 — p. When ε = 0, we can view the conductivity 0 bonds as vacant. In
this case, the underlying percolation problem concerns P^(p\ the probability that
the origin is connected to an infinite cluster of occupied (conductivity 1) bonds.
For p below some critical probability pc, called the percolation threshold,
PaQ(p) = Q, while for p>pc, P00(p)>0. The bulk conductivity σ*(p) has a similar
behavior, with σ*(p) = Q for p<pc, since there can be no conduction through the
lattice if there are no infinite pathways of occupied bonds, and σ*(p) > 0 for p > pc,
although there is apparently no simple relation between σ*(p) and P^p) [5]. As
p-*pc

+, it is believed that σ*(p) exhibits critical scaling, σ*(p)~(p —pc)
r, where t is

called the conductivity critical exponent [6].
The pure percolation problem has been studied extensively in both the physics

[7] and mathematics literature [8,9]. However, the random resistor network,
which has been widely studied in the physics literature [10,11], has received
comparatively little attention in the mathematics community. The main excep-
tions are the works of Grimmett and Kesten [12] (see also [8]), Chayes and Chayes
[13], and Kozlov [14], who considers similar problems in the continuum. One of
the principal contributions of the first two works is to establish the coincidence of
the conduction and percolation thresholds for d = 2, where pc=% [12], as well as for
higher dimensions [13]. In addition, the Chayes [13] obtain some bounds on σ*(p)
in terms of percolation quantities, such as σ*{p)^pd\_Pao(p)']2

9 which yield bounds
on the critical exponent t (assuming it exists) in terms of percolation exponents. It
has also been established (rigorously in d = 2) that ί^l [15,16].

While the above described works on the random resistor network have
focussed on relating σ*(p) to percolation quantities, here we concentrate on
obtaining information about σ*(p) directly through analysis of its derivatives with
respect to p, particularly the second derivative. The idea behind analyzing the
derivatives is that qualitative information, such as the vanishing or diverging as
p->pc

+ of the first, second, and third derivatives of σ*(p), which have exponents
t — 1, t — 2, and t — 3, respectively, gives the relation of t to the numbers 1, 2, and 3,
rather than to other unknown critical exponents. This approach was initially
motivated by the simple observation that in numerical simulations [6, 17-20] of
the graph of σ*(p) for bond or site models in d ̂  2, it appears that σ*(p) is convex,

i.e., —-y- ^0, at least for p near pc. Our investigation [21] of this convexity led to
dp

the current analysis.
Before we describe our main results, it is necessary to discuss in what context

they are obtained. As evidenced by the lack of substantial mathematical progress
on the bulk conductivity problem, a rigorous understanding of σ*(p) when ε = 0 is a
formidable problem. For example, it is not even known rigorously if σ*(p) has
derivatives when ε = 0, although there is current progress in this direction [14,22]
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in the continuum, and we have proven that σ*(p) is analytic in p for any ε > 0.
Nevertheless, for finite volumes, where σ*(p) for ε = 0 is a polynomial, we can
obtain rigorous representations of its derivatives involving the conductivities of
backbone configurations with appropriate numbers of bonds removed (the
backbone is the subset of occupied bonds which excludes dangling bonds where no
current flows). The first assumption under which our results are obtained is the
existence of the infinite volume limits of these derivatives, up to, say, third order.

The second assumption is more serious. As stated above, our derivative
representations involve complex calculations on the backbone. However, the
backbone is a very complicated object whose structure is by no means fully
understood. In order to make progress, we assume that the backbone near pc has a
hierarchical node-link-blob (NLB) structure, which is based on the works of
Stanley [23] and Coniglio [24]. This model consists of a "super-lattice" of beaded
necklaces (links and blobs) connecting nodes, which are separated by a correlation
length ξ; see Fig. 1. The bonds in the links (strings) are singly connected - removal
of a single one breaks a connection between nodes, and the bonds in the blobs
(beads) are multiply connected. The blobs have a hierarchical structure, being
composed themselves of links and blobs in a self-similar fashion. This model then
has loops on arbitrarily many length scales, and reflects what is known rigorously
[13,24] and heuristically about the structure of the backbone. It is for this model
that our main results about the critical exponent t are obtained.

We now describe the results. First we obtain representations of the derivatives
of σ*(p) valid for any ε ̂  0 (assuming existence for ε = 0 at infinite volume). We then
derive rigorous perturbation expansions around a homogeneous medium (ε = 1) of
the derivatives of σ*(p) (for infinite volume) which will be used in the calculation on
the NLB model. A key step here and later will be the analyticity of σ*(p) for ε > 0. In
addition, we shall prove analogous formulas and an analyticity result for the
conductivity of the bond lattice with three different conductivities randomly
assigned to the bonds, which will play an interesting role in the NLB calculation.
Then we give numerical and rigorous results outlining the regimes in ε and p of
convexity of σ*(p). The main results here are that in d = 2, while σ*(p) cannot be
convex for all p when ε = 0, it is convex for any ε > 0 in a neighborhood containing
pc=^. Then, as a preliminary to the NLB calculation, we investigate the geometry
of convexity, i.e., how different pairings of bonds in a graph contribute to the
overall sign of the second derivative of the conductivity. Finally, using our

representations, we obtain exact asymptotics 2 as p->pc

+ for the NLB model.
dp ,

The calculation yields not only convexity near pc I under a numerically verified

d2σ* \
assumption concerning -T^Γ at p = 1 1 which implies t ̂  1, but delineates in which

d2 *
dimensions -ι-̂ -->0, +00, or a positive constant as p-^p*. Combining this

information with the scaling law -ΓT- ~ (p—p$ 2 yields the inequalities 1 ̂  t ̂
dp

for d = 2,3 and 2^ί^3 for d^4. The inequality ί^3 for d^4 is obtained by

applying a similar analysis to -3-5-, and can be viewed as a mean-field bound, since
dp6

it is believed that ί = 3 for d ̂  6. In this case we analyze only the simpler node-link
model, without the blobs, as it is believed to be adequate in higher dimensions. For
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clarity, we remark that the convexity and exponent inequalities are not rigorous
for the actual backbone near pc for the original lattice, but are rigorous for the NLB
model of the backbone, under the technical assumptions about the derivatives.
However, we believe that this model adequately reflects the relevant features of the
actual backbone, so that presumably our inequalities hold for the original lattice.

One aspect of our NLB calculation that we would like to stress is the following.
The NLB model can be viewed as a base lattice G whose "bonds" consist of the

above described hierarchical necklaces. Our representation of 2 involves lattice

sums of second differences of the conductivities of the model, where the sum is over
all possible pairs of bonds in the model, and for any given pair the second difference
involves removal of all combinations of bonds in the pair. Because at most two
bonds are removed at a time, it is possible to compute the sums via perturbation
around p = \ of the derivatives of the bulk conductivity of the base lattice G.
Furthermore, as p gets close to pc, the removal of any multiply connected bond has
very little effect on the conductivity of that necklace. Thus the difference between
the conductivity of that necklace and the conductivity of all the other necklaces in
the model with no bonds removed is very slight, so that it is possible to use
perturbation around a homogeneous medium of the derivatives of the bulk
conductivity of the base lattice G. One complication that must be dealt with is
when one bond removed is in one necklace, and the other bond is in another
necklace but at a different level of the hierarchy. In this case the base lattice G can
be viewed as having bonds of three different types (the two above and all the other
necklaces with no removals), and it is then necessary to use perturbation theory for
resistor lattices with three components, which we develop here. Overall then, what
is accomplished is that through the hierarchical model, we obtain information
about σ*(p) and its derivatives with ε = 0 and p near pc via perturbation theory
around p=\ with a sequence of ε's converging to 1. It is important to remark
further that we have been forced to develop these techniques for analyzing σ*(p)
and its derivatives because simply taking the ε->0 limit of the above described
perturbation expansions or of classical bounds on σ*(p) (such as the harmonic and
arithmetic or Hashin-Shtrikman bounds) gives essentially no information in the
ε = 0 case.

Another point that should be made is that the dimensional dependence of our
NLB model is through the macroscopic lattice structure. The microscopic
structure of the multiply connected blobs in the necklaces is assumed to be
independent of dimension for computational simplicity. However, one of the main

points of our calculation is that the dominant term in the asymptotics of Ί 7 for
dp

the NLB model comes from singly connected bonds, and that changing the details
of the blobs (such as according to dimension) only changes the constants in higher
order corrections. For this reason we expect that the present calculation might
serve as the basis of a rigorous calculation on the actual backbone.

Our results for d = 3 are particularly intriguing. First, the inequality ί^2
excludes roughly one fourth of published numerical estimates of t in d = 3, which
have ranged from 1.5 to 2.36. Furthermore, this inequality is based on an exact
calculation of t = 2 for one particular NLB model which provides an upper bound
on ί for the full class of NLB models (indexed by the length of the "beaded
necklaces" connecting the nodes, relative to the correlation length separating the
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nodes). In view of this result, it is quite striking that very recently, Gingold and
Lobb [25] have obtained for d = 3 the numerical estimate t = 2.003 + 0.047, which
is based on the application of finite size scaling techniques to conductivity data
from lattices of size up to (80)3, and Alder et al. [26] have obtained the estimate
t = 2.02 ±0.05 from a 13th order series expansion of the resistive susceptibility. In
addition, our inequality is compatible with the results of an s = 6 — d expansion
[27], and the general view that "roughly ί = 2" [7]. (We should also mention the
recent work of Roman [28] on the ant-in-the-labyrinth problem, who indirectly
obtains a value of t« 2.16. However, he acknowledges the inconsistency with other
results, which is discussed in [25].) The recent numerical results in [25] and [26], in
conjunction with our rigorous calculations on the NLB model, suggest the
possibility that t = 2 is an exact result for d = 3. To our knowledge, the present work
is the first to relate t in a direct and natural way to the number 2, rather than to
other (unknown) critical exponents of percolation theory previously mentioned.

The results of this paper have already been announced in [29].

2. Formulation

We give two formulations of the conductivity problem, both of which will be used
in subsequent sections. The first formulation is for an arbitrary graph. The second
is for the bond lattice, which is a special case of a stationary random medium.

Let G be a finite graph consisting of N bonds {bt} and M vertices {xt}. Assigned
to G are N independent random variables cb l^i^N, the bond conductivities,
which take the values 1 with probability p and ε^O with probability q = \—p.
Distinguish two vertices, say x^ = x and xM = y, and connect them to a battery
which keeps the voltage drop between them equal to 1. The effective conductivity
σ(ω) of the network for any realization ω of the bond conductivities is just the total
current i(ω) that flows through the network, which is obtained via KirchofFs laws.
We define σ(p) = <σ(ω)>, where the expectation <•> is over all 2N realizations. For
example, a two bond network has

where σ(l, l) = σ(ω) with ω = (l, 1), and so on. For N bonds, σ(p) is an JVth order
homogeneous polynomial in p and q,

σ(p)= Σ «*p*-v,
(2.1)

«* = Σ ΦΠ> 4 = 1 -P,
ωkeΩk

where Ωk = {ωk = (ωί, ...,ωN)|ωz = ε for exactly k of the ω/'s}.
The cases of most interest are when G is a square, cubic, or hypercubic lattice.

Then, with d = 2 for simplicity, we take an L x L sample of the lattice and attach a
perfectly conducting bus bar to each of two opposite edges of the sample. This can
be accomplished [12] in the above language by attaching to each vertex of these
opposing edges a perfectly conducting bond. All of these bonds from one edge meet
at a new vertex x and all the bonds from the other edge meet at a new vertex j;. Then
x and y are connected again with the unit battery. Random bond conductivities are
assigned only to the bonds in the original L x L sample. Let σL(p) denote (2.1) for
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the effective conductivity measured between x and y. Then for d^l, the finite
volume bulk conductivity σf(p) is defined as

σ*(p) = L2-dσL(p). (2.2)

Finally, we define the bulk conductivity σ*(/?) by

σ*(p)=lim<72(p). (2.3)
L-*oo

For ε > 0, the infinite volume limit in (2.3) has been shown to exist [30-33], and for
ε = 0 the existence of σ* has recently been proven in the continuum [34], but the
methods employed extend to the discrete situation considered here.

We now formulate the bulk conductivity problem for the bond lattice, as a
special case of the stationary random media considered in [31, 32]. Let (Ω, P) be a
probability space, and let σl(x, ω) be a stationary stochastic process in x e ΊLd and
ω e Ω, taking the values σ : and σ2 on the bond emanating from x in the positive zth

direction, i=l,...,d, with probabilities \—p and p (we shall subsequently take
σί=ε and σ2 = 1). The space Ω represents the set of all realizations of the random
medium, and can be identified with {σ l5 o2}

dzd. The measure P is compatible with
the stationarity, i.e., it is invariant under the translation group τy:Ω^Ω defined by
τyω(x) = ω(x + j;), Vx, y e Zd, ω E Ω. Since we consider here two component media,
σl(x, ω) can be written as

σl(x, ω) = σ^ίίx, ω) + σ2χ'2(x, ω) , i = 1 , . . . , d , (2.4)

where the characteristic function χ}(x, ω) equals one for all realizations ω which
have medium; in the ίth positive bond at xj = l,2, ϊ = l,...,d, and equals zero
otherwise. Let Ek(x, ω), Jk(x, ω) e L2(Ω, P) be the stationary random electric and
current fields satisfying

jf(x, ω) = σfc, ω)E?(x, ω) , i = 1, . . ., d , (2.5)

ΣDΓ./?(*>ω) = 0, (2.6)
i = l

D,+ £j(x,ω)-D/£f(*»ω) = 0, i,j=ί,...,d, (2.7)

{P(rfω)£*(x,ω) = e f e, (2.8)
Ω

where efc is a unit vector in the kth direction. In (2.6) and (2.7), Df

+ and Df~ are the
forward and backward difference operators

Dϊ = 1i+-I9 Dr=/-7Γ, i = l,. . .,d, (2.9)

where / is the identity, and the Tt

+ = T+ei and 7^~ = T_e. are the generators
(through composition) of the unitary group Tx acting on L2(Ώ,P) defined by
(Txf) (ω) =f(τxω) =/(x, ω) for any /e L2(Ώ, P), which is a stationary process on Zd

and ίλ By stationarity, we may now focus attention at x = 0, and subsequently
drop the x-notation.

The bulk conductivity tensor σjk may now be defined as

) . (2.10)
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Since the distribution of bond conductivities in (2.4) for our problem is
independent of i, the medium is isotopic, i.e., σfk = σ*δjk. We thus focus on one
diagonal coefficient, σ* = σjffe. Furthermore, since our equations are linear in σk(ω\
σ* depends only on the ratio σ1/σ2, that is, σ* is homogeneous of degree one in the
σf's. Thus it suffices to let σ t =ε and σ2 = 1. We then define

m(ε) = σ* = σ& = f P(dω) (εχι(ω) + χ2(ω))Ek

k(ω) , (2.1 1)
Ω

where for simplicity we have now dropped the "k" superscript from χ} (due to
isotropy of distribution). It has been proven [32, 35] that w(ε) is analytic off the
negative real axis ( — oo, 0] in the ε-plane, and that m maps the upper half plane to
the upper half plane, i.e., Im(w(ε))>0 when Im(ε)>0. It is useful to introduce the
new function F(s) = 1 — m(ε), s = 1/(1 — ε), which is analytic off [0, 1] in the s-plane.
In [32] it was proven that F(s) has the integral representation

], (2.12)
o s — y

where μ is a positive Borel measure on [0, 1]. This representation can be proven
either as a consequence of the Herglotz Theorem in analytic function theory [36],
or as a consequence of the spectral theorem applied to the operator representation
[32] otF(s) arising from (2.5)-(2.8),

F(s) = ίP(dω)χί(ω)l(s + Γχ1Γ\'] ek, (2.13)
Ω

where Γ=V+(-ΔΓlV~ , V±=(D^,...,D^\ and (-A)'1 is the inverse of the
lattice Laplacian ά

j=ΣA"A + (2-14)
i = l

In the Hubert space L2(Ω, P) with weight χ^ in the inner product, Γχ^ is a bounded
self adjoint operator with norm less than or equal to 1. The formula (2.12) is the
spectral representation of the resolvent (s + Γχ^) ~ 1, where μ is the spectral measure
of the family of projections of Γχ1 in the state ek.

3. Representations of the Derivatives of the Bulk Conductivity

3.1. Two-Component Media

In this section we shall derive the representations of the derivatives of σ*(p) which
will be used extensively in Sect. 4 and 5. First we begin with an arbitrary graph G
with N bonds having conductivities 1 or ε ̂  0, as in the beginning of Sect. 2. Let ωk

be as in (2.1). Now define

δσ(ωk) = Y [σ(ωftl)) - σ(ωfc))], (3.1)
i = l

where given α/, i runs over the N — k bonds which have conductivity 1, ωk

i(\) = ωk,
and ω£(ε) is the same realization but with the ίth bond conductivity changed to ε.
Similarly, let

δ2σ(ωk) = ̂ V [<?(«!>l)) + σ(ω?/ε,ε))-σ(ω?/l,ε))-σ(ω^ε, 1))], (3.2)

'



474 K. Golden

where, given ωk, i and; run over the N — k bonds which have conductivity 1,
ωkj(l, 1) = ωk, ωkj(ε, ε) is ωk but with the ith and;th bond conductivities changed to ε,
ω^(l,ε) is ωk but with the;'th bond conductivity changed to ε, and similarly for
ωkj(ε, 1) with i instead of;. The expressions in (3.1) and (3.2) represent discrete first
and second derivatives of the conductivity with respect to p. To make this
connection more precise, we define

βk= Σ W)? (3-3)
ωkeΩk

7k= Σ δ2σ(ωk). (3.4)
ωkeΩk

Then the exact relation is contained in

Lemma 3.1. Let G be any N-bond graph with bond conductivities 1 and ε^O. Then

- . ^ 0.6)
Proof. Differentiate σ(p) in (2.1) keeping in mind that since q = l—p, — = — —.
Then we have dP d^

drs N

^τ-= Σ ^(N-k)pN-k-1qk-kpN'kqk-12 (3.7)

which can be written as (3.5). Taking one more derivative, we have

??= Σ *kί(N-k)(N-k-l)P

N-k-2qk (3.9)
αp fc = o

-2(N-k)kpN-k-1qk-ί + k(k-l)pN-kqk-2]

N 2 k - l ) a k (3.10)

which can be written as (3.6).
When the number of bonds in G goes to infinity, the appropriate limits of βk and

yk yield exact formulas for the first and second derivatives of σ(p). When G is a
hypercubic sample of the lattice with side L, then N~ dLd. In this case we consider
σ*(p) in (2.3), and assume for ε = 0 that the infinite volume limits of the derivatives
exist for p > pc (existence for all p when ε > 0 is contained in a subsequent theorem).
Then we have

Lemma 3.2. For the lattice in d ̂  2 with ε ̂  0 and fixed /?,
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where the simultaneous limits of k and L-»oo are taken so that

k k
lim — = lim —-=q = \-p. (3.13)

fe,L->oo iV k,L->oo uL

Proof. Equation (3.5) can be written as

P^Y/^-Y. (3-14)
dp fc=o

/JV\
Note that in (3.3) there are I ) terms δσ(ωk). When N is large, the weight of the

\ / c /
binomial distribution is concentrated on values of k such that k/N is nearly
q = ί—p. Appropriately scaling βk with L2~d yields the result (3.11), and similarly
for (3.12). See [37] for more details about this type of argument.

When ε = 0 formulas (3.11) and (3.12) take a particularly nice form. In (3.1) and
(3.2), any bonds of ωk of conductivity 1 which have no current running through
them do not contribute to the sums. These bonds are called dangling bonds. The
set of bonds which do have current in them is called the backbone. Let B(p) denote
a backbone configuration for fixed p. Then the right-hand sides of (3.1 1) and (3.12)
can be written as δσ*(B(p)) and δ2σ*(B(p)\ which are the scaled infinite volume
limits of (3.3) and (3.4) with ωk replaced by B(p\ averaged over realizations of the
backbone for fixed p. We summarize this observation in

Theorem 3.1. For the lattice in d^.2 with ε = 0 and fixed p,

dσ*
, (3.15)

dp

P

2~=δ2σ*(B(p)), (3.16)

where the right-hand sides in (3.15) and (3.16) are averaged over backbone
configurations B(p).

In order to derive the perturbation expansions for the derivatives of σ*(p) for
ε>0 we shall require the following analyticity result, which was originally proved
in [21], and will only be stated here.

Theorem 3.2. (rf^l) For every ε>0, there exists an open neighborhood Vε in the
complex p-plane such that [0, 1] C Vε and σ*(p) is analytic in Vε.

The idea of the proof is to produce a neighborhood containing [0, 1] in which a
subsequent perturbation expansion (3.17) of σ*(p,s) converges uniformly.

Remark 1. Theorem 3.2 and its proof hold for a large class of continuum systems as
well, namely infinitely interchangeable media, which have recently been intro-
duced by Bruno [38]. This class is a generalization of Miller's cell materials [39],
where all of space is divided up into cells which are randomly assigned two
conductivities with probabilities p and 1— p. The details are contained in [40]
[along with rigorous upper and lower bounds on σ*(p) for the d = 2 bond problem
with ε>0].
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Remark 2. Theorem 3.2 and its generalization to continuum systems can be viewed
as a Lee- Yang Theorem: for ε>0, σ*(p,ε) has no phase transition in p, i.e., it is
analytic in p. This is an analogue of the statement that for positive magnetic field,
the free energy for an Ising model has no phase transition in temperature T, i.e., it is
analytic in T. The natural question arises, then, as to how analyticity of σ*(p) is lost
as ε->0, i.e., how does the phase transition arise? Is it due to a pinching of zeros in
the complex p-plane around pc, as in a Lee- Yang picture? This question is adressed
numerically in [41].

Let us now expand (2.12) for \s\ > 1 around a homogeneous medium (5= oo or
ε = l) to obtain

..., (3.17)

(3.18)
0

By expanding (2.13) similarly and equating coefficients, we obtain

μn = (~ 1)" ί P(d^)lχ,(Γχ,γek\ . ek , (3.19)
Ω

for any k = 1, . . ., d. Clearly, μ0 = 1 — p, and the discrete analog of a calculation in
[32] yields μι=p(l-p)/d.

Thus (3.17) to second order is

.. (3.20)

We remark that md = 2, using arguments of infinite interchangeability, in [40] we
calculated two more moments of μ to obtain

P(\~P) p(l
μ2= - - - , μ3= - - - . (6.21)

Now, using the analyticity of σ*(p) for ε > 0, we can immediately differentiate (3.20)
to obtain

Theorem 3.3. For the hypercubic lattice in d^.1 with ε > 0, the derivatives of σ*(p)
have the following expansions, where s =!/(! — ε),

(3.22)

(3.23)

dp s s2 \s

d2σ* 2/d / I

dp2

Furthermore, for d = 2, we have

1/2 frti-p) / i .
λ ^ d ' ^ I 5 / ' V J '^ V3 4 c
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3.2. Three-Component Media

In the calculation of 7 for the NLB model we shall require some representations2

d2σ*
7dp2

of the derivatives of σ* for three-component media. We begin by briefly
formulating this problem and giving definitions analogous to (2.1).

Let G be any graph consisting of N bonds. We randomly assign to the bonds the
conductivities 1 with probability p, ε± with probability <?1? or ε2 with probability q2,
so that p = ί—qι~q2' Again we distinguish two vertices and measure the
conductivity of the network between these two vertices, and average this
conductivity over all 3N realizations. Analogous to (2.1) we define

<KP)= Σ «fcy~*~Vι«j,
t,m = 0

k + mϊN

«*m= Σ
cokmeΩkrn

where Ωkm = {ωkm = (ω1, ...,ωN)\ωl = ε1 for exactly k of the ω/s and ωt = ε2 for
exactly m of the ωjs}.

Our use of the derivatives of σ* for three-component media will be restricted to
the second mixed partial with respect to q1 and q2. To this end, analogous to (3.2),

we define N-k-m
δ2

ί2σ(ωkm) = ~Σ mW<^ίΛ)) + Kaff(eι9e2))
i , j=l
ί*j

-σ(ω^(l,ει))-σ(ωff(l,ε2))] , (3.26)

which is a discrete version of this mixed partial, where ωfj^l, 1) = ωfj", ω^ε^ ε2) is
ω\f with conductivity εl for the f th bond and conductivity ε2 for the/h bond, and so
on. Now define „ ,2 „, km. ,~ 0«v fem= Σ ^I2^(cofew). (3.27)

ωkmeβkm

Then we state the following lemma, whose proof is similar to that for Lemma 3.1.

Lemma 3.3. Let G be any N bond graph with conductivities 1, εl ̂ 0 and s2 ̂ 0 with
probabilities p, qί9 and q2, respectively. Then

0.28)
fc,m=o

k+m^N-2

When the number of bonds in G goes to infinity, the appropriate limits of vkm

yield exact formulas for the second mixed partial of σ. When G is a hypercubic
sample of the lattice with side L, then N~dLf. In this case we consider σ*(g1? q2) as
in (2.3), and assume for ε = 0 that the infinite volume limits of the derivatives exist
except at the critical probabilities (existence of these derivatives for εl9 ε2 > 0 will be
proven subsequently). Then analogous to Lemma 3.2, with an analogous proof, we
have

Lemma 3.4. For the lattice ind^.2 with bond conductivities 1, ε1 ̂  0, and ε2 ̂  0 with
probabilities p, ql9 and q2, respectively,

, (3-29)
m '
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where the simultaneous limits of k,m and L->oo are taken so that

k k
lim — = lim -τa=ql9 (3.30)

lim -= lim =q2- (3.31)
m,L->oo -/V m,L->oo #J-'

In order to derive a perturbation expansion of- — - — around a homogeneous
cqloq2

medium (ε^ = ε2

 = 1)> we first need a perturbation expansion of σ* analogous to
(3.20), which we shall obtain from the analogue of (2.13) [42]. First, the three-
component version of w(ε) in (2.11) is

m(εl5 ε2) = σ* = J P(dω) (ε^ + ε2χ2 + χ3)Ek

k . (3.32)
Ω

Again this maps the product of upper half-planes to the upper half-plane. Now
define

F(s1,s2)=l-m(ε1,ε2), sί = ί/(l-εί), s2 = l/(l-ε2). (3.33)

Then the analogue of (2.13) is

. (3.34)
S2

For |s!|>l and |s2 >1, (3.34) can be expanded about a homogeneous medium
(ε^ = ε2 = 1 or sί = s2 = oo) to obtain

F(Sl, s2) = J P(dω) \( ̂
L\ 5 1 S2 Si S2

ek^ ek. (3.35)

By calculations similar to those mentioned in Sect. (3.1), the coefficients in (3.35)
can be calculated to second order,

_
S-^ S2 S^ S2 "^1^2

δ2σ*
It is this expansion which will yield an expansion of -—-—, once we have

dq^q2

established analyticity of σ* in ql and q2, which is contained in

Theorem 3.4. Let σ* be the bulk conductivity of the bond lattice in any dimension with
random bond conductivities ε1? ε2 and 1 with probabilities qί,q2 and p = 1 — qί — q2,
respectively. Then for every ε l 5 ε2 > 0, there exists an open neighborhood Vει£2 3 [0,1]
x [0,1] in (C2 such that (T^(q1,q2) is analytic in V C l C 2 .

Proof. The basic idea of the proof is the same as that of Theorem 3.2, i.e., to prove
uniform convergence of (3.36). However, the coefficients in (3.36) are not the
moments of a measure, as was the case for two-component media in (3.17), so that
the bound μn(p)^ί, which was important in the proof, was immediate. Here we
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must work a little. Fix s l 5s 2>l and assume s1<s2. Let

Λ = Xι + -X2, (3.37)
S2

so that (3.34) can be written as

F(sl9s2)=jP(dω)-A\(l+l-ΓA\ ' eλ>ek. (3.38)
β sι L\ 5ι / J

An easy calculation (using the orthogonality of χ{ and χ2) shows that

\ \ A \ \ Z l , (3.39)

where the norm in (3.39) is operator norm in L2(Ω,P). Since Γ is a projection
operator, Γ2 = Γ, it also satisfies

H / Ί l ^ l . (3.40)

Using A and Γ we can rewrite (3.36) as

F(Sl,S2) = J P(dω)ek \± + *™ + ̂ - + ..]ek (3.41)
Ω |_51 51 51 J

or

«= 1
(3-42)

where the fn(ql9 q2) are nth order polynomials in qί and q2 which satisfy by Cauchy-
Schwartz, (3.39) and (3.40) the inequality

l/Λίι,«2)l;Sl, «ι,«2 e [0,1]. (3.43)

Now the argument parallels the proof of Theorem 3.2. Let

Conformally map W2 onto the unit polydisk D2 in (z1?z2)-space, so that (qι,q2)
= (00,00) gets mapped to (zl5z2) = (0,0), and [0,1] x [0,1] gets mapped to the
distinguished boundary of D2, i.e., to the torus T2 = {|z1| = l} x {|z2| = l}. Since
fn(ql9 q2) is an nth order polynomial in q^ and q2, fn(zίy z2) has at worst an nth order
pole (in each variable) at (z1? z2) = (0, 0). Thus (z1z2)"/π(z1, z2) is analytic in D2. Since
l/«(zι? zz)l ̂  1 on T2, it also satisfies \fn(zl9 z2)| ̂  1 on all of dD2, since if \z±\ = 1 is
fixed, /(zl5 z2) as a function of z2 e D attains its maximum on the boundary |z2| = 1,
so that |/(z1,z2)|^l when ^^ = 1 and |z2 |<l, and vice versa. Then by the
maximum modulus principle for analytic functions of two variables applied to
(^z2)

nfn(zz,z2l

|/M(z l5z2)|^- - -, (z l 5z2)eD2. (3.44)
\zίZ2\

Now, for any small δ' > 0, there is a small δ > δ' > 0 such that in the product annulus

. (3.45)

For our given st > 1 and s2 > 1 (or εl9 £2 >0), we can choose δ and δ' so that

, (3.46)
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where Fειε2 conformally maps onto Aδ>. Then (3.42) converges uniformly in Fει£2,
which proves the theorem.

Remark. The above theorem applies to JV-component infinitely interchangeable
media in the continuum, as well as the lattice.

Now that we have established the analyticity, we can differentiate (3.36) to
obtain

Theorem 3.5. Let σ* be the bulk conductivity of the bond lattice in any d^l with
random bond conductivities ε l 5 ε2 and 1 with probabilities q^ q2 and p = 1 — q^ — q2,
respectively. Then,

(,47)

4. Regimes of Convexity

Since our principal focus of this work is the behavior of 2 , it is useful to outline

the regimes in ε and p for which σ*(p) appears to be convex. We shall first discuss
numerical results, and then analytic results addressing this issue.

4.1. Numerical Results

Let G be a graph having bond conductivities 1 and ε ̂  0 with probabilities p and

q=\—p, and let σ(p) be its effective conductivity function. We have computed -—?
dp

for a variety of graphs, including the square lattice, the triangular lattice, the
hexagonal lattice, trees (Bethe lattice), ladders, the Wheatstone bridge, and others.
In particular, we have computed the yk in (3.4), or approximations of them, for
these various lattices.

To summarize our results, away from p = 1 networks we have considered have
σ(p) convex for any ε ̂  0, and for both bond and site problems. (In site problems,
when a "site" is assigned conductivity ε, this means that all attached bonds are
assigned conductivity ε.) Near p = l, however, bond problems typically are not
convex when ε is small enough, while site problems typically are convex for all
ε ̂  0. For a typical bond problem, if we start with ε close to 1 and allow it to shrink,
d2σ

is positive until, say ε^O.l, below which it becomes and stays slightly

negative all the way down to ε = 0. This concavity near p = 1 for ε = 0 is consistent
with the results in [19] for the square lattice. Furthermore, the convexity near p = 1
for site problems is consistent with the results of [20] for the square lattice. We see
then for the site problem, σ*(p) for the square lattice with ε = 0 appears to be convex
for all p.

In the specific case of the bond problem for the d = 2 lattice with ε = 0, as p
increases from pc = | to 1, what apparently happens is that σ*(p) starts off convex at
p = i, but eventually the curve "turns over," i.e., become slightly concave, and stays
this way until p = 1. We note that this effect is subtle, because away from the critical
regime (p ̂ i), the graph of σ*(p) looks nearly linear, where effective medium theory
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[6] is believed to provide a very good approximation. In fact, an expression for

is found in [19] and is numerically evaluated, with a result of about»2
dp p=ι
— 0.21, which supports the accuracy of effective medium theory near p = l. This

result agrees with our calculations of-:-;-, which give a value of about —0.2 at
dp

p = l f o r a l 5 x l 5 sample of the square lattice. The calculation of-<v,=,[i9]is

somewhat involved, and it is not at all obvious that the result will be negative,
which gives motivation for the first of the analytic results.

4.2. Analytic Results

Casual inspection of numerical simulations and sketches in review articles of the
graph of σ*(p) for the d = 2 bond problem with ε = 0 suggest that σ*(p) is a convex

function of p. Furthermore, the expansion of 2 for ε>0 in (3.24) in powers of

(1 — ε) has positive coefficients to 4th order in (1 — ε), again suggesting convexity.
However, the following result establishes the contrary.

Theorem 4.1 (d = 2 bond problem). // ε = 0, σ*(p) cannot be convex for all p e [0,1]
with strict convexity in some open interval.

Proof. It is known [10,19] that with ε = 0,

dσ*

~drJ
= 2. (4.1)

The existence of this derivative has been proven in [14] for a class of continuum
problems analogous to our bond problem, and presumably the arguments hold in
the present situation. Now, a straight line with slope 2 passing through σ*(l) = 1
intersects the p-axis at p =\. If σ*(p) is convex for all p, and strictly convex in some
open interval, its graph lies above this straight line, and it intersects the p-axis
somewhere less than p = ,̂ so that pc < ,̂ which contradicts the rigorous result [12]

It was mentioned in Sect. 4.1 that σf (p) (we have added an "s" subscript to avoid
confusion) for the d = 2 site problem with ε = 0 is numerically found to be convex
for all pe[0, 1]. Under this assumption, using an idea similar to the proof of
Theorem 4.1, with the 2 in (4.1) replaced by π [17, 20], we can easily show that the
critical probability Pc for the site problem md = 2 satisfies pc ̂  1 — 1/π, where pc is
believed to be about 0.59, whereas 1 — l/π^0.68.

In the previous section on numerical results it was found that convexity of
σ*(p,ε) for the bond problem appears to be lost only when ε becomes small
enough. The following result, which follows immediately from Theorem 3.3,
provides some basis for this observation.

Theorem 4.2 (d ̂  1 bond problem). For ε sufficiently close to 1 , σ*(p) is convex for all
pe[0,l].

Remark. Theorem 4.2 holds for infinitely interchangeable media in the continuum
as well.
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Finally we come to the principal result of this section, which was proven in [21].

Theorem 4.3 (d = 2 bond problem). For every ε > 0, there exists an open neighbor-
hood ^εC[0,1] containing pc=^ such that σ*(p) is convex in %ε.

The idea of the proof is to calculate the second derivative of σ*(p) at p = 1/2, and
show that it is positive by relating σ*(l/2 — h) to σ*(l/2 + /z) for small h, via the
duality relation σ*(p)σ*(\ —p) = ε [43]. This duality relation is a consequence of the
Keller-Dykhne Interchange Theorem [44,45], which holds for general stationary
random media.

Due to the broad generality of both the Interchange Theorem and the
analyticity in Theorem 3.2, the above convexity result holds for the large class of
infinitely interchangeable media in the continuum as well. For example, a
hexagonal chessboard structure with conductivities 1 and ε ̂  0 randomly assigned
to the hexagons has pc = \ [14,46] (when ε = 0) and Theorem 4.3 applies directly as
stated. Its importance is that it indicates for actual systems, where the insulating
material has a very small, but non-zero conductivity, σ*(p) has a convex shape in
the transition regime around pc, so that the critical exponent ί measured from data
very near pc will satisfy t ̂  1.

5. Convexity and Exponent Inequalities for the Hierarchical NLB Model

We are now ready to compute the second derivative of the bulk conductivity for
the NLB model. Before we introduce the model, though, it is very instructive to
describe how the geometry of a graph determines the convexity of its conductivity
function σ(p). More precisely, we shall investigate how pairs of bonds in series or in
parallel contribute to determine the sign of the second derivative. It is this subtle
interplay which will be quantitatively captured in the NLB calculation, and it is
useful to first understand it in simple settings. Subsequently we shall define the
NLB model and then compute the second derivative of the bulk conductivity for it.

5.1. Geometry of Convexity

Since we are now in the ε = 0 case, it is useful to simplify the notation of (3.1) and
(3.2). Thus, for any finite graph B with bonds of unit conductivity [which will
eventually be a backbone configuration B(pJ], let

δσ(B}= X [^(1)^(0)], (5.1)
bτeB

δ2σ(B)= Σ [σ;/U) + σ;/0,0)-σ;/l,0)-σ;/0,l)], (5.2)
bltbjeB

bi Φ bj

where in (5.1) and (5.2), σ ί(l) = σ ί_ /{l,l) = σ(5)5 the conductivity of B measured
between two vertices, σf(0) is the conductivity of B with bond bt removed, σ0 (0,0) is
the conductivity of B with bonds bt and bj removed, σί; (l, 0) is the conductivity of B
with bond bj removed, and vice versa for σ f j (0,1).

In order to illustrate how the geometry of a graph B determines the sign of
δ2σ(B\ let us consider the following very simple graph, which in some sense forms a
fundamental building block for the NLB model. This graph is in the shape of a Y9

where current flows in through the single leg and out through the two arms. For
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simplicity let each "limb" of the Y be composed of one bond of unit conductivity,
with b1 the leg and b2 and b3 the arms. Consider now (52σ(y) = 2((512 + <523 + ̂ i3),
where the δ^ are the summands in (5.2). Elementary calculation shows that

<5i2 = <5i3== +"6 and ^23 = ~^~> so that δ2σ(Y) = 0. The important point to note is

that (2,3) is a pair of bonds in parallel corresponding to (523 <0, while (1,2) and
(1,3) are pairs in series corresponding to <512 = <5ι3>0.

For an arbitrary graph G, there is no particular reason why the positive <5f/s
should outweigh the negative ones. However, for a graph B that is sufficiently
"stringy," positive contributions from series pairs in a given string should tip the
balance to a net positive δ2σ(B)>0. For example, if we replace each bond in Y
above with two bonds in series, and call the new graph S2 Y, then δ2σ(S2 Y) > 0. The
reason is that the three series pairs in the leg and two arms give new, positive
contributions to δ2σ(S2Y) which were not present in δ2σ(Y). Such considerations
led us to the following theorem. Two proofs were given in [21], the first which is
essentially included in the NLB calculation and will be omitted here, and the
second which will form the basis of our subsequent analysis of the third derivative,
and will be given here.

Theorem 5.1. Let G be any finite connected graph with unit bond conductivities, and
let SnG be a new graph formed by replacing each bond of G with n bonds in series.
Then

δ2σ(SnG) = nδ2σ(G) + (n -1 )δσ(G), δσ(G) ^ 0. (5.3)

Consequently, if G satisfies

C = δ2σ(G) + δσ(G)>0 (5.4)

then

δ2σ(SnG)~Cn, C>0, w->oo. (5.5)

Proof. Let the conductivity function of SnG be denoted by σ(p), and that of G be
denoted by σ(p). Then

σ(p)=^σ(pn). (5.6)

Differentiating both sides of (5.6) twice with respect to p and setting p = 1 yields

d2σ

dp
= n

p=l dp p = l 'rdp
(5.7)

p=l

which is equivalent to (5.3).
This proof was a joint observation with S. Goldstein.

Remark. SnG is composed of a graph G whose elements are strings of n bonds in
series. Removal of any one of these bonds converts all the other bonds in that string
into dangling bonds. Their subsequent removal has no effect on the conductivity,
and this effect is the source of the positive, second term in (5.3). We thus call Sn a
"convexity improving" transformation on graphs, as it typically transforms a
graph with possibly negative δ2σ(G) into one with positive δ2σ(SnG).
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5.2. The Hierarchical Node-Link-Blob Model

In order to define the NLB model, we must introduce the notion of correlation
length for p > pc. For the infinite bond lattice in d ̂  2 with a fraction p of occupied
bonds let

τ/(0, x) = Probp {0 and x belong to the same finite cluster of occupied bonds}.

(5.8)
Then the correlation length can be defined by

1 " * " "3,*), (5.9)

where the limit is taken as x moves out to infinity in a fixed direction. This limit was
proven to exist for p>pc in [47]. We shall assume that ξ diverges with an expo-
nent v,

ξ(p)~(p-pcΓ
v, P-PΪ (5-10)

We now describe the model. The NLB graph is a "super-lattice" consisting of
nodes, spatially separated by a correlation length ξ, which are connected by 1st

order necklaces composed of strings (links) and 1st order beads (blobs), as in
Fig. 1 a. The beads themselves have a hierarchical structure, as shown in Fig. 1 b,
consisting of two 2nd order necklaces in parallel, and so on, in a self-similar
fashion to order N, for an arbitrary, large integer N (N no longer refers to the
the number of bonds in a graph). We assume that any kth order necklace has
β beads on it, for an arbitrary, large integer β, and that each pair of beads is
joined by a string of nk bonds, so that there are a total of βnk string bonds on each
necklace. (Note that the figure is drawn with β — ί beads per necklace, but we
take the number of beads to be β for computational simplicity.) The βnγ

string bonds on any 1st order necklace are called singly connected - because
removal of one of them breaks the connection between nodes separated by ξ.
All the rest of the bonds in the NLB graph are multiply connected, and among

(α) (b)

Fig. la, b. Node-link-blob model of the conducting backbone near pc. In a, the nodes are a
correlation length ξ apart, and are connected by necklaces of beads (blobs) and strings (links) with
nί bonds connecting two beads. The beads have a self-similar structure, as shown in b, with n2

bonds connecting two beads
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these it is useful to identify the βn2 string bonds on a 2nd order necklace as doubly
connected, since it is possible to remove two of them (in parallel) and break
a connection between nodes. There are then a total of 2β2n2 doubly connected
beads between two nodes. Based on a result of Coniglio's [24] implying in our
context that the number of singly and doubly connected bonds between the
nodes both diverge with exponent 1 as p->pc

+, we assume that nί = 2βn2.
(That the number of singly connected bonds diverges like (p — pc) ~ * was previously
shown in [48].) Due to self-similarity, we assume that

nj_ί = 2βnjy ; = 2,...,JV. (5.11)

Relation (5.11) can be used to solve for the nj,j>\, in terms of n1? with

" 2 = , rc3 = ,..,n,.+ 1 = ,..., ;•=!,. ..,#-!. (5.12)

In this model the percolation limit p-+p? is characterized by the limits n
/?->oo, JV-»oo and £-κx), so that the lengths of all orders of necklaces, and
consequently the sizes and numbers of all orders of blobs, diverge as p->pc

+. The
basic calculations, though, will be done for fixed, large nl9 β, N, and ξ, and we
denote the NLB graph by A(n±).

It is important to remark how to construct A^J. Let G be the hypercubic lattice
in d^2. Then A(n^ is constructed by replacing each bond of G by a 1st order
necklace with hierarchical structure to order N9 and spatially separating the nodes
of G by a correlation length ξ. We also note that it is not important that we choose
the hypercubic lattice as the base lattice G. For example, say in d = 2, we could
choose G to be the hexagonal lattice, whereby each node of A^n^ would be a
junction of three necklaces rather than four, which is more common in actual
percolation clusters [D. Fisher, priv. comm.].

With the above construction in mind, and in view of Theorem 5.1, one can
imagine replacing the bonds of the base lattice G by n bonds in series, rather than a
necklace with hierarchical structure, and again separating the nodes by a
correlation length ξ. This simpler construction is essentially the node-link model of
Skal and Shlovskii [48] and de Gennes [49]. However, due to the presence of only
singly connected bonds, this model was found to be inadequate, particularly in
d = 2, 3. In other words, an accurate description of the backbone structure near pc

must include the blobs, which contain the multiply connected bonds, and give the
model loops on many length scales smaller that the correlation length. This is
precisely what A(n^) incorporates.

From the point of view of Sect. 5.1, it is not at all surprising that the node-link
model would yield a positive second derivative, as evidenced by Theorem 5.1,
where the node-link model is essentially SnG for a reasonable base lattice G. This is
because each bond of G is replaced by n bonds in series, which as we have noted
improves the convexity. However, in the NLB model, we are replacing each bond
of G with just as many bonds in parallel as in series, at each level of the hierarchy,
i.e., nί = 2βn29 n2 = 2βn3, and so on. Our subsequent calculations will show,
nevertheless, that convexity still wins.

5.3. Calculation of the Second Derivative for the NLB Graph

We now proceed to the calculation of the asymptotics of δ2σ*(A(n1)) as nl9 β, N,
and ξ-> oo, for a fixed base lattice G, the hypercubic lattice in d ̂  2. Our first step is
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to relate the bulk quantity δ2σ*(A(nί)) to the unsealed δ2σ(A(nί)) in (5.2) with
B = A(n1). Since δ2σ is linear in σ, it suffices to obtain the scaling for the
conductivity itself. Let GL be a hypercubic sample of G with side L, and let z0 be the
conductivity of a necklace. Furthermore, let AL be GL with each bond replaced by a
necklace, and again, its nodes separated by ξ. Then one side of AL is clearly ξL9 so
that

Taking the L^oo limit of (5.13) yields σ*(A) = z0/ξd~2

9 so that

(5.14)

In order to calculate δ2σ(A(nί)) from (5.2), we shall need the conductivities of A
with all possible pairings of bonds removed. To help us compute this, we shall need
the conductivity of a single necklace with each type of bond removed, and also with
each type of pair removed. To be clear, we refer to segments of string bonds on a kth

order necklace as a kth order string. For example, the 1st order strings comprise the
set of all singly connected bonds, and the 2nd order strings comprise the set of all
doubly connected bonds, and so on.

We first compute the conductivities of a necklace with one bond removed. Let
z0 be the conductivity of a necklace with no bonds removed, z1 be the conductivity
of a necklace with one bond removed from a 1st order string, and in general, zk be
the conductivity of a necklace with one bond removed from a kth order string. Since
a necklace is composed only of bonds in series and parallel, the zk are not difficult
to compute. First we have

which becomes via (5.12),

where

, ._, " ΛV
. ( 5 17)

Clearly z^O.
Next we have

(5.18)

where in (5.18) and subsequently we shall usually omit writing the Nih term for
simplicity, it being understood that these are only finite sums.

Using (5.12), after some manipulation (5.18) becomes
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In general, we have

Lemma 5.1. The conductivity zk of a necklace with one bond from a kth order string
removed is

(5.20)

where z0 is given in (5.16) and (5.17), and γk satisfies

*-1-l), 0<yk<l, k^2. (5.21)

For large β, (5.20) can be expanded as

(5.22)

Remark. The important point to note in (5.22) is that as k increases, the deviation of
zk from z0 decreases geometrically fast in powers of β:

We now must compute the conductivities of a necklace with all possible pairs of
bonds removed from this necklace, which is somewhat more complicated than
above. Our calculations will be divided into two primary groups. The first deals
with pairs for which both bonds are members of a kih order string, the second deals
with pairs for which one bond is in a feth order string while the other bond is in a/h

order string, with jή=k. Each of these two groups will contain two types of
calculations. The first deals with pairs in series and the second with pairs in
parallel.

First we compute zs

kk, the conductivity of a necklace with two bonds in different
kih order strings removed in series. We assume that the two bonds are members of
different blobs of order k — 1, so that the second removal is not redundant. It is
most instructive to start with k = 1 and work our way up to see the general pattern.
For fc = l, redundancy of the second removal is unavoidable, with z\1=G. For
k = 2, we have

2 ' r\ ' '

(5.23)
1U /

Then, in view of (5.16) and (5.17),

2*22 = ~ (5.24)

In general, we have

(5.25)
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where

fkk = KN(l/αN_! - V (i)> )/(2*-2), fc^ 3 . (5.26)
V j = o /

In the special case where the removal of the second bond is redundant, we call the
conductivity zr

kk, with zr

kk = zk9 k^2.
Now we compute z£k, the conductivity of a necklace with two bonds removed in

parallel from different feth order strings. We shall first assume that the second
removal does not break a necklace of order k — 1. For k = 2 this breakage is
unavoidable, with zξ2 = 0. For fc = 3 we have

2 ' 4

(5.27)

so that

(5.28)

1+ N N'lβ2

In general, we have

zp

kk=—^ , fe>3, (5.29)KK n ' — ' \ /

where

/ *-2 \

^~2-l), k^3. (5.30)

In the special case where the second removal breaks a necklace of order k — 1, we
call the resulting conductivity zb

kk, and we clearly have zkk = zk_1, k^2. We
summarize our results in

Lemma 5.2. The conductivity zs

kk(z^k) of a necklace with two bonds in series (parallel)
removed from different strings of order k, assuming that the second removal is not
redundant (that the second removal does not break a necklace of order k—ί) is

(5.31)

β
_

"'1

where γs

kk is given by (5.26). The same formula holds for z%k, with y%k in (5.30) replacing
ykk, /c^3. In the redundant (series) and breakage (parallel) cases excluded above,

Δkk Δk (5.32)
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For large β, (5.31) can be expanded as

^ + (^τ)2-...), (5.33)

and similarly for z%k, zkk, and zb

kk.

Remark. Again the important point to note is that as k increases, the deviation of
zs

kk (and the others) from z0 decreases geometrically fast in powers of β.
We now deal with the second class of pairs, where one bond is removed from a

/h order string and the other bond is removed from a fcth order stringJ Φ k. Again it
is most instructive to calculate a few simpler cases, which show the general pattern.
First we consider zs

jkj<k, again under the assumption that the second removal is
not redundant. With; = 1, the redundancy is again unavoidable, with zs

u = 0. We
now compute

^ + .- . (5.34)
j o 2

The point of the rearrangement now is to identify the terms associated with the
removal of a single bond from a 2nd order string,

(̂ r̂ +ί̂ Γ2 ' 4 ' "V ' 12 ' 24 ' -

= (Z2)-ι + ZLI_L + JL + ...J. (5.35)

Then we can obtain
(5-36)

Similar manipulations give in general

zs

jk= - ° , fc>j^2. (5.37)
1 1 yj i y^

^-1 ^1

In the case where the second removal is redundant, ήk = z
Now we deal with the situation where the two bonds are removed in parallel,

which will be denoted by zjfc, k >j. Note that in this case, with k >j9 it is not possible
to break a necklace of lower order. We first compute

(5.38)
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Then we obtain after a little more work

(539)

In general, similar calculations give

(5.40)

We summarize our results in

Lemma 5.3. The conductivity z]k(zp

jk) of a necklace with one bond removed from ajth

order necklace and another bond in series (parallel) removed from a kth order
necklace, k >j, assuming that the second removal is not redundant, is

(5.41)
1 r1 β*-1

and

(5.42)

In the series case, when the second removal is redundant,

zr

jk = z j , k>j^l. (5.43)

For large β, (5.41) and (5.42) can be expanded to yield

\\
(5.44)

(5.45)

Remark. The important point to note is that in (5.44) and (5.45), z]k and zjfe match
the expression for zj to order I//?-7'"1.

In order to state our principal theorem on the asymptotics of δ2σ*(A(ni)), we
must discuss the numerically verified condition under which the theorem is
proved. The condition is as follows.

Hypothesis 5.1. Let G be a lattice in d-dimensions (not necessarily hypercubic) with
bond conductivities 1 and 0 in the volume fractions p and 1 — p, and bulk conductivity
function σ*(p). Then at least two derivatives of σ*(p) exist at p = 1 and obey

dσ*

dp p=l dp
>0. (5.46)

p = l
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For the square lattice in d = 2, from (4.1) and the numerical results of Sect. 4, we
see that (5.46) is satisfied. In higher dimensions [10]

dσ* d
δσ*(G) = -3— = -—-, (5.47)

dp p=ί d-1

while numerical simulation of σ*(p) in d = 3 [6] and analytical solution of σ*(p) for
the Bethe lattice, believed to represent large d [50,51], are practically linear near

d2σ*
= l, so that

dp
is small, as in d = 2. Thus (5.74) is satisfied in higher

dimensions as well. Given (5.47), condition (5.46) amounts to saying that if 2 is

negative, it must be small, i.e., the graph of σ*(p) must be nearly linear near p = 1.
However, the effective medium solution [10] to the bulk conductivity problem is a
straight line with slope d/(d—l). Hypothesis 5.1 just amounts to a particular
consequence of the long accepted view that effective medium theory provides an
accurate description of σ*(p) for p near p = ί. This is also true for more general
lattices, such as periodic ones, like the hexagonal or triangular lattices, or
presumably even quasiperiodic or random lattices. Thus Hypothesis 5.1 presum-
ably holds in great generality, assuming the existence of the derivatives at p = 1.

We now state

Theorem 5.2. Let A(nv) be the NLB graph formed from the hypercubic base lattice G,
which is assumed to satisfy Hypothesis 5.1. We further assume the existence of the
second mixed partial of σ* for three-component lattices at p = l, when one of the
conductivities is 0, as in Sect. 3. Then

(5.48)
7 = 0

where

(5.49)

and the c^) and c2(j) yield a convergent series in (5.48). Consequently, as nl9 β, N,
and ζ-+ao, we have

(5-50)

with α^-^3/4 as N-+OO.

Proof. In order to calculate δ2σ(A(ni)\ the conductivity of A(n±) with all possible
pairings of bonds removed must be considered. Since A(nv) is formed by replacing
the bonds of G with hierarchical necklaces, the idea of the calculation is to compute
appropriate sums of the conductivity of G with the conductivities of one or two of
its bonds changed to those conductivities calculated in the lemmas earlier in this
section. By the results of Sect. 3, these sums can be handled by the perturbation of
various derivatives of σ* for two- or three-component media at p = 1.

In order to develop δ2σ(A(n1)) as the series in (5.48), we decompose its
contributions as

δ2σ(A(n,))= Σ ί*, (5.51)
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where δjk is the sum of all contributions to δ2σ(A(n1)) arising from pairs with one
bond in a /h order string and the other bond in a /cth order string, which is in either
the same or a different 1st order necklace. As in the proofs of the lemmas of this
section, the structure of (5.48) will become apparent by considering the first few
(dominant) terms of (5.51).

First we note that since all the conductivities in the lemmas have a factor of z0 in
them, and due to the homogeneity of effective conductivity, we can factor out this
z0 and consider G with bonds of unit conductivity, and then when considering
removal of appropriate bonds, instead of the zk and zjk in the lemma we shall
replace the unit conductivity bonds of G with bonds of conductivities

&!=(), fe^l, (5.52)

Λ y * = , Λ 1 Λ = 0, j,tel, (5.53)
zo

for all appropriate forms of hjk, namely parallel, series, and so on. We note further
that even since we have factored out ξd~2 in dealing with δ2σ(A(nί)), the relevant
conductivity will be the bulk conductivity σ* of G (with appropriate bond
conductivities changed), since in (5.1 3) when one removes the factor of z0/ξd~ 2 one
is still left with σ(GL)/Ld~2, which converges to σ*(G) as L->oo. Henceforth in the
proof σ* means the bulk conductivity scaled with respect to the base lattice G.

First we compute <5 l l t The calculation is essentially the first proof of
Theorem 5.1 referred to earlier. We first deal with pairs in <5n where both bonds
are on the same necklace. Let 5* denote the set of βnl string bonds on a first order
necklace comprising the fcth bond of the base lattice G. Since there are βn1(βnΐ — 1)
of these types of pairs, we have

Σ (σg<U) + σg<0,0)-σ^
i j j e S k

l*s (5.54)

where σ*(l) = σ*(G) and σjf(O) is the conductivity of G with the fcth bond replaced by
h1~09 and for simplicity we have simplified the summation indices in the left from
hi and bj to simply i and j. Equation (5.54) follows since σ*(0, 0) = σ*(0, 1) = σ*(l, 0)
in this case. Now we include also the pairs where both bonds are in different
necklaces, so that

-l) Σ (σf(l)-σf(0))

(5.55)

Since z0 = αN//Jn l 5 carrying out the sums in (5.55) yields

<?! ! = αArj8n1(<5σ*(G) + (52σ*(G)) - aNδσ*(G) , (5.56)

where the first term on the right in (5.56) corresponds to the first term on the right
in (5.48). Note that the terms on the right in (5.56) involve the derivatives of σ*(p)
only at p = l.

Now we consider <512. Again we first look at pairs with the bonds in the same
necklace. In addition to S\ above, let S\ denote the 2β2n2=βn1, 2nd order string
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bonds in the necklace comprising the /cth bond of G. We have

2 Σ (σ#U) + σ#0,0)-σ^
ieSf

jeSi
(5.57)

since σ*(0, 0) = σ*(0, 1) in this case. Including the pairs with bonds from different
necklaces,

ieG

(5.58)

Denote the first sum in (5.58) by Σi and the second by £2- By (3.1) and Lemma 3.2,

Σι = ̂ (P=W, (5-59)

dσ*
where by -r— (p = 1, h2) we mean the first derivative of σ*(p) for G with two bond

dp
conductivities, 1 with probability p and h2 with probability 1— /?, evaluated at
p = 1 . To evaluate Σi in terms of /z2, we use (3.22), since for large β, h2 is very close to
1, so that \/s=\—h2 is very small. Using (5.22) gives

Now we consider £2. In view of (3.26) and Lemma 3.4,

where the right side of (5.61) refers to the mixed partial of the bulk conductivity of G
with bond conductivities hί =0 with probability ql9 h2 with probability q2, and 1
with probability p = l — q^ — q2, evaluated at p = l. Now for s^l and 52>1,

32σ* δ2σ*
Theorem 3.5 provides a convergent expansion for - — - — . Assuming - — - — exists

as, say, s^-^1 (ε1-^0)9 (3.47) still provides a convergent expression, although the
first term is no longer necessarily the dominant one, so that we do not know the
sign of the result. We can still write

1-Λ2 (5.62)
s2 s2 J s2

for some set of constants ej,j=0,ί,..., for which (5.62) converges. Then

12=^+0(^1)- (5-63)

Combining (5.60) and (5.63) gives

/1\
(5.64)
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In general, we have
Λ, Λ /Ί i s » \ >/ / Ί \

fc^3. (5.65)
j8*

Consider now δ22. The pairs with both bonds in one necklace can be divided
into three types: (1) both bonds are on the same first order bead but are
removed in parallel, (2) both bonds are on the same first order bead but are
removed in series, and (3) the bonds are on different first order beads, and are
therefore removed in series. The fourth type of pair is when both bonds are in
different necklaces. For a fixed necklace, or pair of necklaces in type 4, since
there are β—\ beads per necklace, the number of each type of pair is

(1) (β

(2) 2(β-\)βn2\

(3) 2(β-l)βn

and

(4) (βntf.

Now, making observations analogous to (5.57), and noting, for example, that the
removal of both bonds from type 1 pairs amounts to replacing the corresponding
bond of G with a bond of conductivity hί = 0, we can write

i eG

, (<7?(l)-σf(/ι2))
2

+ n2

l(β2-3β + 2) Σ (
i e G

)2 Σ (σfj(lΛ) + σ?j(h2,h2)-σfj(l,h2)-σfj(h2Λ))\. (5.66)

Let us again denote the four sums in order in (5.66) as £1? Σι> Σs> an^ Σ4 ̂ e can

write i as

Σι= Σ (σf(l) + σf(l)-σf(l) + σf(0)-2σf(/ϊ2)) (5.67)
ieG

= Σ 2(σf(l)-σf(M-(σf(l)-<τf(0)), (5.68)
ieG

so that

Zi=2^(p = l,fc2)-^(P = l^i=0). (5.69)

Using (5.47) and (3.22), we have

Note that Σi is thus negative, since we are considering two bonds in parallel.
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For £2> clearly we have from (3.22)

495

(5.71)

(5.72)

which can be shown to be positive, as we are concerned here with two bonds in
series. We also have

Note that £2 is positive, since we are considering two bonds in series.
For £3, we have after some calculation

Σa= ^2

Σ4 =

Summing our contributions gives

(5.73)

(5.74)

For general δkk, as in (5.74), the dominant (negative) term will come from choosing
two feth order string bonds in parallel, which will break a necklace of order k— 1.
The net effect will be to replace h± = 0 in the second term on the right in (5.69) by
/ι k_ x with a net effect,

(5.75)

We now calculate <523, with the same ordering of pairs as in the calculation of
δ22 We omit the calculation of the numbers of each type of pair. Analogous to δ22,
we have,

523=Z0 ! Σ (
ieG

β ieG

i,jeG

With calculations similar to those above, we obtain

PΓ

(5.76)

(5.77)

(5.78)

(5.79)
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For £4 we use (3.47),

Thus

β

For general δjk, fc>;, we still have four sums corresponding to £15 £2, Σs> Σ4
above. In each case the net contribution is controlled primarily by fc. In the case of
Σi and £3, this is because, as remarked previously, hs

jk and hp

jk both match hj to
0(\/βj~*) [see (5.22), (5.44), and (5.45)], so that the dominant terms here come from
the 0(βk~1) terms in (5.44) and (5.45). However, if fc-l>2(/-l), then the
contribution is 0(\/β2(j~i}). For £2, hk replaces h3 in (5.76). For £4, the leading
order contribution comes from a product of (1 — hj) and (1 — hk), as in (5.80), which
will be smaller than the other sums. Thus, in general, we have

(5.82)

unless (k—1)>2(/— 1), in which case

Iδ^Ofa/β2*-*). (5.83)

Finally, summing all the δjk yields (5.48).
Due to the structure of zk, z

s

kk, zkk, zs

jk, and zp

jk and their associated y's, we may
take the limit in (5.48) as N-+CO. This must be done in such a way that n15> N, so
that there is enough "room" to add more levels of the hierarchy to the necklace. We
can take this limit because the yk's, yj^'s, and so on, decrease to 0 geometrically fast,
so that any infinite sum of such coefficients also converges. Furthermore, all the
perturbation expansions we have used are just convergent geometric series as well.
In the dominant term of (5.48), we have lim aN = 3/4. We have thus proven the
theorem. N~^co

Remark i. Theorem 5.2 and its proof hold for a variety of base lattices G. The first
necessary ingredient, is of course, the validity of Hypothesis 5.1, which holds in
great generality, as discussed above. The second major ingredient to make the
above proof go through is the representations for the derivatives of σ*(p) obtained
in Sect. 3. For regular, periodic lattices such as the hexagonal or triangular, these
representations are elementary to obtain. Adjusted coefficients of the perturbation
expansions at and beyond second order (in 1/s) replace those for the hypercubic
lattice. For example, with G the hexagonal lattice in d = 29 an easy calculation
shows that the coefficient of 1/s2 in (3.20) becomes p(l — p)/3, which does not affect
the validity of our proof. Presumably such calculations can be carried out for
certain random or quasiperiodic lattices, and our asymptotics should hold for
them as well.

Remark 2. The particular structure of the necklaces that we have used was chosen
because it reflects what is known about the backbone structure, and it was
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relatively easy to compute exactly their conductivities with various bonds
removed. However, similar results to (5.48) can be obtained with more complex
necklace structures. For example, (5.11) could be replaced with nj,1= ηβpip with
reasonable assumptions on η^ and βp and results similar to (5.48) would be
obtained. The blobs themselves could also be assumed to have a more complicated
"super-lattice" structure, reflecting the macroscopic structure on the scale of ξ, and
again similar results would be obtained. Finally, while our principal assumption of
the NLB graph replacing the actual backbone is quite serious, our proof of (5.48)
shows that the dominant contribution comes from δll9 which comes from
macroscopic contributions in the NLB graph, where the model reflects well the
actual structure. A similar result should hold for any reasonable assumption about
microscopic backbone structure.

We now proceed to the implications of Theorem 5.2. Our first observation is
that δ2σ*(A(nί)) is positive, but the scaling provided by (5.50) yields more than
just this convexity. The length λ(n±) of a 1st order necklace which is "stretched
out" is given by

Using (5.12), we have
N

T / \ r\ n f\ v-i / l\ i ί£ Qζ\

with lim ΘN = 2.

Thus, there is a constant ρN = aNκ(G)/θN such that

, nl9β,N9ξ->σo, (5.86)

where in d = 2 with large N, ρN « 2/3. Now since all the parameters are diverging as
P-+P?, we can define a whole class of NLB models by how fast AfnJ-KX) as
compared to ξ-+ao. By the structure of the model, we must have

λ(n^ξ. (5.87)

Since λ and ξ are both diverging, ρN does not affect the gross asymptotic behavior
of δ2σ*(A(n1)). Thus, in view of (5.86) and (5.50), we have

Corollary 5.1. Let A(n^) be the NLB graph formed from the hyper cubic base lattice
G, which is assumed to satisfy the conditions in Theorem 5.2. Then in d = 2,3,

nl9β9N9ξ-+n9 (5.88)

except in d = 3, when λ(ni) = Cξ, C^l, in which case

nι,β,N,ξ->oo , (5.89)

where ρ= lim ρN. In d^.4, if λ and ξ are scaled so that
JV-»oo

0+, nl9β,N9ξ^<x>9 (5.90)

then
O+ , nl9β9N9ξ^<x>. (5.91)

Before we relate these results back to the actual problem to give exponent
d3σ*

inequalities, let us briefly consider the third derivative 3 . We shall only be using
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this derivative for information in d ̂  4. In this case the blobs become somewhat
less relevant [52], and we consider here only the node-link model, which is formed
by replacing the bonds of G with λ(n) = n bonds in series, and the nodes are still
separated by ξ. For the analog <53σ of δ2σ, we have the analog of Theorem 5.1,

Theorem 5.3. Let G be any finite graph with unit bond conductivities, and let SnG be a
new graph formed by replacing each bond of G with n bonds in series. Then there
exists a constant C3 such that

δ3σ(SnG}~C3n
2, n^σo. (5.92)

Proof. Differentiate (5.6) three times.
We then have

Corollary 5.2. Let A'(n) be the node-link graph formed from the hypercubic base
lattice G. Then

(5.93)

50 that for models in d = 4,5 with

-> + oo , (5.94)

we have

Now we relate Corollaries 5.1 and 5.2 back to the actual problem.

Corollary 5.3. Let σ*(p) be the bulk conductivity of the hypercubic lattice with bond
conductivities 1 and 0 in proportions p and 1 — p. Assuming σ*(p) ~ (p — pc)* as p ->pc

+,
and that it has at least three derivatives for all p e (pc91], and assuming that the actual
backbone B(p) in (3.16) is replaced by the NLB graph A(n^ for p near pc with the
hypercubic base lattice G satisfying the conditions in Theorem 5.2, then

d = 2,3, (5.96)

rf^4, (5.97)

for models which satisfy (5.90) and (5.94) for d = 4,5, where in (5.97) the inequality
f £ Ξ 3 is obtained by replacing B(p) by the node-link graph A(n).
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