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Abstract

Sea ice is a porous composite of pure ice with brine, air, and salt inclusions. The polar sea ice packs play a key role in the earth’s ocean-

climate system, and they host robust algal and bacterial communities that support the Arctic and Antarctic ecosystems. Monitoring the

sea ice packs on global or regional scales is an increasingly important problem, typically involving the interaction of an electromagnetic

wave with sea ice. In the quasistatic regime where the wavelength is much longer than the composite microstructural scale, the

electromagnetic behavior is characterized by the effective complex permittivity tensor e�. In assessing the impact of climate change on the

polar sea ice covers, current satellites and algorithms can predict ice extent, but the thickness distribution remains an elusive, yet most

important feature. In recent years, electromagnetic induction devices using low frequency waves have been deployed on ships, helicopters

and planes to obtain thickness data. Here we compare two sets of theoretical bounds to extensive outdoor tank and in situ field data on e�

at 50MHz taken in the Arctic and Antarctic. The sea ice is assumed to be a two phase composite of ice and brine with known constituent

permittivities. The first set of bounds assumes only knowledge of the brine volume fraction or porosity, and the second set further

assumes statistical isotropy of the microstructure. We obtain excellent agreement between theory and experiment, and are able to observe

the apparent violation of the isotropic bounds as the vertically oriented microstructure becomes increasingly connected for higher

porosities. Moreover, these bounds are inverted to obtain estimates of the porosity from the measurements of e�. We find that the

temporal variations of the reconstructed porosity, which is directly related to temperature, closely follow the actual behavior.

r 2007 Elsevier B.V. All rights reserved.

PACS: 92.10.Rw; 77.84.Lf; 77.22.Ch; 02.30.Zz; 92.70.Mn; 93.85.Jk; 93.30.Li; 93.30.Ca

Keywords: Sea ice; Complex permittivity; Bounds; Microstructural inversion; Sea ice thickness
1. Introduction

Covering approximately 7–10% of the earth’s ocean
surface, sea ice is an important component of the global
climate system and is an indicator of climatic change [1].
During the winter months in the Arctic and Antarctic, the
extensive sea ice packs serve as the boundary layer which
mediates the exchange of heat, moisture, and momentum
between the atmosphere and ocean [2,3]. In fact, the sea ice
pack surrounding Antarctica during winter has greater
e front matter r 2007 Elsevier B.V. All rights reserved.
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surface area than the continent itself. The vast expanses
of sea ice also serve as a habitat for rich microbial
communities which live in the brine microstructure of
porous sea ice [2,4,5]. These algal and bacterial commu-
nities are primary providers for the complex food webs in
the polar oceans.
Because of the global nature of monitoring the earth’s

sea ice packs, large scale information is usually obtained
via remote sensing from platforms on satellites, aircraft
and ships [6–10]. The physics underlying the problem of
remotely sensing sea ice concerns the interaction of an
electromagnetic wave with a polycrystalline composite of
four components: pure ice, brine inclusions, air pockets,
and solid salt deposits [11,12]. For this study we will ignore
the air and solid salt phases and view sea ice as a two phase
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composite of ice with brine inclusions. One of the grand
challenges of sea ice remote sensing is to accurately recover
the thickness distribution of the pack. Assessing the impact
of global warming on the polar regions involves monitor-
ing not only the ice extent, but the ice volume, which
requires knowledge of ice thickness. Recently there has
been increasing interest in using low frequency electro-
magnetic induction devices to estimate sea ice thickness
[13]. Electromagnetic fields with wavelengths on the scale
of meters are used to probe the air–ice–ocean interface and
estimate the thickness of the ice layer. Since typical sizes of
the brine inclusions are on the sub-millimeter scale, the
electromagnetic behavior of the sea ice can be treated using
the quasistatic approximation. Then the sea ice can be
characterized electromagnetically via the effective complex
permittivity tensor e�. There has been considerable work in
the past on estimating and bounding e� for sea ice,
particularly in the microwave region [8,14–21].

Here, we compare theoretical bounds on the principal
components of e� with extensive outdoor tank and in situ

data on e� at 50MHz, consisting of thousands of
measurements, taken with a capacitance probe [22]. In
particular, we compare the low frequency measurements
with the Bergman–Milton bounds [23–25] for the complex
permittivity of a two phase composite with known
constituent permittivities �1 and �2 and volume fractions
p1 and p2. There are two types of these bounds which we
employ. The first type assumes only the permittivity and
volume fraction information, and are known as the
complex elementary or arithmetic and harmonic mean
bounds. The second type further assumes statistical
isotropy in the composite microstructure, and are known
as the complex Hashin–Shtrikman bounds [26].

All the data considered are situated well inside the
complex elementary bounds. However, there are naturally
occurring anisotropies in the brine microstructure, such as
its preferred vertical orientation [11,12], which becomes
more pronounced above the critical brine volume fraction
of about 5% where the brine phase percolates [27]. Also,
preferred azimuthal alignment of the c-axes of individual
crystals within the horizontal plane has long been observed
in the Arctic [28], and was present in the Arctic sea ice
whose permittivity was measured in one of the data sets
considered here [22]. Preferred c-axis alignment is attended
by anistropy in the brine microstructure, and anisotropic
behavior of the complex permittivity within the horizontal
plane [16]. Comparing the different data sets with the
isotropic bounds yields interesting and useful insights
about sea ice microstructure, its evolution with tempera-
ture, and its electromagnetic properties. We also invert the
complex bounds to obtain rigorous estimates of the brine
volume fraction from the permittivity data [9,29–31].

2. Forward bounds for the effective complex permittivity

Let us briefly describe the analytic continuation method
for studying the effective properties of composite materials
[20,23–25]. Let �ðx;oÞ be a spatially stationary random
field in x 2 Rd and o 2 O, where O is the set of all
realizations of the random medium, which represents the
local values of the complex permittivity. We assume �ðx;oÞ
for 50MHz takes the values �1 ¼ 63:3þ i1930 in brine and
�2 ¼ 3:06 in ice [22], and write �ðx;oÞ ¼ �1w1ðx;oÞ þ
�2w2ðx;oÞ; where wj is the characteristic function of medium
j ¼ 1; 2, which equals one for all realizations o 2 O having
medium j at x, and equals zero otherwise. Let Eðx;oÞ
and Dðx;oÞ be the stationary random electric and
displacement fields satisfying the constitutive law Dðx;oÞ ¼
�ðx;oÞEðx;oÞ and the equations

r �Dðx;oÞ ¼ 0; r� Eðx;oÞ ¼ 0, (1)

with hEðx;oÞi ¼ ek; where ek is a unit vector in the kth
direction for some k ¼ 1; . . . ; d, and h�i means an ensemble
average over O or spatial average over all of Rd .
The effective complex permittivity tensor e� is defined by

hDi ¼ e�hEi. (2)

For simplicity, we focus on one diagonal coefficient
�� ¼ ��kk. Due to the homogeneity of effective parameters,
��ðl�1; l�2Þ ¼ l��ð�1; �2Þ, �� depends only on the ratio
h ¼ �1=�2, and we define mðhÞ ¼ ��=�2. The two main
properties of mðhÞ are that it is analytic off ð�1; 0� in the
h-plane, and that it maps the upper half plane to the upper
half plane [25,32], so that it is an example of a Herglotz, or
Stieltjes function. The key step in the analytic continuation
method is obtaining an integral representation for ��.
It is more convenient to work with the function [32]

F ðsÞ ¼ 1�mðhÞ, where s ¼ 1=ð1� hÞ, which is analytic off
½0; 1� in the s-plane. It was proven [25,32] that F ðsÞ has the
representation

F ðsÞ ¼

Z 1

0

dmðzÞ
s� z

; se½0; 1�, (3)

where m is a positive measure on ½0; 1�. Formula (3)
separates the parameter information in s from information
about the mixture geometry contained in m, a spectral
measure of the operator Gw1, where G ¼ rð�DÞ�1r�.
Statistical assumptions about the geometry are incorpo-

rated into m via its moments mn ¼
R 1
0 zn dmðzÞ, which can be

calculated from the correlation functions of the random
medium, with mn ¼ ð�1Þ

n
hw1½ðGw1Þ

nek� � eki. For the com-
plex elementary bounds it is assumed that we know only
m0 ¼ p1, and if the medium is statistically isotropic we
know m1 ¼ p1p2=d as well.
Bounds on ��, or F ðsÞ, are obtained by fixing s in Eq. (3),

varying over admissible measures m (or admissible geome-
tries), such as those that satisfy only m0 ¼ p1, and finding
the corresponding range of values of F ðsÞ in the complex
plane. Two types of bounds on �� are obtained. The first
bound R1 assumes only that the relative volume fractions
p1 and p2 ¼ 1� p1 of the ice and brine are known, with
m0 ¼ p1 satisfied. In this case, the admissible set of
measures forms a compact, convex set M0. Since F is a
linear functional of m, the extreme values of F are attained
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by extreme points of M0, which are the Dirac point
measures p1dz. The values of F lie inside the region R1

bounded by circular arcs, one of which is parameterized in
the F-plane by

C1ðzÞ ¼
p1

s� z
; 0pzpp2. (4)

To display the other arc, we use the auxiliary function [33]
EðsÞ ¼ 1� �1=��, which is a Herglotz function like F ðsÞ,
analytic off ½0; 1�. Then in the E-plane, we can parameterize
the other circular boundary of R1 by

Ĉ1ðzÞ ¼
p2

s� z
; 0pzpp1. (5)

In the common ��-plane, R1 has vertices V1 ¼ �1=ð1�
Ĉ1ð0ÞÞ ¼ ðp1=�1 þ p2=�2Þ

�1 and W 1 ¼ �2ð1� C1ð0ÞÞ ¼ p1�1
þp2�2. This region collapses to the interval ðp1=�1 þ
p2=�2Þ

�1p��pp1�1 þ p2�2 when �1 and �2 are real, which
are the arithmetic (upper) and harmonic (lower) mean
bounds. The complex elementary bounds in Eqs. (4) and
(5) are optimal and can be attained by coated ellipsoidal
geometries as the aspect ratio varies.

If the material is further assumed to be statistically
isotropic, i.e., ��ik ¼ �

�dik, then m1 ¼ p1p2=d must be
satisfied as well. A convenient way of including this
information [33] is to use the function F1ðsÞ ¼

1=p1 � 1=ðsF ðsÞÞ, which is, again, a Herglotz function with
a representation similar to Eq. (3) with a measure m1. The
constraint m1 ¼ p1p2=d on F ðsÞ is then transformed
to a restriction of only the mass, or zeroth moment m10 of
m1, with m10 ¼ p2=p1d. Applying the same procedure as
for R1 yields a region R2, whose boundaries are again
circular arcs. In the F-plane, one of these arcs is
parameterized by

C2ðzÞ ¼
p1ðs� zÞ

sðs� z� p2=dÞ
; 0pzpðd � 1Þ=d. (6)

In the E-plane, the other arc is parameterized by

Ĉ2ðzÞ ¼
p2ðs� zÞ

sðs� z� p1ðd � 1Þ=dÞ
; 0pzp1=d. (7)

In the ��-plane, R2 has vertices V2 ¼ �2ð1� C2ð0ÞÞ and
W 2 ¼ �1=ð1� Ĉ2ð0ÞÞ, and collapses to the intervals

��X�2 þ p1

�
1

�1 � �2
þ

p2

d�2

� �
, (8)

��p�1 þ p2

�
1

�2 � �1
þ

p1

d�1

� �
, (9)

when �1 and �2 are real with �1X�2; which are the Hashin-
Shtrikman bounds [26]. When �1p�2; the sequence of
inequalities is reversed. The vertices V 2 and W 2 (which
correspond to the expressions in (8)), are attained by the
Hashin-Shtrikman coated sphere geometries.
3. Inverse bounds for structural parameters

The objective of inverse bounds is to use data about the
electromagnetic response of sea ice to recover information
about its structural parameters, in particular its brine
volume fraction p1 ¼ f, or porosity. The porosity f can be
written as a function of the bulk ice salinity S and
temperature T, as derived by semi-empirical approaches
from the sea ice phase relations [11,12]. Given salinity
information, for example, inverting for porosity yields
temperature information. The inverse method [9,29–31] we
use here yields intervals of uncertainty for the brine volume
fraction f. Given an observed value of the complex
permittivity ��, f is increased until the value of �� touches
one boundary of the region R1 described in the previous
section, and is then decreased until the value touches the
other boundary. This procedure gives a range of values
f‘1pfpfu

1, with

f‘1 ¼ jf j
2 ImðsÞ

Imðf Þ
; fu

1 ¼ 1�
jgj2ImðtÞ

ImðgÞ
, (10)

where f is the known value of F ðsÞ and g is the known value
of GðtÞ ¼ 1� ��=�1 with t ¼ 1� s. If the material is further
assumed to be statistically isotropic, second order inverse
bounds f‘2pfpfu

2 can be obtained as well [29].

4. Comparison of theoretical bounds with measurements

Now we compare three extensive sets of data [22] on the
complex permittivity of sea ice with the forward and
inverse bounds. Measurements were taken in land-fast ice
in the Chukchi Sea near Barrow, Alaska (14,004 data
points) and in McMurdo Sound, Antarctica (2382 data
points) and in artificial, young sea ice in an outdoor tank in
Fairbanks, Alaska (6403 data points). The permittivity was
measured by deploying an array of Stevens Water
Monitoring Systems Hydraprobes. Each Hydraprobe is a
coaxial probe with a central tine surrounded by three
equally spaced outer tines, aligned horizontally, as shown
in the photo inset in Fig. 1. The three outer tines are held at
ground potential, and a voltage is applied to the central
tine at 50MHz frequency, resulting in a circularly polarized
wave with electric field predominantly in the plane
perpendicular to the tines. The complex permittivity
measured by the probe represents an average of the
components of e� in this plane. The porosities have been
calculated from the measured in situ temperature and bulk
salinity, via the known phase relations for standard sea ice
[11,12], with details provided in Ref. [22]. The bulk ice
salinity has been measured at regular intervals, with
interpolation between these measurements in time based
on a desalination model [22].
In Fig. 1 the full data set for the Fairbanks ice tank

experiment is displayed along with a series of regions
R1ðfÞ, for the indicated values of the brine porosity f.
The data have been grouped into intervals of porosity,
½0:02; 0:03�, ½0:03; 0:04�; . . . ; ½0:08; 0:09�, with a different
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Fig. 1. Comparison of data on the complex permittivity at 50MHz of sea ice grown in an ice tank with the elementary bounds. Data in a brine porosity

interval signified by a given color lies inside the region of the same color. The data colored grey have porosities in the interval ½0:049; 0:051�. The
capacitance probe is shown on the right.
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violated as brine volume increases in this case.

A. Gully et al. / Physica B 394 (2007) 357–362360
color for each interval. The corresponding elementary
bound has the same color. All the data in each interval
lie inside the corresponding bound. The data marked with
the grey color lies in the porosity interval ½0:049; 0:051�,
which corresponds to the percolation threshold of
about 5% conjectured in Ref. [27]. In Fig. 2 we display a
series of comparisons of data in the porosity intervals
shown, with corresponding elementary bounds R1ðfmaxÞ

and the isotropic bounds R2ðfmaxÞ, where fmax is the
largest porosity in each interval. The development
of anisotropy in the dielectric measurements, or violation
of the isotropic bounds, as brine volume increases
through 5%, is consistent with an increasingly connected
and vertically elongated brine microstructure. This
behavior in the data would likely be accentuated if the
electric field were oriented predominantly in the vertical
direction.
In Fig. 3(a) and (b), two subsets of the Barrow data set,
with porosities in the indicated intervals, are compared
with the elementary and isotropic bounds for the middle
porosity value within each interval. All the data over the
entire range of porosities ½0:05; 0:15� lie within both regions.
Given that the entire range of porosities exceeds the critical
value of 5%, one might expect the data to display marked
anisotropy and perhaps violate the isotropic bound.
However, in the fast-ice where the probes were deployed,
there was a preferred azimuthal c-axis orientation within
the horizontal plane, paralleling the predominant current
direction along the shore, as in Ref. [28]. In such cases, it
has been shown [16] how the permittivity in the horizontal
plane, particularly at low frequencies, can be strongly
enhanced in the direction perpendicular to the preferred
c-axis direction, due to alignment of the brine micro-
structure. The probes in the experiment were aligned so



ARTICLE IN PRESS

120

100

80

60

40

20

0

0 10 20 30 40 50 60 70

200

150

100

50

0

0 20 40 60 80 100 120

80

60

40

20

0

0 10 20 30 40 50

R1

R2

R1

R2

R1

R2

[0.037,0.044]

McMurdo

[0.01,0.0125]

Barrow

[0.05,0.075]

Barrow

Fig. 3. In (a) and (b), complex permittivity data taken in the Chukchi Sea off Barrow, Alaska, for porosities in the indicated ranges, fall within both the

elementary and isotropic bounds. In (c), permittivity data taken in McMurdo Sound, Antarctica over the indicated porosity interval, also fall within both

bounds.

0.1

0.08

0.06

0.04

0.02

0
85 90 95 100

day of year day of year

Po
ro

si
ty

Po
ro

si
ty

φ

φ

φ1
l

φv
l

φ2
l

60 80 100 120 140 160

0.14

012

0.1

0.08

0.06

0.04

0.02

0

Fig. 4. Comparison of the actual brine porosity f with time to the inverse lower bounds, for the ice tank data in (a) and for the Barrow data in (b).

A. Gully et al. / Physica B 394 (2007) 357–362 361
that the tines were parallel to the preferred c-axis direction,
with the electric field in the perpendicular, vertical plane.
Thus, with alignment and elongation of the brine micro-
structure in both the vertical and horizontal directions
within this plane, the data appears isotropic for this specific
experimental configuration, and lies within the isotropic
bounds. In Fig. 3(c), all the McMurdo data, with porosities
in a tight range less than 5%, lie inside the elementary and
isotropic bounds.

In Fig. 4(a), the actual brine porosity fðtÞ as a function
of time t for the ice tank experiment is compared with
the lower inverse bound f‘1. Due to the high contrast
in the materials, the corresponding upper bound is
quite large and currently provides little information.
We see that the actual data lies above the lower bound,
and that the variations in the reconstructed lower
bound follow the variations in the actual porosity. In
Fig. 4(b), the actual brine porosity for the Barrow
data is compared with the lower inverse bounds f‘1
and f‘2. Again, the inverse bounds are obeyed, and the
variations in fðtÞ are reflected in the behavior of the
reconstructed functions.
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5. Conclusions

We have compared extensive data sets on the complex
permittivity of artificial and natural sea ice at 50MHz with
the Bergman–Milton bounds, and in general obtained
excellent agreement. Comparison of the data with the
isotropic forward bounds, in particular, and observing the
development of possible violations of these bounds, serves
almost as an inverse method for recovering interesting
information about the microstructure. Finally, we inverted
the permittivity data to obtain bounds on the brine
porosity, again with good agreement. The close correlation
between the time dependence of the actual brine porosity
and the reconstructed bounds suggests that by finding
tighter inverse bounds one could very closely reconstruct
the actual brine porosity via capacitance measurements.
We expect that these findings will aid in the recovery of ice
type and property information from remote sensing and
nondestructive, in situ measurements, potentially contri-
buting to the indirect derivation of ice thickness information.
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