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Abstract—nverse scattering algorithms for reconstructing the dimensions, based on layer stripping and nonlinear opti-
physical properties of sea ice from scattered electromagnetic field mization, have been obtained and successfully applied to a
data are presented. The development of these algorithms has (lossless) laboratory system. In one dimension, causality has
advanced the theory of remote sensing, particularly in the mi- been imposed to obtain stability of the solution and layer
crowave region, and has the potential to form the basis for a new thicknesses can be obtained from the recovered dielectric
generation of techniques for recovering sea ice properties, such profile, or directly from the reflection data through a
as ice thickness, a parameter of geophysical and climatological nonlinear generalization of the Paley—Wiener theorem in
importance. Moreover, the analysis underlying the algorithms Fourier analysis.
has led to significant advances in the mathematical theory of 2) When the wavelength is much larger than the microstruc-
inverse problems. In particular, the principal results include the tural scale, the above algorithms reconstruct a profile of the
following. effective complex permittivity of the sea ice, a composite of

1) Inverse algorithms for reconstructing the complex per- pure ice with random brine and air inclusions. A theory

of inverse homogenization has been developed, which in
this quasistatic regime, further inverts the reconstructed
permittivities for microstructural information beyond the
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on sea ice. While there is a substantial body of existirthe inverse scattering problem. More recently, much of the
work on forward modeling of electromagnetic scattering arattivity has been driven by the central role that electromagnetic
propagation in sea ice [107], nevertheless, the applicationafd acoustic inverse scattering play in such technologically
forward theory to the inversion of sea ice parameters has beeportant problems as radar, sonar, geophysical exploration,
somewhat empirical anad hoc In the forward, or direct, prob- medical imaging and tomography, nondestructive testing, and
lem, the electromagnetic scattering properties of a multilayemote sensing [22], [48]. From a theoretical standpoint,
random medium, such as the sea ice system, are calculdteadrse problems are difficult because not only are they non-
based on knowledge of its local complex permittivitix), linear, but they are also “ill-posed.” In 1923, Hadamard [45]
which takes a wide range of values in the principal constitueritdroduced the concept of well-posedproblem, originating
of the sea ice system: pure ice, air, brine, and sea water. In ften the philosophy that a mathematical model of a physical
corresponding inverse problem, we wish to obtain informatiqgeroblem should have the properties of existence, uniqueness,
about e(x) and the sea ice characteristics from knowledgend stability of the solution [54]. If one of these properties
of the far-field scattering properties. Electromagnetic inversails to hold, the problem is said to b#-posed While the
scattering theory [13], [22], [48], [54] has been developefdrward electromagnetic scattering problem is well-posed, the
to address the fundamental problem of reconstructing therresponding inverse problem is ill-posed, which is a general
parameters of a complex medium from scattering data.  feature of many inverse problems. In particular, given enough
Here we report on the first systematic effort to use such idesattering data, often the existence and uniqueness of solutions
to develop inverse scattering algorithms for reconstructing sesinverse problems can be forced by enlarging or reducing the
ice physical properties from data on scattered electromagnetidution space. However, in the inverse scattering problem,
fields and to compare the reconstructions with experimentatge changes in the medium can correspond to very small
data. This effort has led to significant advances in invershanges in the measured data. Because of this, reconstruction
scattering theory itself, as well as the successful recoveryatgorithms tend to be unstable, and much effort in this field
some circumstances of important sea ice parameters, suchieamlves around obtaining algorithms that are stable, as we
ice thickness, brine volume, and geometry. The recovery of s&@all see below.
ice thickness for the case of thin ice, as is considered here, iShe main techniques for dealing with inverse problems
particularly significant. Heat transfer in winter from the oceaj22], [31], [54], [78] include the following: 1) optimization,
to the atmosphere can be one or two orders of magnitule linearization, and 3) continuation methods, such as layer
greater through thin ice cover than through thick multiyeatripping and successive linearization. Optimization methods,
ice [67]. Thickness information on thin ice is thus essentiah which parameters describing the reconstructed medium
in heat budget calculations for the polar regions, as well age optimized to minimize the error between predicted and
in other considerations discussed below. The inverse modeisasured scattering data, have the advantage of being robust
considered here, which yield such reconstructions, are based broadly applicable; their disadvantage is that they tend to
on the forward models presented in [41], and this paper i¢ computationally intensive. Linearization is the method of
a continuation of [41]. More background on the interactioohoice for a problem that is “close” in some sense to a known
of electromagnetic waves with sea ice, remote sensing, amte. For example, the weak scattering, or high-energy situation
the Office of Naval Research Sea Ice Electromagnetics Awecessary for the Born approximation, is “close” to the case
celerated Research Initiative (ARI), which led to the presenith no scatterer. Continuation methods exhibit different ad-
results, can be found. vantages and disadvantages. Layer-stripping methods involve,
As discussed in [41], there is a vast literature on the forwaid one way or another, solving for the index of refraction
electromagnetic scattering problem for general inhomogenea@isprogressively increasing depths in the reflecting medium.
media extending back to the 1800's [75], [97]. In contraskn this manner, the medium is mathematically stripped away,
work on the inverse scattering problem has only recentlgtyer by layer, and the medium parameters are found in the
progressed from a collection aid hoctechniques with little process. Some forms of layer stripping are fast but unstable.
rigorous mathematical basis, to a blossoming field of inten&€gher continuation methods are more stable but tend to be
activity, with the beginnings of a mathematical foundationomputationally intensive.
[22]. Much of the early work on inverse scattering took place An issue in inverse scattering theory that is particularly
in the context of quantum mechanics [48], motivated by Rutheelevant to the reconstruction of sea ice features is resolution.
ford’s efforts [84] to reveal the internal structure of atoms byhe local complex permittivitye(x) of the sea ice system
firing energetic particles at them. This work culminated in thexhibits variations over many length scales. For exangie)
discovery of the atomic nucleus and prompted the developmeaties dramatically on a submillimeter scalexamoves from
of the quantum theory and Sduinger's wave equation. pure ice into a brine inclusion. When the wavelength is much
Inverse scattering theory for the Soédinger equation becamelarger than the microstructural scale, the wave cannot resolve
a subject of paramount importance. Eventually, Born [@he fine structure and it “sees” an effective, homogenized
showed that if the scattering interaction was sufficiently weakjedium. In the context of inverse scattering theory, the
there was a simple relationship between the scattered fieddtonstructed permittivity will then be the effective complex
and the scattering potential. The Born approximation waermittivity ¢* for sea ice, which is considered at length in
able to verify Rutherford’s classical solution in the high{41]. This reconstructed effective permittivity will itself likely
energy limit and provided the first linearized solution twary on a larger scale throughout the ice sheet according to,
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for example, variations in brine volume with depth. In the transfer—thermodynamic sea ice model, neural network
case of sea ice, it is quite desirable to be able to further inversion of an analytic wave theory model, and reflec-
invert the reconstructed effective complex permittivity data  tivity inversion. The use of proxy indicators of sea ice
to obtain detailed information on the nature of the brine and  thickness has also been explored.

air microstructure. Such characteristics are closely connecte®) A rigorous theory of inverse homogenization in the
to the fluid and thermal transport properties of the sea ice as quasistatic regime, which has produced an accurate algo-
well as the distinction between different ice types, such as rithm for reconstructing the brine volume of sea ice from
first year and multiyear, or frazil and columnar. In [41], we measurements of the effective complex permittivity. The
dealt with the forward homogenization problem of how the algorithm is based on inversion of a series of bounds
microstructure determines’. Here we develop a theory of on the complex permittivity of sea ice, which in turn
inverse homogenizatioiin which data on homogenized coef- yields bounds on microstructural parameters, such as
ficients of a composite medium, such as the effective complex brine volume and inclusion separation.

permittivity ¢* of sea ice, are inverted to obtain information on The paper is organized as follows. In Section I, we present
the microstructure, or the local complex permittivitix). In  rigorous inverse scattering theory for the Helmholtz equa-
this way, inverse scattering theory can be used in conjunctiggn and the algorithms that reconstruct permittivity profiles.
with inverse homogenization theory to recover information o Section Ill, we consider rigorous inverse homogenization
fine details well beyond the resolution of the wave. Our theoglieory that further inverts these reconstructed permittivities
applies at present to the quasistatic regime discussed in defgil microstructural information. Inverse algorithms designed
in [41], in which scattering from individual brine inclusions isto recover sea ice thickness are presented in Section IV, and
neglected. The quasistatic assumption, which is certainly natsection V, we consider a sea ice classification algorithm.
valid throughout the microwave region, nevertheless providesThe main results are summarized as follows. In
a good approximation for the lower frequency part, such &ection 1I-A, we first consider the Helmholtz (2.2) with
at C-band. an index of refractiom(z) = \/e(z) (neglecting dissipation),
varying only in the vertical or depth variable with n(z)
constant forz > 0 (air). It has long been known that the
reflection coefficientR(w), where w is angular frequency,
In [41], we noted that the main goals of the ARI were t@niquely determinesn(z). However, all previous layer-
improve our understanding of how the physical properties efripping algorithms for continuous or discretg(~) rely
sea ice determine its electromagnetic behavior and, in turn,d@ trace formulas, and (with one major exception [14])
use this knowledge to develop and test inverse algorithms f@ese formulas are not stable enough to permit rigorous
recovering sea ice parameters from observed electromagngf@lysis of convergence and stability. By basing the technique
data. In this paper, we show how the forward scatteringstead on the nonlinear generalization of the Plancherel
models considered in [41] have been used to develop sufBorem discussed in [41], the first mathematically complete
inverse algorithms. From an inverse modeling perspective, Gdfmulation of a stable layer-stripping algorithm for a
principal results include the following. continuous mediumn(z) has been obtained [94]. Indeed,
1) Stable inverse algorithms for the Helmholtz equation iboth convergence of the algorithm and well-posedness of the
one dimension that have accurately reconstructed ré¢edrward and) inverse scattering problem have been proven.
permittivity profiles (neglecting dissipation) from reflec-Moreover, the stability is achieved by imposing causality, at
tion data. The algorithms are based on a new, causallyery depth, on the estimate of the depth-varying reflection
stabilized layer-stripping technique, arising from a norcoefficient. The resulting method is surprisingly stable under
linear generalization of the Plancherel equality in Fourigroisy perturbations, with reasonable reconstructions, even
analysis, and nonlinear optimization of parameters vigith significant noise in the data. The deep connection of
the Ribere—Polack algorithm. Layer thicknesses can bee approach in [94] to Fourier analysis has also led to a
deduced either from the reconstructed permittivity praionlinear analog of the Paley—Wiener theorem [110]. This
file or directly from the reflection data via an analoglassical theorem relates the growth of the transform in the
of the Paley—Wiener theorem in Fourier analysis. Aomplex frequency domain to the width of the support of the
layer-stripping algorithm to recover the complex perfunction in the real-time (or spatial) domain. The nonlinear
mittivity for the Helmholtz equation in higher dimen-analog of this theorem, which requires only the modulus, but
sions (including dissipation) has also been developebt the phase of the reflection data, yields the thickness of
Through a geometrical optics-based technique, the algbe reflecting layer, albeit in a depth coordinate scaled by
rithm has accurately reconstructed surface permittivitthe travel time through the layer, so that an estimate of the
yet at present is unstable for reconstruction at depth. effective permittivity of the medium is required to obtain
2) Stable inverse algorithms that have accurately recaie actual thickness. In the case of sea ice, even a rough
structed thickness information on thin sea ice frorguess of the effective permittivity provides physical thickness
scattering data. The algorithms employ a variety adstimates with accuracies of about 10%.
methods: inversion of parameters from time-series scat-Subsequently, in Section 1I-B, we consider an optimiza-
tering data by the Levenberg—Marquardt nonlinear leasten approach to inverting for.(z) in the one-dimensional
squares optimization algorithm coupled with a radiativél-D) Helmholtz equation, neglecting dissipation, developed

B. Summary of Main Results
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by Borup and Johnson (which is published here for the firBbor many known values of", these inverse bounds yield an
time). The medium is assumed to consistdflayers, and the accurate algorithm for recovering microstructural parameters.
forward scattering model used for comparison to the scatteriibis algorithm has been applied to C-band measurements of
data is provided by the exact scattering solution forén the effective complex permittivity of laboratory grown sea
layer slab [71]. The least-squares functional measuring tlee, and it has accurately reconstructed brine volume data.
error between data calculated from the model for a givénformation on brine volume and connectedness is important
discrete permittivity profile and the actual scattering data is understanding the transport properties of sea ice, which
minimized using the Ribere—Polack algorithm [81]. Optimaindergo a fundamental transition at the critical brine volume
permittivity parameters describing(z) are then obtained. The fraction p. ~ 5% for percolation [40]. This transition in the
method has been accurately compared with data taken otramsport properties plays a significant role in a number of
layered medium consisting of slabs of drywall and polystyremeocesses in the geophysics [1], [62] and biology [33] of sea
foam on top of sand. The causally stabilized layer-strippirige, particularly in the Antarctic. Inversion for such detailed
algorithm in Section II-A has also been applied with apparenticrostructural information offers the prospect of remotely
success to this same data set. monitoring these processes.

A layer-stripping algorithm that reconstructs the complex The thickness distribution of sea ice plays a key role in the
permittivity e(x) = ¢,./¢p + i0/(weg), Wheree,. is the (real) geophysics of the polar regions [102]. Together with the ice
permittivity, ¢, is the permittivity of free space, and is extent, it defines the response of sea ice to climatic changes,
the conductivity in a perturbed dissipative half space [16], and together with ice velocity, it defines the mass flux of
presented in Section II-C. The algorithm involves two stepsea ice. By itself, the thickness distribution is a quantity
first finding the medium parameters on the surface and theh central importance in ocean-atmosphere heat exchange.
synthesizing the data on a subsurface. A method, basedlbis particularly important to understand the details of the
geometrical optics, which reconstructs the surface parametdistribution for thin ice, such as in leads, which permit
by taking into account the change in pulse shape when tlagge heat fluxes. Net heat flux through thin ice occupying
pulse is reflected from a dissipative medium, is developed.relatively small aereal fraction is significantly larger than
In particular, geometrical optics predicts that an incidemiirough thick, multiyear ice [67], [68]. While recovery of the
delta function will reflect as a delta function plus a seriesea ice thickness distribution is of clear significance, obtaining
of terms with increasing smoothness. The coefficient of thseich information on a large scale has remained a challenging
second-order term can be used to obtain the conductivity. pooblem. Submarine sonar profiling has provided an accurate
synthesize subsurface data, the scattering data can be wgdettacterization of the thickness distribution over some areas
to obtain the Dirichlet-to-Neumann map, and then this mag the Arctic basin, yet this method has serious limitations
can be used to obtain a Riccati equation for the subsurfamfespatial coverage and temporal resolution [102]. Remote
data, which is then solved iteratively, beginning with theensing can overcome these limitations, but the success of
surface parameters constructed first. The reconstructiontios approach has been somewhat limited. Analysis of active
surface parameters gives good results on simulated steppatd passive microwave signatures of sea ice, and how they
frequency radar data, but the layer-stripping algorithm is depend on thickness, has shed some light on this problem
present unstable. [43], [46], [102], [108]. However, the basic question of how

In Section Ill, the question of how to recover the mito directly reconstruct the thickness of a complex, dynamic
crostructure of a composite material, such as sea ice, frenedium, such as sea ice, from electromagnetic scattering data
measurements of its effective complex permittivigg in  has remained, from an inverse theoretic point of view, largely
the quasistatic regime is rigorously addressed. In [41], wmaddressed. In Section IV, we present inverse scattering
presented a series of forward bounds ¢n which grow algorithms that can reconstruct sea ice thickness for the
tighter as more microstructural information is known [36]important thin ice case. Along with the methods discussed in
[39], [85]. These bounds are based on a Stieltjes integf@éction Il, namely, the nonlinear Paley—Wiener theorem and
representation for* involving a spectral measure, which recovery from the dielectric profile, these algorithms provide
depends only on the geometry of the microstructure. A ththe first concerted effort at directly attacking the thickness
orem is presented which establishes that, if the values retconstruction problem.

e* are known along some arc in the complex plane, which First, in Section IV-A, an algorithm, based on radiative
could be a small interval along the real axis, the measuransfer theory, to invert for ice thickness from time-series
i can be uniquely recovered [18]. Knowing yields all scattering data, is presented [86], [87]. The algorithm uses a
the statistical properties of the microstructure, and from tlparametric estimation approach in which the radiative transfer
point of view of effective properties, completely determinesquation is used as the direct scattering model to calculate
the microstructure. However, as may be expected from dine backscattering signatures from the sea ice. The Lev-
discussion of inverse problems, this problem is ill-posed amtberg—Marquardt method [65] is employed to retrieve ice
requires regularization for stability of the solution. Neverthickness iteratively. Additional information provided by the
theless, for a single-known value ef, the forward bounds saline ice thermodynamics is used to constrain the electro-
can be inverted to obtain rigorous bounds on microstructuralagnetic inverse problem to achieve a reasonably accurate
parameters, such as brine volume [19] and inclusion separatienonstruction. The algorithm is applied to reconstruct the
[77], which is related to connectedness of the brine phaggowth of a sheet of thin saline ice by using C-band (with
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center frequency 5 GHz) polarimetric radar measuremerisportant sea ice parameters of geophysical, climatological,

taken sequentially in time, during the United States Colshd operational significance.

Regions Research and Engineering Laboratory, Hanover, NH,

'199:; Expzriment (CRRELEX'93). Agreement with the data Il. INVERSE SCATTERING THEORY

is obtained.

In Section 1V-B, the use of neural networks to invert for the ) ,FOR THE HELMHOLTZ E_QUATION )

thickness of young sea ice with multifrequency polarimetri In th!s section, we formulate the inverse sc_atterlng problem

microwave data is demonstrated. The approach is to retri %th_e |_n_homogeneous Helmholtz _equatlon with local complex

the ice thickness by using the analytic wave theory model [4 ,erm|tt!V|ty €(x) an_d present algorithms that recon_strc(ot),

[72] to train the neural network to match measured data in t 3 partial mformgt!o_n_ about(x), su_ch as Iaye_r th|cknesse§

selection of the ice thickness. The multilayer random mediufli SUurface permittivities, from far-field scattering data. This

model used allows for the inclusion of surface and vqun%eCt.'on IS a continuation .Of [41, Section ”1' Eor completeness,

scattering, contributions from a slush layer, and roughnessv‘éﬁ include here.the basic setup and definitions.

the interfaces. There are several types of neural networks:rhe sea ice nverse sca_ltterlng problem can be modeled
a half-space problem iR¢, where measurements are

but here, the multil tron i d, with difip 2 T oS
b here, the muitayer percepiron I Used, with a modi de in the upper half-space, which is homogeneous and

backpropagation algorithm to improve the convergence r S . o
propag g P g &%nmssmatlve, while the lower half-space is inhomogeneous

and accuracy [49]. Interrelations among physical paramet N . .
governed by sea ice physics under typical Arctic wintee}nd dissipative. We consider an electromagnetic wave of a par-
ular frequency in such a medium (assumed nonmagnetic),

environmental conditions are utilized to restrict the solutiol\c time-h e electric field is ai PN
space to avoid extraneous solutions and shorten the requimgfse ime-harmonic electric field is given M(x,¢) =
X

—iwt d _ i _ H
computation time. The algorithm accurately retrieves thin i _)g ,xde f; ’fx - (xl’x?’xr;”) ,'[n dTrT 3, T te R, W'thl
thicknesses from polarimetric synthetic aperture radar (SA?‘%_ .W.f an f the requency in hertz. The relative compiex

rmittivity e(x) of the medium, assumed locally isotropic,

data taken in the Beaufort Sea, Antarctica. perm by e — . b In th
In Section IV-C, the relations between ice thickness arLa I?Nen ye = C.”/dCObJF “.f/_(wio)’ ?hs above. 1n the uppter
both the coherent and incoherent reflectivity properties of gl Space occupied by air= 1, With z€ro imaginary part.

layer of saline ice over saline water are considered. It is shkorh Ehe Iowetr Ealf spa%e occup|e(: byl Sea.'ci’] Show, t?nd tsea
that a new incoherent reflectivity along with the standa ater, (x) takes a wide range of values in the constituents.

coherent reflectivity are needed to explain reflectivity measur he electric fieldE(x, ¢) satisfies Maxwell's equations, or the

ments. For thicker ice, the coherency between the transmitt\{eeaCtor wave equation derived from them. For simplicity, we

and reflected field is lost and the reflectivities of VV- an§>>UMe that the medium is unchanging inthelirection, and

HH-polarizations become incoherent. The transition to th e consider the transverse electric (TE) polarization case with

type of behavior takes place when the ice thickness is betw n_ (0, £2,0) in the z direction. Under the time-harmonic

one and two wavelengths, and it is found that thickness Cgﬁsu.mptlon,u. = E satisfies the. Helmholtz equation with

be inverted directly from reflectivity measurements when e atially varying complex permittivity

thickness is over one wavelength. V2u(x) + ke(x)u(x) = 0 (2.1)
Proxy indicators of ice thickness are discussed in

Section IV-D. A remotely sensed proxy indicator is avherek is the free-space wavenumbkr= w,/ngeg = w/c,

characteristic, physical property, suite of physical propertigg is the magnetic permeability of free spaeés the velocity

that is tied to ice thickness, or some other characteristif light in free space, and the Laplaci&® is two-dimensional

and that has a measurable electromagnetic signature. In (@) in thex,; andz3 variables. It will be useful in (2.1) to

section, the use of surface roughness, dielectric propertiasite k%c = k?n? + ikm, wheren = /¢, /<o is the index of

and surface temperature are explored as proxy indicateg$raction andm = o+/po/eo.

for sea ice thickness. The inverse scattering problem for (2.1) consists of deter-
Finally, in Section V, we consider a classification schemmaining «(x) from the far-field pattern:., or, more precisely,

for sea ice types based on a special neural network knovom knowledge of the scattering operator that maps incident

as the fast-learning neural network [28], [63]. The scheme figlds to scattered fields. Existence and uniqueness of solutions

illustrated with a specific example using passive radiometiig the inverse scattering problem for (2.1) in various settings

data from the spaceborne SSM/I platform. After the originare discussed in [11], [12], [16], [21], [22], [54], [56], and

image is classified using an unsupervised method and {6€d]. Due to the often layered nature of the sea ice system,

identity of each class is known, the final classified image cave are particularly interested in (2.1) in the 1-D case with

be used as pseudoground truth for a supervised neural netwidekth variablez = x3. The inverse scattering problem in

classification scheme. Representative data from each class tisl case, including dissipation, with = n? + im/k, has

an associated class identification tag are dumped to a file debn studied by a number of authors. In particular, the papers

used to train the neural network. The trained network classifidrl], [12], [56], and [64] show that time-domain backscattered

can then be used for batch processing satellite or aircraft datata from a single incident plane wave is not enough data to

Eventually, it is hoped that such practical methods can bletermine bothw.? and m if »n? andm are smooth. In this

combined with the rather theoretical results and algorithnease, both reflected and transmitted data are needed. If, on

presented earlier in this paper, to systematize the inversiontio¢ other handn? and m have a jump discontinuity at the
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bottom, backscattered data do suffice to determine both. Thisired neglecting dissipation, is
because the reflected data from the discontinuity at the bottom >
provides information that is similar to transmission data. In the d7u
following section, we consider a new type of layer-stripping dz?
algorithm for solving the inverse scattering problem for thé&/e assume that differs from one only on the interval
Helmholtz equation in one dimension. (—o0,0), and that%\/iﬁ is square-integrable on that interval.

The auxiliary equation for the wave fieldx) = u(z(z)) as

a function of the depth variable(z) = f n(r)dr is

+ E*n?(2)u = 0. (2.2)

A. Inversion by Causally Stabilized Layer
Stripping in One Dimension v +av + kv =0 (2.3)

The term layer stripping applies to a variety of invers _ 1 dy _ .
scattering methods that involve the use of reflection data %erea(x) andy(z) = n(x()). Forz > 0, v(z, k)

— (=) dz
solve for the index of refraction at increasing depths in theay be written in the form
reflecting medium (i.e., at progressively greater distances from I o ke ik
: . . k)= — R(k 2.4
the level at which the observations are made). A “reflection vz, k) [ + Rk (2.4)

(k)
coefficient” at each depth is computed, which in physical

terms, is that reflection coefficient that would exist if we Werglh'(_:r_l “”'q“e'Y defines the reflgcnon coe_fﬂqeR(k). The

to replace all of the material above that depth with materigfiditional requirements that the time-domain impulse response
having a constant refractive index equal in value to that 8f ths reflecting medium be real and cfausal,kLe_.,Lzztthere
the actual refractive index value at that depth. If we take inf&" P€ nohresporllse .prlorr:o excr:tatmn, bORed_ ) = B(k), I
account no physics other than that inherent in the Helmhol® k on_t € r((a; ;X'S’ w er((ja t elo‘_’er"af ehnotes corr?plfex
equation, errors in refractive index estimates at shallow depﬁ*%njr]uQat'on ?n “( I) to exten ana ytically to the upr:]er a
lead to unphysical estimates of the reflection coefficient afl e complexk-plane. Equation (2.4) represents the wave
refractive index deeper in the medium. field above the reflecting medium in terms of reflected and

The essential element in causally stabilized layer strippifigcident plane waves. Inside the reflecting medium, we define

is that werequire, at every depth the estimate of the depth@ “depth-dependent reflection coefficient”

varying reflection coefficient correspond to a causal impulse 1—n(z, k)

response for the remaining reflecting material. It turns out riw.k) = 1+ n(x, k) (29)
that a simple enforcement for frequency-domain reflection
coefficients is sufficient to guarantee stability of our inversgheren = —2@* o thatr(0, k) = R(k) andr has the

solution in the presence of noise in the data. Moreoveghysical meér’%fr%%f a reflection coefficient [in the sense of
work to establish the method has lead to two theorens.4)] anywhere that = 0. The nonlinear Plancherel equality
that generalize theorems in standard Fourier analysis to gating the “energies” ofR(k) and o(x) [41], [93], [94] is
nonlinear inverse problem, that is, to the situation in whickiven by

multiple reflections in the reflecting medium are significant. - o

One of these theorems turns out to be useful in its own _/ log(1 — |R(K)[?) dk W/ ()P dz.  (2.6)

right as means of estimating the travel time thickness of a oo 4/

reflecting layer (and, if appropriate ancillary information about Direct computation using (2.3) and (2.5) leads to a Riccati

the permittivity is available, the physical thickness of the layer ; i ; oy
as well). These results have been established rigorously ?&uatlon for the depth-dependent reflection coefficient

the case of wave propagation in a system governed by the iz, k) = 2ikr(z, k) + 9[1 — 2z, k)] 2.7)
Helmholtz equation without loss and without discontinuities in 2
dielec.tric proper'Fi.es. Qomputational evidence shows, howevi?th the boundary condition * r(z,k) = 0. Using an
that S'“_"p'e mod|f|gat|oqs of the same resu!ts prowde_usefus tegrating factor to formally solve (2.7) yields an integral
approximate solutions in problems, including both dlelectngquation forr
jumps and loss typical of sea ice.
In the following, we first briefly recall the forward scattering +(z1,k) = (zo, k)e?*™*
problem from [41] and our analog, for the reflection problem, o aly) )
of the Plancherel equality in linear Fourier analysis. We —/ S y)T[l—T (y, k) dy.
then outline our causally stabilized layer-stripping algorithm, L
followed by our analog of the classical Paley—Wiener theorem,We solve the inverse problem via the following observation.
which relates the travel-time thickness of a reflecting laydfr we do not require that causality be satisfied, any choice
with finite physical thickness to a Fourier transform of af »(zo, k) and a(z) will produce anr(z1,k). If we insist
nonlinear function of the reflection data. We demonstrate thigat causality be satisfied, the previous statement still holds
utility of these results using laboratory data from a systeprovidedz; > x9, i.e., whenz, lies abover,. However, when
somewhat simpler than sea ice. x1 IS beneathz, i.e., z1 < xo, there is only one possible
The Helmholtz equation governing the time-harmonic wawehoice of a(x) that can combine with a causa{zg, k) to
field » in one dimension, assuming sources only at infinitgroduce a causal(z:, k). That is, when noncausal results are

lim

(2.8)
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excluded, one input (a causa{zy,k)) can only produce a Equations (2.14) and (2.15) form a pair of equations that we
unique pair of output$a(x), r(z1,k)) for z1 < zo [94]. can solve iteratively at each depth step to estimate the unique
While previous layer-stripping methods deduce@:) via causal paira(z),r(x1, k).
an additionaltrace formula(which always relied on data in  Our iterative solution proceeds as follows. We approximate
the high-frequency limit), we deduegx) by simply requiring the »? terms in the integrands of (2.14) and (2.15) by the
that (x, k) correspond to a causal impulse response (as gmoductr(xg, k)r(z1, k), thus obtaining a set of (approximate)
true physical solution must). To accomplish this, we firs§quations for- at the discrete depths, andz;. We implement
define a pair of projection operators that, when applied totige projection operators in terms of Hilbert transforms by using
frequency-domain function, project out its causal and acausahumerical algorithm given by [105]. Finally, we choose a

parts. sufficiently small depth step to allow approximation @fz)
Define Fourier transformation of a function efto £-space by a constant (which is unknowa priori); we estimate the
by constant initially fromr(z, k) alone, plug the estimate into
R s the system of equations to produce an estimate ef, %) and
J(k) = F[f ()] = Lm ¢ (=) dz (2.9) 3 refined estimate of the constant, and so on until we obtain

a pair a(z),r(x1, k) that satisfy the (discretized) causality-
enforcing equations to within a satisfactory tolerance. We then
user(xi,k) as the new “data” for the next depth step into
the medium. We proceed into the medium until the energy

Define Hy,...,) to be the characteristic function of theof r(x, k) declines to a negligible fraction of its value just

interval (a,b), i.e., that function that is one betweenand above the reflecting medium. A rigorous, detailed proof of the

b and zero elsewhere. From these components, construct GRAvergence of this algorithm to the true solution is contained
operator in a forthcoming paper [93]. A third paper explaining our

) numerical methods, results, and the physical insight available
Payp(k) = FH@<zc)F~ (p(k))] (2.11) from those results is in preparation [109].

Note that all of the results and methods discussed so

where p(k) is just a test function. The idea here is to takfa blished ri | N for th ¢ |
a function ofk, compute its (travel) time-domain counterpar r are established rigorously only for the case of a real,

[the innermost operation in (2.11)], select out only that part&quare-integrable profile of, i.e., for a reflecting medium

the travel-time response in the intental b), and then return that does not absorb (as sea ice and many other natural
that edited response to the frequency domain. media certainly do) and in which there are no abrupt jumps

Thus, P,_., ., selects that part of a function that couldn dielectric properties (as there are, for ex_ample, at the
be caused by events (in our case, reflections) below depipPer and, probably, lower surfaces of sea ice). However,
z. (Note that by our choice of coordinates,is a scaled- the Propagation regime in many lossy geophysical media,
depth coordinate rather than a physical time—it is negatif&cluding in particular sea ice, is nonetheless predominantly
and decreasing with increasing depth in, or time lag until tfePropagating regime—losses are not so high that the intuitive
corresponding temporal response of, the reflecting mediurRigture of phase and energy transport in electromagnetic waves
Correspondingly .. .y selects that part of the function dudn sea ice breaks down, and although the bogndaries of sea ice
to events abover; because the refractive index is constart’€ sharp on the length scales of the centimeter-wavelength
abovez = 0, P, o) = P(s,0) in our problem. Clearly then, radiation typically used to probe them, for any data of finite
any causalr(z, k) must satisfy bandwidth, we may approximate the boundaries as rapid but

continuous variations in refractive index. Thus, there are at

and the corresponding inverse Fourier transformation by

fey=F 1wl =+ [ T2k fkydk. (210)

Plcoyr(@ k) = r(z, k) (2.12) |aast heuristic reasons to believe that application of our meth-
and ods to bandlimited sea ice data can yield usefully approximate
Py oyr(x, k) = 0. (2.13) results. A quantitative investigation of these ideas will appear

in a forthcoming publication. For now, we simply note that
limited computational and experimental experience supports
some optimism. We substantiate this claim briefly below.
1) Analog to the Classical Paley—Wiener Theoreihe
2ik(s ) o) ) Paley—Wiener theorem in classical Fourier analysis relates the
- / ¢ T[l = (u, k) dy} growth of the Fourier transform in the frequency domain to the
o (2.14) size of the region on which its (inverse) Fourier transform is
nonzero. Our analog of this theorem for the reflection problem
provides the depth range, in the scaled-coordingteover
0= P, .0 [7’(3:0,/6)62””” which «(z) is nonzero (i.e., the range of over which the
refractive index varies), as a Fourier transform of a simple
B /mo G2k _y)ﬂ[l 2y, )] dy} nonlinear function of the reflection data [93]. (This result arose
. 2 ’ " more or less as a byproduct of our investigation leading to the
(2.15) preceding results.) Specifically, the width of the region on the

From (2.8) then, we must have

(@1, k) = P_oo ) {7’(3:0, /{;)GQikxl

and
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z-axis over which the function

W(z) = J—"_l[

1 :| plane wave incident

T RDE (2.16) at11.5° \

takes nonzero values is equal to the thickness of the depth;» _ drywall £=2.1 _

range, inz, over which the refractive index varies.
Thus, a relatively simple operation, performed directly on 2" polystyrene foam &= 1.1

data, suffices to determine the scaled thickness of a reflecting AN AN S AN ANV SN

layer—a remarkable simplification if we do not require a AN ' /' ~

full estimate of the refractivity profile. The price for this 55| | - coov, e sand €=220 0 . R
simplicity is that the layer-thickness estimate is given only in R I e AP
scaled depth; conversion to actual physical depth still requires N N I N T AN
information on the refractive index within the layer. S e

There are many phyS|caI situations, thoth’ in which Fig. 1. Geometry of the drywall-polystyrene foam-sand dielectric profile that

prio_ri knowl_edge of the range of possible refractive indeyas scanned from 1 to 18 GHz at an incident angle ofLinghe laboratory
profiles suffices to produce an acceptably accurate estimegeBorup and Johnson.

of physical layer thickness. Suppose that the profile of relative _ o _
permittivity, i.e., the square of the refractive index, is known Fig. 2 shows our retrieval ofv (solid line) as a function

on physical grounds not to vary over a range larger than, S53)1‘,’travel-time (in nanoseconds). Peaks at the boundaries of
C. Then the average relative permittivity within the layer ighe wallboard and sand interfaces are the dominant features.
between one and’, and the accuracy of conversion fromfOf comparison, we also show (dashed line) a retrieval of
scaled to physical layer thickness depends only the square r@o@roduced in exactly the same way as the first, but based
of this average. Thus, our analog to the classical Paley-Wie#§y data intentionally made noisier. Specifically, we corrupted

theorem appears to constitute a useful practical result in #8rup and Johnson’s data by multiplying each of the real and
own right. imaginary parts by one plus a normally distributed random

2) Analysis of Experimental DataThe series of CR- variable having a standard deviation, for given data value, of

RELEX experiments conducted during the ARI has producé@% of that value. Our retrieval of is clearly stable and
at least two sets of wideband, vertical incidence reflectivifgbust in the presence of such noise.
measurements of simulated gray (sea) ice, in addition to indoofFig. 3 shows our estimate of the profile of refractive index
laboratory measurements of a layered dielectric system wi@rsus physical depth (in centimeters, based on the data as
lower losses and smaller dielectric jumps than those typidgceived from Borup and Johnson). Because the observed
of sea ice [42]. Both sets of measurements of simulated gB8agnitudes of reflections at the upper edge of the frequency
ice are of high quality, but those by Gogineni and Jezek [4p@nge do approach zero and we have not “tapered” the input
involve ice of only one, rather large thickness and evidentfata, a modest amount of “ringing” is also apparent in our
do not contain frequencies low enough to probe the entire iegsult. The finite bandwidth of the data causes the transitions
thickness, while independent measurements by Onstott [4Btween layers in our result to be smoothed. We estimate a per-
for a range of thicknesses lack reflection phase informatighittivity and thickness of the gypsum layer at approximately
We therefore present here a sample application of our meth@d8 and 2.7 cm, respectively, with the latter figure in particular
to the indoor laboratory data from a simplified system thglependent on a particular interpretation of where our smoothly
have been gathered by Borup and Johnson (see Section I1ABYying results indicate layer boundaries to lie. Although
Briefly, the laboratory system consisted of a pair of horstyrofoam is typically assumed to have a permittivity of very
antennas suspended over an artificial-layered system. The rag@arly one at microwave frequencies, our inversion suggests a
tennas were arranged to measure vertically polarized reflectfigure closer to 1.1, with a thickness of approximately 4.5 cm,
at a reflection angle near 40The layered system consisted othe precise figure again depending on the interpretation of our
two planar layers over a basement. The layers were composgesult. We estimate permittivity of the sand near the styro-
of common gypsum wallboard and styrofoam, measuring 2.f2am/sand interface to be two. For comparison, we also plot
and 5.59 cm, respectively. The deep (presumably, effectiveiyFig. 3 (solid line) the first set of layer permittivity estimates
infinite) basement consisted of sand. Independent, contawge received from the experimenters—2.3 for the wallboard,
method measurements of the permittivities of the systepme for the styrofoam, and two for the sand. Those estimates
constituents were not reported to us. Measurements of the cagsulted from an early application of an alternative reflection
plex reflection coefficient of the system at frequencies froimversion method that they had developed. The experimenters
roughly 1 to 18 GHz were obtained from stepped-frequendster revised their estimates to 2.1 for the wallboard and
observations. The geometry of the system is represented2i@ for the sand. A precise test of inversion methods awaits
Fig. 1. We used these observations directly in a numeridatlependent information on the true permittivities (and any
implementation of our inverse method (neglecting for now thgispersion) in the layered system.
slight variation from vertical incidence in the experimental Finally, Fig. 4 shows an application of our nonlinear analog
data), with the results shown in Figs. 2—4. to the Paley—Wiener theorem to the uncorrupted data (solid
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0 Reconstruction of a(x) with and without noise
5 R

0l - R

-== 70% noise
—_— No noise

04 i ; ;

Time (ns)

Fig. 2. Causally stabilized layer-stripping reconstruction of the profiler @fs a function of travel time in nanoseconds, based on wideband, near-vertical
incidence reflectivity data for the layered system of Borup and Johnson (solid line) and on the same data intentionally corrupted with multiplicative

noise (dashed line, 70% standard deviation).
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Fig. 3. Causally stabilized layer-stripping reconstruction (dotted) of the depth profile of the (real) relative permittyitpomputed from the data of
Borup and Johnson for a layered system.
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Plots of W(x) (on top) and a(x) (below)
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Fig. 4. Application of the nonlinear Paley—Wiener theorem to the reflection data of Borup and Johnson, sHé@ihcand a(x) as a function of
travel time in nanoseconds.

line). The functionW (z) defined above falls essentially topropagating plane wave
zero at a travel-time thickness of 0.32 ns, which agrees with

_ . —ikn;z L ikngz 4 —(q —
a travel time thickness indicated in Fig. 2 of approximately uj(z) = aje e, jhszs == DLh

0.32 ns. (2.17)
wherek is the free-space wavenumber ahe= 1,..., N. At
each interfacez = —jh, continuity of F, and the magnetic

B. Inversion by Multilayer Parameter

RS ; . field H; in H = (Hy,0,0) yields a recursion relation for
Optimization in One Dimension

a; = (ay,b;) of the form

In this section, a method for the inversion of 1-D dielectric
profiles from electromagnetic scattering data, developed by a; = Kja;11 (2.18)
qugp.anq Johnson,Qis presented. The method_ is based Onvyﬂ%re the coefficients of the matrk; involve j, k., n;, and
minimization of an’” least-squares error functional by non;, ... Usingay = 1 andby41 = 0 allows us to solve for
linear optimization. The forward scattering model employeﬂ#

. . ) _ e reflection coefficienfR(k) = bo. This recursive scheme
is derived from the exact scattering solution for Anlayer requires only O(N) arithmetic operations, as opposed to

slab [71]. The accuracy of the method is then demonstratg(iiNg) required to solve via the moment method the 1-D
by successfully applying it to laboratory scattering data tak%’&atter’ing integral equation

by Borup and Johnson. "

We consider the 1-D Helmholtz (2.2) with real permittivity o k ke | N
e(z) = n%(z) and the exact solution for a layered medium uz) =u'(z) - 2 J, (#ulz')dz" (2.19)
that will be used in the inversion. Assume that the medium

has layerg =0, 1,..., N + 1, with indexes of refractiom;, where

and that layer 0 is a homogeneous half space 0 of air (z) = elz) — 1 =n%(z) — 1 (2.20)
with ng = 1 and layerN + 1 is a homogeneous half space

extending toz = —oc with index of refractionnyy;. Each andw; is the incident field. We note that for an incidence

of the N finite layers is assumed to have uniform thicknesangle different than zero, we replaéewith kcosé and n?

h. As described above, we consider a TE wave with an angléth nf — sin? 6.

of incidenced, which we assume for now i§ = 0. The Now, given a vectoty = (4, ..., vn) Of dielectric parame-
wave fieldu representsF, in E = (0, F2,0). In each layer, ters and an incidence andglethe above solution can be used to
the solutionu;(z) is the sum of a forward and a backwardexactly calculate the complex reflection coefficiéije!*(k,~)
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for the givenN layer slab. The idea of the inversion schemalgorithm, this realness condition can be enforced by simply
is to find a~ that minimizes the mean squafé?) error zeroing the imaginary part of the gradient (2.23) each time it
between the measured scattering data and that calculated fisnsomputed.

the forward model above. The scattering data is defined as thénalysis of the Born approximation and numerical experi-

rescaled complex reflection coefficient ments in the real dielectric constant case has shown that the
2 cos 6 bandwidth requirement for a single, normally incident plane
Uy(k) = ; Ry (k). (2.21) wave is
. . . - . )\max
Then the reconstruction of the dielectric profile consists of — > Nh, A < 4h (2.26)

applying nonlinear minimization to the functional
i.e., the maximum wavelength in the medium should be one-

calc meas 2 . .
Fy) =Y |U§(k,y) — U5 (k)| (2.22) half the thickness of the problem and the spatial sample
k.6 increment of the reconstruction should be set at one-quarter the

where~ is the vector of unknown dielectric parameters. Thinimum wavelength. In terms of frequency, and for multiple
minimization of F(v) is carried out using the Ribere—Polack/i€W angles, we require

algorithm [81]. This algorithm is a variant of the conjugate Foin < c c < (2.27)
gradient algorithm for the minimization of a nonquadratic T = 9T 08 Omax . 2hcosOp T T '

functional. It requires a subroutine for computing the gradieWhereT — Nh is the depth (thickness) of the layered slab,
of the functional, as opposed to Newton’s method, whicpl , is a phase speed in the slab, afigi, 0 are the

requires the Hessian. _ minimum and maximum incident angles in the data set.
The number of computations needed to compute the reéegits: Fig. 1 shows the geometry of a 1-D real dielectric

flection coefficient for one incident angle at one frequency btofile, which was constructed in the laboratory. The profile

O(NV). For K wavenumbers (or frequencies) afilangles .,nqjsts of 4 1 slab of construction drywall and &' Zlab

of |nc_:|dence, the computation B(OKN). To minimize the polystyrene foam placed on top of a 15.8eep layer of

functional (2.22) via the Ribere-Polack algorithm, we need Q.4 “The reflection coefficient of the profile was measured

compute its gradient at an incident angle of 11°5using two 1-18-GHz, ridged

VE(7) = J(y)r(v) (2.23) horn antennas and a network anglyzer. Ca_llibration f_or the

_ _ _ _ ~antenna transfer functions was achieved by first collecting the

where./ is the Jacobian of the model equations and a unit  reflection data for a 1/8sheet of aluminum placed on top of

vector in the direction in-space of greatest increaselil{y). the drywall. The data without the metal plate was then divided

It turns out that a recursive algorithm for this calculation capy the metal plate data and multiplied byl (the plane wave

be derived from the 1-D layered slab solution for a givemd  reflection coefficient of a perfectly conducting plane-ig).

7. Thus, explicit computation and storage of the Jacobian Tis procedure calibrates the frequency-domain data to match

not needed, and the resulting gradient calculation algorithmggne wave theory.

alsoO(BK N). Thus, a single iteration of the Ribere—Polack The exact solution for a three-layer model was then com-

minimization algorithm requires onk(©K V') computations. puted, and the three dielectric parametgdsywall), c(foam),

The memory storage requirement(§OK). e(sand), and the two thicknesséB(drywall) and T’(foam),
We note that the rescaling of the scattering data in (2.21)vigere optimized for by trial and error, comparing the resulting
suggested by the Born approximation, which gives time-domain signal visually with that for the collected data.
k = . The best visual fit to the data was found to dfdrywall) =
Rk, 0) = 5 / Y(z)e 2k 0% 4y 2.1, e(foam) = 1.1, (sand) = 2.2, T(drywall) = 1", and
i 0 T(foam) = 2.1". An excellent match between the theory
=5 Cosefy(% cos 0) (2.24) and the data in the time domain was achieved, indicating a

successful calibration of the 1-D scattering experiment.
where 4 denotes the Fourier transform ef Thus, for real  The data were then inverted using a 40-elemént, 3 mm,
scattering potential§y(z) = e(z) — 1) and for one angle of nymerical model of the dielectric profile. The Ribere—Polack
incidence atf = 0°, the rescaling in (2.21) gives a linearg|gorithm was able to match the data to within 14% rms
unitary (Fourier transform) equation error. The algorithm would reduce the error no further and

Wo_o(k,7(2)) = 5(2k). (2.25) the normalize_zd_ gradient _magnitude vv_as0.00l, indicating

that the remaining 14% mismatch consists of data components
Thus, for real scattering potentials satisfying the Born approxiutside of the range of the forward model. Fig. 5 compares the
mation, the Ribere—Polack algorithm will converge in one stépverted solution with the true solution (based on the visually
[because (2.25) is unitary] if the frequency content of the datgtimized parameters discussed above).
(bandwidth) is sufficient. Note that (2.25) cannot be inverted Thus, a 1-D dielectric profile inversion method based on
for a frequency-independent, complexz) because the datathe exact scattering solution for @ layer slab has been de-
determine only the positive spatial frequencies in the Fourieeloped and verified for laboratory data. The method requires
domain. For the real dielectric constant case, (2.25) can &evide bandwidth of data—the minimum frequency should
inverted sincej(—k) = 4(k) for real. In the Ribere—Polack be such that the unknown thickness to be inverted is less
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True (solid) vs. reconstruction (dashed) To describe the inverse scattering algorithm for the sea
1.5 1.5 ice system, it is useful to briefly consider the impedance
imaging problem [88] for a body with local conductivity
o(x) occupying a region? ¢ R4 d = 2 or 3, with a
smooth boundan®2. The electric potentialp)(x) satisfies
V-oV¢ =0in Q andod,¢ = j on 952, whered, denotes
the exterior normal derivative at the boundary ahdis the
current density applied to the boundary. We assume that we
can apply any current densifyto the boundary and measure
the corresponding voltagg at every point on the boundary.
In other words, we know theesistivemap

-0.5 T T T T — . T : -0.5
0 1 2 3 4 5 R:jr— dlon (2.28)
depth in inches
Fig. 5. Multilayer parameter optimization reconstruction (dotted) of thWhiCh Is "near ope_rator on SumCientIy smooth functions on
degr;th.profile ofythep(real) relativg permittivity( =) — 1 computed from the ?ne boun_dary' In partlcuIaR 1 H? (89) = Hs—-l—l(ag)’ where
data of Borup and Johnson for a layered system. H?*(99) is theL? based Sobolev space 6f with smoothness
index s. For the impedance imaging problem, working with
is more stable than working with its inverge called the

, R
than or equal to one-half the maximum wavelength, and thg. ..\ o Neumann map

resolution of the inversion is given by one half the minimum
wavelength (2.26). Present efforts are aimed at the inversion of A dlog — 7. (2.29)
lossy media. In particular, data from partially water-saturated |

foam rubber has been collected. Thus far, the authors hayee Dirichlet data of a function of is its set of boundary
been unable to accurately match this data to theory. Attemptfiues, and the Neumann data it the set of boundary values
to invert simulated data from lossy media have been made, afdts normal derivative.) The inverse boundary value problem
it has been found that this problem is considerably less wel-to reconstruct(x) from partial knowledge of the resistive
posed than the case of a lossless dielectric. Efforts to constrgfieratorR on 9. Such maps have been used a great deal
the dispersion of the dielectric to be causal, i.e., by enforcingcently in the study of inverse problems, e.g., [16], [88], and
the satisfaction of the Kramers—Kronig relations [74], are beirng2]. The layer-stripping algorithm for impedance imaging is
investigated as a possible solution to this ill-posedness.  based on first reconstructingx) on the boundary frorR and
then synthesizin@® on a subsurface infinitesimally close to the
boundary. This continuation can be accomplished bec&ise
) o satisfies a (nonlinear) differential equation, of Riccati type. The
The problem of reconstructing the complex permittivit) method accounts fully for the nonlinear nature of the inverse
of a complicated medium, such as the sea ice system, fr%blem.
electromagnetic scattering data, has a mathematical structur@ye now turn our attention back to inverse scattering theory
similar to the impedance imaging problem of reconstrucfy, (2.1) with dissipation
ing the local conductivitys(x) of an object from boundary
measurements of the potential induced by an applied current V2u+ (K*n? 4 ikm)u = 0 (2.30)
density. Due to the importance of impedance imaging to
such areas as nondestructive materials testing, geophyswhérew = F, for a TE wave. We assume = 1,m = 0
prospecting, process control, and medical imaging, there Has x5 > 0, while in the lower half-spaces; < 0, n differs
been substantial work on this problem both from the theoretidabm a positive constank_ only in a region of compact
as well as computational and practical points of view (seipport andrn differs from a positive constant._ only in
[88] for numerous references). For example, the lungs c#ns region as well [16]. To apply the layer-stripping approach
be monitored through impedance images of the conductividgveloped for the impedance imaging problem, we must first
profile of the chest obtained from data provided by electrodebtain the scattering operatérmapping incident to scattered
on the skin [50]. In [88], a direct method was developed tiields, which plays the role R or A above. Then the inverse
find the conductivity inside a body. The algorithm proceedscattering problem is to reconstrugt and m from partial
via two steps. First, the conductivity near the surface of th&owledge ofS.
body is found, and then the boundary data on an interiorTo define thescattering operator S, we consider the wave
surface are synthesized using a Riccati equation. The procedgeisl « in the upper half space. Thef is the map from
repeated, and an estimate of the interior conductivity is fourithe down-going part of the wave field to the up-going part.
layer by layer. In [16], such an approach has been developa construct an explicit representati&of this map in the
for the electromagnetic inverse scattering problem for the seaurier transform domain. In particular, we use the fact that
ice system, treated as a perturbed, dissipative half space. Ti® medium parameters are known and constant in the upper
forward scattering theory necessary for this development waalf space. Fox3 positive, we can therefore Fourier transform
presented in [16] and [41]. (2.30) in thez; andz- coordinates. The result is an ordinary

C. Inversion by Layer Stripping in Higher Dimensions
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differential equation whose general solution fgr > 0 is with ¢ = n? + im/k. This equation is obtained by differ-
N . —ixiws A s entiating (2.35) with respect te, using (2.30) to eliminate
ki, 23) = A(R)e™ ™ + Blr)e' (2.31) 9%u/07* and (2.35) to eliminatéu/dz. A similar equation
where A, = \/kZ — [«[2 and the hat denotes the 2-D Fouriefan be obtained fos.
transform The layer-stripping algorithm proceeds by first finding the
ey medium parameters on the surface and then using (2.36) to
ik, r3) = /U(X’,wg)e_m'x dx’ (2.32) continue the recovery process into the interior. To find the

medium parameters on the surface, we use the following time-
with x’ denoting (z1,z2). When Ay is zero, the general domain approach. This will be discussed again, in more detail,
solution corresponding to (2.31) is simply linear function ofelow. The time-domain version of (2.30), in the variable
z3. When || < k, the A term in (2.31) is a down-going + = ¢, is
wave, whereas th& term is up-going. The coefficiet thus 5 9.0
determines an incident wave. This incident wave, together with (V —n°or — maf)u =0. (2.37)

continuity of« and its normal derivative atthe interfagg =0 The plan is to obtain a progressing wave expansion [24] for
and a radiation condition in the lower half-space, uniquekyz.37)_ We are interested in the small-time behaviot/oin
defines the scattered wave, which determie€onsequently, hq neighborhood of an interface @ = 0. For 23 > 0

we can defineS as the map fromd(x) to B(x). wheren = 1, we expect that/ is composed of an incident

The inverse algorithm for the impedance imaging probleg)ane waversi — 8(s'(x) — ) plus a reflected wave, which
is based on a Ricatti equation for the resistive map associ expand in the form

with the inverse boundary value problem. Application of

this approach to the inverse scattering problem relies on U"(s"(x) —7) = Ag(x)6(s"(x) — 7)

an equivalent formulation of the scattering problem as a + AV (X)H(s"(x) = 7)+---. (2.38)
boundary value problem, defined by (2.30) for:z < 0 with ‘ o

the boundary conditiom|,,—o = f(z1,z2), together with an Heres’ ands” are thg incident and reflected phgsf%dﬁnote's
out-going radiation condition in the lower half spacef i in the Dirac delta function, an denotes the Heaviside function
the Sobolev spacE*/2 andm > 0, the Lax—Milgram theorem that is one for positive arguments and zero for negative
can be used to show that this boundary value problem hagrguments. We také/* to be a plane wave propagating in
unique H* solution in the lower half space. Thus, the normdlirection e = (e, e2,es), which implies thats' = e - x.
derivatived,u on the surfacers = 0 is uniquely determined. Because we take this wave to be propagating in the downward

The mapping direction, e3 is negative. Just below the interface, for a short
time, we expectf to take the form of a transmitted wave,
A u|.7:3=0 = yulz,=o (2.33) which we also expand as

from H'/2 to H—'/? is the Dirichlet-to-Neumann map for this ~ U*(s'(x) — 7) = Aj(x)§(s"(x) — 7)

problem. The inverse boundary value problem is to determine + ALK H(sH(x) —7)+---.  (2.39)
n? andm from knowledge ofA. This boundary value formu-

lation with A is related to the scattering formulation withas Here agains* denotes the phase of the transmitted wave.

follows. DefineA via Af = Af. Then it can be shown that ~ On the interfacer; = 0, ¢ and its firstzs derivative are
continuous. Using these conditions at the interface and forcing

AMS+1) =iy (S - 1) (2.34) 4 to satisfy (2.37) results in expressions for the coefficients

X . . f
which holds as an operator equation in an appropriate functi%(2'38) and (2.39) [16]. The eXpressions tag ?nd 4 at
space [16]. This relation can be used to fifidn terms ofA, ©3 = 0 involve e andn, while the expression forj involves
or vice versa e,m,n and the derivatives ofi; and A},.

1) Layer-Stripping Algorithm:Now, the idea of the method To ol?tam ]Ehe medlum_parzmeter% andn; ‘?‘t a p(.)mt.zo on
to solve the inverse scattering problem for (2.30) is to use tf‘gée sur ?Ce rom scat_terr]lkr;g hatz(aj, we 33” h'n an incident xvave
measured data to find the medium parameters on the bound3f} 'S pda?alrdln a r|1|e|g 10ornoo &ﬁ) e_t en measulze the
x3 = 0, then to use that information to synthesize data onSgattered field at all points on a plang = constant. From

nearby inner subsurface. The process is then repeated, anqt %lnfprrr:]batu;n, Lhzf%horgt;hme ?ﬁatterled f(')ild c;an beh|.nfherred
medium parameters are found layer by layer. To synthesi'??a neignbornoo 5 and thus the vaiue of, a XO’.W2 Ic
ells us the value of* at xq. In this manner, we obtain= for

the subsurface data, we obtain a differential equatiomfar t . .
the depth variable. This requires that we extend the definiti&i &Y point on th,e surface; this alloyvs us to. compute, at every
of the Dirichlet-to-Neumann map to any< 0 pomt,’not pnIyA', but also the der|vat|v_es in the expression
for A7, which can then be used to obtaim as well.

A(z)u| = du ' (2.35) Haying found the medium paramet_ers on the surfac_e, _the

TI=2 O3 |,, 2. algorithm can proceed. Let us consider the layer-stripping
algorithm in the case when a complete set of incident fields are
used and measurements of the corresponding scattered fields
SN (2 + O2) — K (2.36) @€ made on a plane. We assume measurements are made at

1 r2 N frequencies. For experiments with stepped-frequency radar,

This map then satisfies the following Riccati equation:
dA
dz
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for example, N can range from 51 to 801. The algorithm Although the above algorithm may seem ready to imple-
proceeds as follows. ment, it cannot be used in its present form because it is

1)

2)

3)

4)

5)

6)

7)

8)

From the measurements at wavenumlbgrs:, ..., ky, unstable This is partly because of the multiplication ty|
construct an approximation to each scattering operatdr the Riccati equation foiS [16] or, equivalently, because
S(ky),n =0,1,..., N (the integer index here should of the x; and z, derivatives appearing on the right side of
not be confused with the index of refractior). In (2.36). This is similar to the situation in [111]; this type of
practice, we would represesi(k,,) by its matrix with instability can be overcome to some extent by smoothing in
respect to some basis. Such a basis could perhapstigz, andz, directions, as discussed in [15]. Even when the
constructed from antenna beam patterns for a largeoblem is independent of, andz, however, we expect the
number of incident angles. The operaﬁ)of (2.34), for methods to be unstable, due to the fact that only a little of the

example, is the representation $fin a Fourier basis. €nergy put into the system on the top can propagate to great

For each of at least two incident directions, j = depths. Thus, we expect the boundary data and scattering data
1,2,...,J, choose an incident field that looks liketo contain little information about the deeper regions.
exp(ikne; - x) in the neighborhood of some poit 2) Recovery of Surface Parametergie return to the algo-
on the surface. ApplyS(k,) to these incident fields to rithm for reconstructing the medium parameters and m
obtain the scattered field,.(k,,x). on the surface, and we consider the important special case in
Fourier transform into the time domain to obtainvhich the medium is homogeneous near the surface. Refer to
Ur(r,x). In practice, we can do this by first synthesizing17] for the details. In the case of near surface homogeneity,
an approximate delta function in the form we have simply

N 1—n (m+ d.n)

8(7) = > wpetnT (2.40) Ado=q, A= ) (2.44)
n=1

In dealing with data from a stepped-frequency radar, we
where thew,, are, for example, Hamming weights [76].have measurements from only a finite number of frequencies
Then the field ko,k1,...,kn. For the reflection coefficient we use

N ‘ _ —iky, T
U'(r,x) = Z Use(kn, x)wne”“” (2.41) R(r) = En: Rk Jwne ) (2.45)
n=1

ith k&, = ko + n% where B is the bandwidth (again,

e integer indexn is not be confused with the index of
refraction n), each term of (2.45) contains a facteri*o7,

ind we consideyf(7) = e**7R(7). In place of the delta and
I-\eaviside functions in the progressing wave expansion, we

is locally the response to the incident approximate del
function (2.40), wherey,. is the scattered field.
Extract the coefficienta{(xo, e;) and A7 (xg, e;). This
can be done, for example, by the least-squares mi

mization . use appropriate (factored) versiop&r) and h(7) of (2.40)
j?iffr / |U”(T, x0) — Al(x0,€,)8(5" (30) — 7) and (2.43), respectively. It can be shown [17] that
ot Jo , , ) F(r) = Aoplr) + Arh(7) + r(r) (2.46)
— Al(x0,€;)H(s"(x0) — 7)|" dr (2.42) , , .
wherer denotes a remainder term that is continuous and zero at
where for U” one uses (2.41), fog” one usess” = the origin. The left side of (2.46) is known from measurements;
e1x1 + eaxs — esxs, for 6 one uses (2.40), and for thefrom it we want to extractiy andA;. To do this, we minimize
Heaviside functiond one uses the least-squares error
N T
H(r)m Y omgiker, (2.43) / 1f(7) — Aop(7) — Avh(r) — r(T)[2dr.  (2.47)
n=1 an 0
From A5 (xo, e;) and A5(xo, €;) for j = 1,2,....J, Differentiating with respect tody and A; leads to a system

determinen? (xq), m(xo), and dp,n?(xq). If J > 2 of equations forA = (Ag, A1)" (the superscript denotes
0/ /s s 0/ ranspose)

so that the system is overdetermined, we can use lea
squares to find the best fit. MA+Q=F (2.48)

Repeat steps 2)-5) for a large number of poigson where( is a remainder term assumed small (wHers small).

the surface. . ;
For eachk,,, synthesize the subsurface data either frorlrtl can be shown thaf” and the entries of the matrix/ are

a Riccati equation forS(k,) or use (2.34) to convert 9'€" by
S(k,) to A(k,), use the Riccati (2.36), and convert back N
to S(k,) with (2.34). Again, in practice, the operators F=|Re Z W W B »

S(k,) andA(k,,) would be represented as matrices with n,m=0
respect to some basis, and (2.34) and (2.36) would be N w,, i
approximated as matrix equations. Re Z wn%Rmyn_m (2.49)

Repeat, starting with step 2). n,m=0
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N N, local complex permittivitye(x), from which the details of the
M= ) wnttngnm, M= Fnk,, Jn=™  microstructure would become apparent. In the sea ice system,
mom=0 n,m=0 such microstructural details could include the following: brine

(2.50) and air volume fractions, brine and air inclusion size and

al Win connectedness properties, sea ice grain size and texture, snow
Mz = Mz = Re Z wnmyn—m (2.51) grain size and texture, volume fraction and connectedness of
nm=0 liguid brine in snow or slush, anisotropy and brine microstruc-
where ture orientation, and crack size and orientation distributions. In
. practice, however, often we only have available information in
B mrB/N T, if n =0 e a particular frequency band, which may be relatively narrow.
Yn _/0 ¢ dr = JnTB/N (2.52) | the microwave regime, it is frequently the case that the
“nB/N if n # 0. wavelengths involved are much larger than the scale of some

In summary, the method to reconstruct the surface paranﬁ’é-the features listed above,' such as at C-band (with a center
ters is as follows. Measure the reflection coefficiéhn = frequency of 5.3 GHz). With a free-space wavelength of

0,...,N for the available (equally spaced) frequencies. Use/ cM. the brine microstructure, with variations on a sub-
(2.49) and (2.52) to construgt. Solve the equation A — 7, Milimeter scale, cannot be resolved and the wave propagates
where M is given by (2.50) and (2.51), to obtaid = primarily according to effective electromagnetic parameters.
(Ao, A;). Solve (2.44) form andm, assuming thad.n(z) = 0. In this case, the reconstructed complex permittivity will be
To determine the possible utility of the bandlimited geome®n €ffective complex permittivity*, which itself may vary
rical optics method, it has been tested on synthetic data. &8 larger scales resolvable by the wave, due to variations
generate the data, we used the well-known formula [55] & the average microstructural properties that determine
the reflection coefficient from a two-layer medium, consisting" €xample, a 1-D reconstruction at C-band of the complex
of a slab of thicknes§™ with medium parameters andm, Permittivity profile €(z, k) of a slab of sea ice, over a range
overlying a half space with parameters. and m_. This ©f wavenumbersk, would vary primarily due to the depth
two-layer medium lies underneath a half space of air with#) variation of the brine volume. If we desire microstructural
parametersn; = 1 and my = 0. After computing the information about the sea ice, such as the brine volume, it has
two-layer reflection coefficient, we added random noise, wifR Pe further extracted from the reconstructed profile:, k).
magnituder, to the real and imaginary parts. We then used tHe 9eneral theory of how to obtain microstructural properties
bandlimited geometrical optics method above to reconstrfg@m known values of effective electromagnetic characteristics
n2 ando. In each case, we used the same values2fnd IS of clear importance for inversion of sea ice parameters.
m to compute the data, namely? = 3.37 and o = 0.017. Furthermore, such techniques would likely have application
We considered two different frequency bands, namely, 1-4 alggother areas where inverse scattering has been useful, such
26.5-40 GHz. Because the longer wavelength waves penet@temedical imaging, nondestructive testing of materials, and
deeper into the medium, we also considered media of differgtophysical exploration. For example, recovery of brine vol-
depths. We chose th# in (2.47) and (2.52) to ber/(2B). ume information from measurements &f is similar to the
The results are discussed in detail in [17]. In general, for thi@oblem of monitoring fluid volume fraction in the lungs from
enough samples, agreement was obtained for hdtando.  Pulk electrical measurements. Recovery of brine inclusion
We have also made some preliminary tests of this method g@nnectedness is similar to monitoring the porosity of bones or
experimental data. The data were collected using an HPgsibbearing rocks as well as to testing the quality of a tenuous
network analyzer. The data were composedof= 801 conducting matrix in some smart composites of an insulating
measurements of the reflection coefficient, for equally spacB@st with conducting inclusions [38]. _
frequencies between 26.5 and 40 GHz. To use these datd;ere we develop a rigorous theory of inverse homogeniza-
we first did some processing to correct for the system rdon for composite materials in the quasistatic regime, in which
sponse. When we then used the bandlimited geometrical opﬁlg@rostructural information about the composite is inverted
method, we obtained a value of = 2.42 for a lucite sample from measurements of effective electromagnetic properties,
versusn? = 2.48, as computed by the “bounce” method ofuch as the complex permittivity. Our approach is based

[61], [82]. The method did not return a reasonable valuesfor On the Stieltjes integral representation frand its spectral
measurg, associated with the composite geometry, presented

in [36] and [41] and the resulting forward bounds eh
incorporating given information on the microstructure. First,
we present a theorem, giving the conditions under which
o i and the statistical properties of the microstructure can be
A. Forward and Inverse Homogenization uniquely reconstructed [18]. Then, we analytically invert the
for Composite Materials complex elementary and Hashin—-Shtrikman boutfijsand

In the previous section, we considered inverse algorithni&, considered in [41, Section 1l1], to obtainverse boundsn
designed to reconstruct the complex permittivity profiles dhe brine volume of sea ice (or the relative volume fractions of
inhomogeneous media. Ideally, given scattering data over afly two component composite), for given complex permittivity
frequencies, these algorithms can completely reconstruct theta [19]. We obtain both rigorous bounds on the possible

I1l. | NVERSE HOMOGENIZATION AND THE
RECOVERY OF MICROSTRUCTURAL PARAMETERS
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range of volume fractions given a single value of the observeeen exploited to derive tighter versioRs™ and R, of the

complex permittivity, valid in the quasistatic regime, and aoomplex bounds above. These bounds depend on a parameter

accurate algorithm for predicting the brine volume associatgdthat measures the separation of the brine inclusions, and

with a given data set of permittivity values. The algorithm ithey are compared with C-band complex permittivity data [2]

demonstrated on a representative data set at C-band from {2][41, Fig. 2].

with excellent results. We have also inverted the tighter matrix- We now present a theorem that tells us when we can be

particle bounds?]™ and R, for separation information aboutassured that the microstructure, as characterizeg:,bgan

the brine inclusions, which indicates the connectedness of te uniquely recovered [18]. This result can be viewed as

brine phase [77]. a type of existence and uniqueness theorem for the inverse
For completeness, we briefly review the forward homog&omogenization problem.

nization problem [41]. Consider a two-phase random mediumTheorem (Existence and Uniqueness for Microstructural Re-

in all of R¢, with an isotropic local complex permittivity covery): The measurg: in the integral representation (3.1)

e(x, f3), taking valuese; and e, the permittivities of brine for the effective complex permittivitye* can be uniquely

and ice, respectively, with(x, 3) a stationary random field in reconstructed if the values af are known along an arc in

x € R andg € Q, where{2 is the set of all realizations of thethe complexs-plane.

random medium. We write(x, 3) = e1x1(x, 3) +eax2(x, 3), For example, we may have a medium, such as sea ice, where

where x; is the characteristic function of medium 1 andhe complex permittivity of at least one of the constituents, in

xz = 1 — x1. Let E(x,) and D(x,/3) be the stationary particular, the brine, is dispersive. Then, as the frequency is

random electric and displacement fields, relatediby= <E, varied, an arc is traced out in the compleyplane (which

satisfyingV -D =0 andV x E = 0, where(E(x, 3)) = e;, could be a segment of the real axis). If measurements’ of

e; is a unit vector in theith direction, for somg =1,...,d, are made all along this arc, the theorem tells us thaan be

and {-) means ensemble average ow¥eror spatial average uniquely reconstructed. However, this is an ill-posed problem

over all of R¢. The effective complex permittivity tense¥ that requires regularization to obtain a stable solution. The use

is defined agD) = *(E). For simplicity, we focus on one of Tikhonov regularization [54] in the reconstruction @fhas

diagonal coefficient* = ¢},. The key result is an integral been explored, yet it would also be interesting to examine the

representation [4], [37] foex exploiting its Stieltjes properties potential of applying causality, through the Kramers—Kronig

as an analytic function of; /e, relations, to stabilize the procedure.
L In the above theorem, it is the measurghat is uniquely
F(s)=1- & / dy(z) reconstructed, yet it is the actual microstructure and its prop-
e Jo s—=z (3.1) erties in which we are most interested. There arises the
s=(1—e/ea) ! question of whethep, uniquely determines the microstructure

or the stationary random field(x). Strictly speaking, the

wherey is a positive measure df, 1], determined exclusively gnswer is no. For example, the expressions dar given
from the geometry ;. In particular,; is the spectral measurejn the Hashin—Shtrikman bounds in [41, Section Ill], can
of the self-adjoint operatol'x;, whereI' = V(=A)"*V:, pe attained by either a coated sphere geometry or a type
A = V2. Statistical assumptions about the geometry ag |aminate geometry. Nevertheless, from an effective prop-
incorporated intgu through its moments erty point of view, these two “different’ geometries are

1 the same, in that they have the same effective property

Ln :/ 2du(z) = (=)™ (x1[(Tx1)"e;] -e;)  (3.2) function ¢*(e1/e2). In particular, all the statistical properties

0 of the two composites, such as volume fractions, isotropy,
with po = p1 if the volume fractionsp; andp, = 1 — p; and all higher order correlation functions of the geometry, as
are known andu; = pipo/d if the material is statistically measured by the moments of are the same. Thus, the above
isotropic. In general, knowledge of tite++1)-point correlation theorem reconstructs the microstructure uniquely, up to the
function of the medium allows calculation pf, (in principle). identification of composite geometries with the same effective

Bounds one*, or regions in the complex*-plane in which complex permittivity functions, in the above way.

the values of the effective complex permittivity must lie, are
constructed from (3.1) by assuming partial knowledge of the )
moments of. For example, the regiom, (the complex B. Inverse Bounds on Microstructural Parameters
elementary bound) is obtained by assuming knowledge of onlyWe now describe how to invert the complex bourtisand
1o = p1, While the regionk, (the complex Hashin—Shtrikman R, on ¢* to obtain rigorous bounds on the brine volume in sea
bound) is obtained by assuming knowledgeaf= p;p2/d ice from measurements ef. The idea of the inversion is very
as well. The deep relationship between the connectednesaple, as follows. Given an observed complex permittivity
properties of a particular phase in the composite and thelue ¢*(n) from a set of N data pointsn = 1,...,N
support ofz, (where it is honzero), in particular, the existencenside the bound?;, as in [41, Fig. 2], we increase the brine
of a spectral gap around the endpoints zero and one, has bednme fractionp; in the bound until one of the circular
explored in [7], [39], and [41]. The spectral gap that existarcs on the boundary a®; touches this point, which defines
for matrix-particle composites (a host material containinthe upper bound?;(n) on the possible range of volume
separated inclusions), like sea ice, which is cold enough, Haactions associated with the data point. Similarly, we decrease
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p1 until the other arc touches the data point, giving a lowekgain assuming that the corresponding data poift) lies
bound P, (n) on the possible range of brine volume fractionn this arc, we obtain

Applying the same procedure to the isotropic complex bound In(z)
R, yields even tighter loweP»(n) and uppem»(n) bounds Q1(n) =1— |J(n)|P s
. . : . Im(.J(n))
on the brine volume fractiop;. Given a set of data points,
we carry out the inversion for each point and then take the Z(n) = M (3.8)
maximum overn of the P,(n) and the minimum over of Im(J(n))

the Q1(n), and similarly for(n) and Qx(n), which yield 14 optain even tighter bounds gn under the assumption
rather tight, accurate estimates of the brine volume associajggh the microstructure is statistically isotropic, we apply the

with the given data set. It should be remarked that a similgg e inversion procedure to the complex boidRecalling
idea was used previously, at least to first order far, and  hat one arc ofR, is given in theF-plane by
applied to multifrequency data for thin silver films [70]. Also,

first-order analytical inverse bounds were derived in [20] and Co(z) = pi(s — 2) 0<z<(d-1)/d (3.9)
applied to geophysical mixtures in [95]. Other approaches s(s—z—p2/d) T 7

to the inversion of microstructural information have bee?his arc gives an upper bouria(n) on p; defined by the
2 1

considered in [69] and [70]. corresponding analogue of (3.4)
We now make explicit the above outlined procedure. First0 P 9 9 '

recall that one arc of the regioR; can be parametrized in Q2(n)(s — z(n)) = F(n)s(s — z(n) — (1 — Q2(n))/d).
the F-plane by (3.10)

Ci(z) = 3137’ 0<2z<ps. 3.3)

Separating real and imaginary parts yields coupled, nonlinear
_ o equations forQ).(n) and z(n). The resulting expressions are
The given, measured value of the complex permittivityn)  5ther complicated and are omitted. We obtain the lower bound
determines a corresponding vallign) = 1 — ¢*(n)/¢2. AS- py(n) on p; by applying the same procedure to the analogue
suming that the given valu&(n) lies on the lower boundary ¢ (3.9) in the J-plane, as above.

of the regionR;, by solving (3.3) forp;, we obtain for the Finally, for a set of data points*(n), n = 1,..., N, we

lower boundFy(n) on the brine volume fraction find that the intersection over of the intervalsP; (n) < p; <
Pi(n) = F(n)(s — 2(n)). (3.4) 1(n) for general media [20], given by
It should be remarked that if the different measurements over Hax Pi(n) <p1 < Hhin Qu(n) (3.11)

n are made at different frequencies, then in general the va
of s will also depend omn. Separating real and imaginar
parts, we can immediately obtain

Im(3) o) = Im (F(n)s)
Im(F(n))” ~ Im(F(n))

where the bar denotes complex conjugation. Note that defiovides a very tight practical bound on the volume fraction

complex-valued data poinf(n) allows us to solve not only p1. In Fig. 6, we demonstrate our inverse bounds on the

for the real brine volume fraction, but also for the real spectrlfine volume for a set of nine data points with frequency

parameter:(n), which is associated with other details of theé.75 GHz taken from [2]. The actual brine volume for

geometry, such as inclusion separation, and presumably forfi€¢ data isp; = 0.02. Complex permittivities of the ice

a bound on the possible spectrum. and brine are calculated as described in [41, Section IlI].
To obtain the upper boun@;(n) on the brine volume, it The solid lines represent the intervaly(n) < p1 < Q1(n)

is useful to turn to another auxiliary function [5] associate@d I2(n) < p1 < Q2(n). The dotted lines represent the

with the interchanged material, wheee and ¢, (as well as Very tight prediction given by the inverse algorithm (3.12) for
p1 and p») are switched isotropic microstructures, which is in excellent agreement with

the actual brine volume; = 0.02.

|[!')'l%vides a good practical bound on the volume fraction
YFor isotropic media, the intersection overof the intervals
Py(n) < p1 < Q(n), given by

Pi(n) = [F(n) (3.5) max Py(n) < p1 < min Qx(n) (3.12)

Jw)y=1—¢/e = 1-sF(s) Finally, we consider inversion of the matrix-particle bounds
. l-s R and R;'? to obtain inverse bounds on the microstructural
u=1-e/a) =1-s (3.6) parameterg, 0 < ¢ < 1, measuring the separation of the

brine inclusions [77]. We consider a horizontal slice of sea
ice (for the vertically incident waves of [2]) and assume that
the brine is contained in separated, circular discs. Such an
assumption allows us to use the exact calculations in [7] of
the size of the spectral gap in the supporizofin particular,
we consider discs of brine of radiug, which hold random
Cil(z) = D2 L 0<z<p. 3.7) positions in a host of ice, in“suc.h away that each.disc of brine
u—z is surrounded by a “corona” of ice, with outer radiys Then

The advantage to using this function as oppose#i(t9) is that
the spectrum [or support @f in (3.1)] is trivially transformed
via v = 1 — s, so that spectral bounds obtained férare
easily translated over tf', which is not the case faF. In the
J-plane, the corresponding arc becomes
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o 07 Solving for p as an implicit function ofy gives

0.06 0, B EIIH ([(6* — 62)(w2 _ q4)][e*(w + q2) — ex(w — q2)]>

rine 0.05 p
volume -0 2 ([ (w+ @M+ ) - ealw - ])
(3.15)

fraction o0.03
votl ——~— B p=o00 Numerical calculation of the forward bounds using pairs
_—_\”'\/E& of (p,q)-parameter values that lie in the acceptable region
determined by the inversion algorithm yields consistent results.
The essentially distinct algorithms used for computing forward
and inverse bounds agree. Work on accurately reconstructing

Fig. 6. Inverse bounds on the brine volume of sea ice derived from (p, ¢) pairs for actual data sets is ongoing.

Py 0.02

data index n

measured values of the complex permittivief(n),n = 1,...,9, at

4.75 GHz. The solid lines represent the intervéig(n) < pi < Qi(n)

for general media and>»(n) < p1 < Q2(n) for isotropic media. The IV. INVERSE SCATTERING ALGORITHMS FOR

dotted lines represent the very tight prediction given by the inverse algorithm THE RECOVERY OF SEA ICE THICKNESS

(3.12) for isotropic media, which is in agreement with the actual brine . . . .

volume p; = 0.02. For the data, the temperatufe= —11°C, the salinity In this section, we consider a variety of methods for
S =4.1ppt, ande; = 42.2 +45.6 andez = 3.07. inverting electromagnetic scattering data for sea ice thickness.

The recovery of thickness information is one of the central

the minimal separation of brine inclusions is th&m; — 73 ). challenges of sea remote sensing. The algorithms presented
Such a medium is called @material, wherey = 7, /r;. For belpw, along W|Fh the. methods of Section II, provide a foun-
such a material, the matrix-particle bouni8” and R’ [39], dation for meeting this challenge.
[41] assume the following form. The complex permittivity o )
lies in the intersection of two circular discs, the boundaries 6f Radiative Transfer—Thermodynamic Inverse Model for
which are images of the real lifR under different fractional Thickness Retrieval from Time-Series Scattering Data
linear transformations. Wity = p;, these circles have the Sea ice thickness is an important factor in understanding
form the dynamics of sea ice cover as well as the air—ocean
a(p, @)z + b(p, q) heat exchange. Althoggh spa(_:eborne SAR image§ hav_e _been
(z)=——2— " _—co<z<oco (3.13) successfully applied in mapping the extent and identifying
op @)z +dlp,9) the types of sea ice [59], the direct use of simple empirical
where the parameters of intergstand ¢ enter the fractional Mmodels, based on the SAR measurements, for sea ice thickness
linear transformation through the coefficient, q), b(p,q), 'etrieval is still limited because of the complex interactions
e(p,q), and d(p, q). of electromagnetic waves with the dynamically varying sea
For observed complex permittivities, these forward bound@ medium. Also, it becomes too difficult to derive ana-
are inverted, yielding curves ifp, ¢)-parameter space. Such!yt'C inverse solutions from direct scattering mod(_els of sea
a curve is the locus of point&, §) for which an observed ice [25], [34], [72], [97], [98], [107] for the ice thickness.
¢* lies on the circleF; ;(R). Each observed value gives al© utilize such developed scattering models, the parametric
different boundary curve. The resulting family of curves ma§stimation method can offer a greater flexibility in the choice
be thought of as being parameterized by the observed compéxforward models, the parameters to be inverted, and the
permittivity. In all situations encountered for the forwardlata to be employed [52]. However, such an approach usually
bounds, the functional form of the coefficient&, q), b(p, ), has associated problems of nonunique solutions and inversion
c(p,q), and d(p,q) are polynomials in the two variables Stability with noisy data. Although it might be possible to
andq. A general theorem is proved [77], stating that for sucfgduce the effects of these uncertainties by using diversified
cases the inverse bound is a real algebraic ciftyeq) = 0. Multifrequency, multiangle, and polarimetric data, the cost of
This avoids having to solve coupled nonlinear equations tHai{ch extensive measurements may be prohibitive for satellite
involve the spectral parameterappearing in the argument off€émote sensing of sea ice. On the other hand, orbiting satellites
F,,(2). As an example, under the assumption that the sea [@Peat their passes at a fixed time interval; it is natural for them

is a matrix particle composite, but without the assumption & make timely sequential observations. With these time-series
statistical isotropy’ the fo”owing po|ynomia| is obtained: measurements, more data become avallable, which is hE|pr| n

resolving the nonuniqueness and stability problems and useful
f(p,q) = 2¢° Im{[ge* (w+ @)p + (€ — e2)(w? — ¢*)] for the geophysical parameter reconstruction.

Recently, ice-thickness reconstruction algorithms based on
x[e*(w + ¢?) — e2(w — q2)]}. (3.14) the combined use of sea ice electromagnetic scattering models,
time-series remote-sensing data, and a parametric estimation

The bar denotes complex conjugation, ands a constant, technique have been developed [52], [86], [87], [99], [100].

depending only on the complex permittivities of brine and puMeysoglu et al. [99], [100] have developed an inversion

ice w = (e2 + €1)/(e2 — €1). The region of admissiblép, ¢) algorithm using passive microwave measurements of sea ice.

values is bounded by the real algebraic cuf@,q) = 0. They have shown that, by incorporating a Stefan’s growth

F

P
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electromagnetic measurements made in a time series, it is
helpful to use these correlations to improve the retrieval of
relevant physical parameters.

Time-Series Data l

z=[f,6;,(hh,hv,w)]

o - I + — T The radiative transfer scattering model of sea ice [25], [86],
"N i { EM Scattering Model I [87] described in [41, Section V] is used in this algorithm
[ Cabefo e h] to provide a relationship between the expected backscatter
| o | measurements to the radar parameters and the saline ice
! Saline Ice Growth Model | characteristics. This relationship can be expressed as
e, L — — 1
' AXD 0; = F(tiv Z,X) +e; (4-4)
[ Least-Squares Optimization
lx where o; is the measurement data vector whose elements
- consist of backscattering coefficien8(¢;, z,x) is the model
I Saline Ice Growth Model x0=[ho, Sy .d,  aq.8 €] response, and; represents the discrepancy between the obser-
vation and the model result. The indéis used to denote the
Ay measurement time at. The arrayz denotes the set of known

radar parameters, such as the frequelicyolarization, and

Fig. 7. Block diagram of the radiative transfer—thermodynamic inversi%oking direction. The vectok contains the pertinent model
algorithm using time-series measured data. The dynamic electromagnetic

scattering model, which includes the electromagnetic scattering model a{?@rameters of saline ice
the ice growth model, is enclosed by a dashed rectangle.

x = [ho, Si0,ds, a0, gs, €] (4.5)

model [9] into the sea ice inverse scattering problem, ﬂ\Where ho = h(ty) is the ice layer thickness at timg at

;huikness estlmatloln iﬁn be ;:(i_nstrmped sqfﬁmente\/m':O Tpr\?/hich the reference time for the first set of data is taken. The
Ict more accurately he evolution of sea ice growln. h(?ther parameters;q, ds, ag, gs, ande have been defined in

inversion scheme is based on nonlinear optimization usil(ﬁg 1)—(4.3). (The notatiorx and e; should not be confused
the Levenberg—Marquardt method [65]. Skehal. [86], [87], wi}h the different meanings usedz above.)

from the experimental observations and the thermophysics Ol the retrieval analysis, the model parametarsre to

ice growth, developed a retrieval algorithm for ice thicknes&e reconstructed from the scattering data. The approach is
based on a dynamic electromagnetic scattering model of SaI{Bemeasure the data and invert the relation (4.4), i.e., to
ice and time-series active remote-sensing data. This invers ress the parameter in terms ofc. The minim.iza,tic;n.bf

(5 .

a!gorithm using active radar measurements is summarizedﬂll sum of squares of the difference between the measured
F'?' 7th lorithm. th th model line i ._data and the model response is performed by using the Leven-
f tnh :cS”a gort m’t fe gI’OV\:_ m_o €l for saiine ice ConSIStSerg—Marquardt algorithm [65]. [This method is a hybrid of the

of the Tollowing set of equations. steepest descent (SD) method and the inverse Hessian method.

dh _ 11T, 4.1) When initial parameters give a solution far from a minimum,
dt  pL §+ Ff—b the SD method is used to get close to the minimum, the
S; = Sio — doh (4.2) problem is assumed to become quadratically convergent, and

@ =ap+ g.h 4.3) the inverse Hessia_m _method is e_mployed to further converge
= ’ to the solution within the specified accuracy. During the
The estimation of the growth of ice thickness is given by (4.1parameter adjusting process the Levenberg—Marquardt method
which is a heat and mass balance equation [53], [104], whdaends or varies smoothly between these two methods.] At the
h is the ice thickness% is the growth rate, is the air j-th iterative step in Fig. 7, the vector of estimated parameters
temperature, and),, is the ice melting temperature, where alk?) consists of ice parameters at a specific time, including
temperatures are ifC. The thermal conductivity of saline icethe initial ice thickness, initial salinity, initial brine pocket
in W/im/°C is ;, L is the latent heat of freezing in J/kg, thesize, desalination factor, brine size growth factor, and the
quantity ¢ is the heat transfer coefficient between ice and aigat transfer coefficient. (In this figure, b, and ¢ denote
which accounts for contributions from both convection anthe dimensions of the brine inclusions in the three principal
radiation, andp is the density of the ice. The growth of sealirections, f,, denotes the volume fractions of the inclusions,
ice also accompanies the desalination process [26], and (48f¢, denotes the permittivity of the sea ice.) The subsequent
approximates the reduction of the bulk salinity;, in °/¢, thicknesses, salinity, and brine pocket sizes at different growth
of thin saline ice by a monotonic decreasing function of icgtages are calculated according to the saline ice growth model
layer thicknessh and a desalination factaf,. Equation (4.3) described in (4.1)—(4.3) and the elapsed time between each
describes the change of brine inclusion sizevith the ice measurement. This set of ice parameters is then substituted
thicknessh and a size expansion factgg. This assumption into the electromagnetic scattering model, which solves the
has been tested by comparing the theoretical model resulidiative transfer equation and generates a simulated time
with the experimental data on radar backscatter signatusegies of backscattering coefficients that is compared with the
[73], [86], [87]. From these equations, the state of the ice atctor of measurement data. Thus, the object function contains
a certain stage can be estimated from previous states. Whk whole time-series measured and model data, in contrast to
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15 et TABLE |
L ° 1 INITIAL GUESSES CONSTRAINTS, AND INVERTED MODEL PARAMETERS
H o FOR THE RADIATIVE -TRANSFER THERMODYNAMIC INVERSE MODEL
12 - °© .
= L » J model initial lower upper final value
£ r ST o o ° : parameters guess limit limit 25° 30°
= 9r o o § o] ho (cm) 1.00 1.00 8.00 2.87 3.58
§ o o o ] ap (cm) 0.0120 0.0120 | 0.0150 | 0.0128 0.0121
S 8- ©a © 7 e ¢ R . © Js 0.00200 | 0.00150 | 0.00200 | 0.00169 | 0.00163
£ s e 2 2 Z Z © - Sio (%/00) 20.0 15.0 20.0 15.6 15.1
sk edo 2 ° 2 S ] ds (°Joo/cm) | 0.50 0.50 0.80 0.50 0.54
o © e(W/m2/°C) 10.0 8.0 12.0 8.0 8.0
0 I I SRS E RS W T SR SO B! I SR
0 10 20 30 40
Elapsed Time (hours) 15 —————F———— T

Fig. 8. Thickness retrieval without time-series information. The circles show

possible combinations of thickness, brine pocket size, and brine volume, which
may give similar backscattering coefficients at a specific time. Filled triangles
represent inversion results without time-series information. The ground truth
of ice thickness is represented in cross.

Thickness (cm)

the data at one specific time. If the model data do not agree
with the measured data, the model parameters are adjusted. To
minimize the least-squares object function, the entire series L
of simulation and experimental results must be matched. In [
this way, the range of possible retrieved thicknesses from an o 10 0 30 40
initial trial thickness can be reduced and the retrieval may
be robust to the discrepancy between model responses and
measurements. The procedure is then repeated until the eﬁlg,rQ Thickness retrieval with polarimetric time-series data. The boxes
represent the measured ice thicknesses. The solid curve indicates the evolution
threshold is reached. The inverted initial thickness is finally apryeconstructed ice thickness using measured time-series daté atcent
plied back to (4.1) to reconstruct the ice thickness for the entiegle.
growth stage. This inversion algorithm was applied to retrieve
the growth of a sheet of thin saline ice by using the set of
C-band polarimetric radar sequential measurements from the growth rate of ice is no& priori information, the heat
CRRELEX93 experiment. The experiment is detailed in [73}ransfer coefficient is also included as an unknown model
We first consider the thickness retrieval without incorpg?arameter. The unknown model parameters are constrained
rating the time-series information. For this case, each 2®ithin appropriate physical ranges instead of letting all pa-
incident angle data set [73], [86], [87] at a specific timeameters vary freely, which will cause the inversion algorithm
is inverted separately. The open circles shown in Fig.igefficient as well as susceptible to some local minimum
indicate the possible solutions of thickness corresponding atiractions or divergences. Table | gives the initial guesses,
the backscatter at that specific time, while the cross symbeRnstraints, and the inverted values of model parameters for
represent the measured thickness. This ambiguity in the thi¢kis inversion. The constraints on model parametggs ds,
ness retrieval is to be expected since different combinatioasd ¢ are determined by referencing the measured ground
of thickness, brine volume, and brine pocket size may giveuth and the findings in published literature. On the other
a similar backscattering coefficient, i.e., the electromagnetiand, the model parametess and g, are determined based
scattering model alone does not provide sufficient informati@n the forward model simulations and allowed 4815%
to reconstruct the ice thickness uniquely. We further redugariation range. The reconstructed ice thicknesses are shown
the number of unknowns to let the thickness be the oniy Figs. 9 and 10 for two different incident angles 25 ané,30
unknown model parameter, the same set of backscatter daspectively. Itis noted that the retrieved ice thickness obtained
at 25 incident angle is applied to invert ice thickness. Thby using this time-series inversion algorithm agrees very well
retrieved thickness, as denoted by the filled triangles in Fig. 8ith the measured ice growth. The retrieved thickness for the
still shows large fluctuations from the measured ground trut?5° data set appears better than the one foY, 3thich may
which is caused by some measurement uncertainties and lleedue to the larger deviation between model simulation and
inaccuracy of simplified saline ice scattering model. Thisieasured data in cross polarization at thé B@ident angle
example demonstrates an unsuccessful inversion even WitB], [86], [87].
only thickness being the unknown parameter. In summary, an accurate inversion algorithm for the thick-
To avoid the nonuniqueness and noise problems, the inveess of thin saline ice has been developed based on the
sion with time-series measured data is considered next. Télectromagnetic scattering model, ice growth physics, and
initial thickness is the pertinent parameter to be inverted. Sinparametric estimation method. Time-series measured data were

Relative Time (hour)
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15 The C-band and L-band polarimetric SAR data used in this
* 1 study were collected in March 1988 by the Jet Propulsion
Laboratory, Pasadena, CA, SAR onboard the NASA/DC-8
aircraft during the Beaufort Sea Flight Campaign [10] over
a sea ice experimental area, located near M3atitude and
spanned 140-145W longitude. Each frequency channel has
the capability of simultaneously collecting linear like-polarized
(HH and VV) and cross-polarized (HV and VH) backscatter
data. The transmitter alternately drives the HH- and VV-
polarized antennas, while dual receivers simultaneously record
the like-polarized and cross-polarized echoes. In this manner,
e a— the scattering matrix of every resolution element in an image
is measured. The spatial resolution of the four-look SAR data
used here is approximately 6.6 and 11 m in the slant range

Fig. 10. Thickness retrieval with polarimetric time-series data. The boxesnd azimuth directions, respectively. The range of look angles
represent the measured ice thicknesses. The solid curve indicates the evolligoBetween 20 and 70

of reconstructed ice thickness using measured time-series dat@ atcdfent . . . L.
angle. In the Beaufort Sea experiment region, ice conditions com-

prised a mixture of first-year and multiyear ice forms in this

region of transition between the polar pack and younger near

used instead of multifrequency or multiangle data to res_hore_ ice [30]. High ice drift speeds experienced during the
.experiment [106] create newly opened and refrozen leads and

duce the effects of uncertainty and noise. The saline [ ; . .
. ’ . . gffer the opportunity to acquire airborne radar data for young
growth model provides more information to constrain the

. e ieSp over a large range of incident angles. Note that surface-
parametric estimation method. As a result, a better retrieval L g o
ased data of young thin ice are scarce due to its inaccessibility

of thickness is achieved by utilizing these time-series mea- L )
. ) and fragility in the natural environment. Although we do not
surements in this method. The demonstrated accuracy (0 > . .
. i . -~ have direct surface measurements of the thickness, the evi-
the thickness retrieval suggests the potential use of this gl- . L
. o . . dence of the thickness range of the ice is given by the weather
gorithm for retrieving geophysical parameters from time, d ice conditions acquired by the Applied Physics Laborator
series satellite remote-sensing data. The inversion algontr?r“ q y pp y y

is recently applied to the case of ice growth under diurn%(jli S;agﬁ;éﬁ;:‘l;)éa%zggzm ct):levi?;rgrs]?anr;tesnfag:ghérc])us
variations. Comparisons with experiment for such cases wil P P

be reported shortly. hlgh—resolution passjve microwave .observations. The passive
microwave observations were acquired by the Naval Research
] ) Laboratory (previously NORDA), Washington, DC, Ka-band
B. Neural Network Inversion for Sea Ice Thickness scanning radiometer system (KRMS) [32]. Ice properties,
In general, the inversion of geophysical parameters is coineluding salinity, temperature, brine inclusions, and surface
plex because of the multidimensionality, the interrelationshipgughness, have been presented [58].
the dynamics, and the physical interactions under differentThe neural network as a nonlinear estimator is used for
environmental conditions. In this respect, neural networks agfrieving the mean thickness for the young ice. The scattering
particularly suitable because of their ability to adapt to theaodel [58] is used to generate the polarimetric scattering
geophysical multidimensionality and their robustness to noiseefficients of sea ice with a range of thickness between
in realistic remote sensors. Neural networks have been studieé@nd 15 cm at the C- and L-band. The five polarimetric
intensively [60] and have found remote-sensing applicationsdoefficients used here awe, ouy, ovv, Re(oun~), and
snow parameter retrieval with passive microwave data [96] ahd(suny). This data set provides the input—output pairs to
particle size determination with optical data [51] for instancétrain” the neural network such that the resultant network
In this section, we demonstrate the use of neural netwonksuld provide an estimate of the thickness when presented
to invert for thickness of young sea ice with multifrequencwith a set of polarimetric scattering coefficients. The neural
polarimetric microwave data. The approach is to retrieve tmetwork employed in this study consists of an input layer,
ice thickness by using the analytic wave theory model [72)h output layer, and two hidden layers with the nodes in
described in [41] to train the neural network to match measuredch layer connected to each other. The number of input
data in the selection of the ice thickness. There are sevemades for the input layer equals the number of input elements.
types of networks, such as the Hopfield net, the Hamming n#t, this case, the inputs are the five polarimetric backscatter
and the Kohonen self-organizing feature mapping. Here, weefficients. The number of nodes in the second and third layer
use the multilayer perceptron with a modified backpropagatiame 10 and 30, respectively. There is only one output node
algorithm to improve the convergence rate and accuracy [48ince the average ice properties are functions of ice thickness,
Interrelations of physical parameters governed by sea wsich provides an estimate of the thickness of the ice given
physics under typical Arctic winter environmental conditionthe polarimetric observations.
are utilized to restrict the solution space to avoid extraneousFig. 11 shows the overall thickness results of young sea ice
solutions and shorten the required computation time. in the refrozen new leads over the incident angle range, where

Thickness (cm)

Relative Time (hour)
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% —— for both the ice layer and the water below it. It is known that
I ] the field reflection coefficient for such a layer is given by
- - i3)d
g _ Ry + Rye 2(a+1i
\0/ RC(97 d) - 1 + R1R2672(a+i’8)d (46)
n
2]
o wherea = Relik(e, —sin? 6)*/2]; g = Iml[ik(e, —sin? )1/2];
§ R;, R, are the Fresnel reflection coefficients at the air—ice and
= ice—water interfaces, respectivelyis the incident angle, and
d is the thickness of the ice layer. The coherent reflectivity
ol o o ] is given by
40 45 50
T =|R.(6,d). (4.7)
Incident Angle (degree)
An incoherent reflectivity was given by Ulalst al. [98] as
Fig. 11. Comparison of theoretical predictions of ice thickness from neural
network inversion with data taken in the Beaufort Sea. I+ Iy(1 - 2F1)c_4"d secd

Li(0,d) = . (4.8)

1— ]_"1]_"26—4adsec0
_ o owever, it is found that an expression that fits the measure-
data are available. The near range incidence angles (less At petter is
35°) are not shown here because some of the radar data are
saturated in this range and saturated the network. At both C- I = |Ri(6,d))? (4.9)
and L-bands, the estimated average thickness of the lead ice js
between 6 and 9 cm, which shows consistency in the proce\g@.ere
Fig. 11 also shows errors caused-h§-dB uncertainty in the R Ry + Rpem2sectd
. . e (0,d) = — . (4.10)
radar measurements or model calculations in the incident angle 14 Ry Roe—2csectd
range common to C- and .L—ban.ds.' This wprk h{;\s illustrated 1) Surface Backscattering Model ApproachA surface
the use of_ neu_ral network in retnevm_g sea ice thickness froﬁ%\ckscattering model was used in [35] to explain backscat-
polarimetric microwave SAR data with noise. tering from the saline ice layer. It was found that surface
. . . scattering was responding to the total effective permittivity of
C. Reflectivity Inversion for Sea Ice Thickness the ice layer and the water beneath it. It is clear that, when the
In most of the studies in the past on the use of actiweater below is not seen by the radar, only the permittivity of
measurements [35], [58], [86], backscattering coefficients haiee will be in effect. Otherwise, an effective total permittivity
been used for retrieving thin saline ice thickness. It is knowfor the combination of the ice layer and water is sensed. It
that there are a few decibels of fluctuation in these typésthis property that allows the ice thickness to be calculated
of data, and hence, statistical methods, such as the newatah given wavelength. Note that the conventional idea of a
networks, have been used for retrieval. Fluctuations are perfectly plane layer in which we can expect two echoes from
solved by the use of multiple inputs in terms of frequencyhe top and bottom ice interfaces is not applicable here because
polarization, and/or the incident angle and their known relatitbe ice—water interface may be rough and the echo may be
values. Clearly, a data set with much less fluctuations wiiffused and difficult to detect. In the next subsection, we shall
provide even better results in identifying ice thickness arsike that this idea is supported by reflectivity measurements.
may allow a simple and more direct retrieval in some cases. It is known that when the ice surface is randomly rough,
In this section, we consider the relations between ice thicktany samples are required to reach the statistical average.
ness and both the coherent and incoherent reflectivity prop&hus, generally, there is some fluctuation in the data. In
ties of a layer of saline ice over saline water. It is shown th&ig. 12, we show a comparison between backscattering calcu-
a new incoherent reflectivity along with the standard coherdations at 5.3 GHz and data plotted versus ice layer thickness
reflectivity are needed to explain reflectivity measurementst 25 and 40 incidence using the integral equation surface
Physically, it is clear that when the ice is less than artattering model [34]. The coherent reflection coefficient due
comparable to the incident wavelength, the transmitted atala layer is used for ice thickness up to 2 cm, beyond which
reflected fields within the ice interfere coherently. This ise use the effective permittivity inverted from the incoherent
true when the ice thickness is about a wavelength or lesdlectivity to calculate backscattering. The permittivity of the
in ice. When the ice gets thicker, the lower interface gesaline ice is taken to be 3.4-i0.2. The permittivity of the
rougher and loss gets higher, the coherency between #adine water is computed based on the formula given in [98]
transmitted and reflected field is lost and the reflectivities at —5 °C. The correlation function of the surface is taken
VV- and HH-polarizations become incoherent. The transitidie be exponential, and its rms height and correlation length
takes place between one and two wavelengths. Measuremeaméstaken to be 0.08 and 0.8 cm, respectively. While there is
of reflectivity taken over two wavelengths in ice followan overall agreement, a deviation of a few decibels between
incoherent reflectivity behavior quite well. model predictions and data are evident. Similar deviations
For a continuous incident wave, the impedance seen bybi#tween model predictions and data are also evident in [58]
at the air—ice boundary is the total field impedance accountingd [86].
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Fig. 14. Comparisons of coherent and incoherent reflectivity model results with measurements at incidence angle$ andap2%0. C' denotes coherent
reflectivity, R denotes incoherent reflectivity in (4.9), add denotes the reflectivity in (4.8).

If instead of theoretical estimates of reflectivity we use the 2) Ice Thickness Retrieval:Reflectivity measurements
permittivity inverted from measured reflectivity in the surfacevere carried out over saline ice at 25 and®4ficidence
scattering model, we obtain better agreement &ti@éidence and 5.3 GHz. In Fig. 14, comparisons are shown between
but no significant improvement at 4@nhcidence, as shown in measured data and the coherent and incoherent reflectivities
Fig. 13. For this reason, a direct retrieval of ice thickness ggven by (4.7)—(4.9) as a function of ice layer thickness. Of
not feasible. A statistical method, such as a neural netwothe two incoherent reflectivity models, it is seen that (4.9)
could be used [58]. gives a better fit to the data than (4.8). More importantly,
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there is very little data fluctuation after the ice thickness wency is observed in infrared imagery [44], [66], [112]. Using
larger than 4 cm. It appears that, when the ice thicknesstli®rmal infrared imagery and a thermodynamic model for ice
less than or around one wavelength, the wave transmittgebwth, Yu and Rothrock [112] have demonstrated calculations
into the ice interferes coherently with the field reflected frorof thin sea ice thickness distributions largely to within 2% of
the ice—water interface. Thus, we can only interpret the deganar-based distributions (sonar is considered the most reliable
using a coherent reflectivity model given by (4.7). After abouemote-sensing tool for measuring ice thickness). The largest
4 cm (which is about two wavelength in thickness), the wavelifference between the two distributions (20%) occurs for very
become incoherent and a specific trend appears, as showthin ice. For ice thickness itself, they report an uncertainty
Fig. 14. This specific data trend is much clearer and moire their method of roughly half the ice thickness. Infrared
stable than what can be obtained from the backscatterimgthods suffer by comparison to microwave methods in that
measurements shown in the previous subsection. It appeafsared sensors are limited by cloud cover. Nevertheless, ice
that ice thickness can be inverted directly from reflectivitgurface temperature appears to be a useful proxy indicator for
measurements when the thickness is over one wavelengthsea ice thickness.

D. Proxy Indicators of Sea Ice Thickness V. NEURAL NETWORK CLASSIFICATION OF SEA ICE TYPE

Faced with the difficulties of determining sea ice thickness The purpose of this section is to introduce a classification
through electromagnetic means, people have developed alssheme for sea ice types based on a special neural network
natives to direct thickness measurements, one of these bdingwn as the fast-learning neural network [63], [28]. Learning
the use of proxy indicators. A remotely sensed proxy indicator a neural network can be viewed as minimizing the sum
of sea ice thickness is a characteristic, physical property, afr the squared errors between the desired outputs and the
suite of physical properties that is tied to ice thickness amtdmputed network outputs by adjusting the weights inside the
has a measurable electromagnetic signature. To date, the mestvork. One problem with the conventional backpropagation
successful general proxy indicator of ice thickness that caeural network learning method is that the resultant error is
be determined through remote sensing has been ice typehighly dependent on the initial weights [83] and may not
age [8], [57], [59], [103] First-year ice (ice that is less thafind the global minimum of the error function. The fast-

a year old) is in general thinner than multiyear ice (ice th#arning algorithm has been shown to be much less sensitive to
has survived one or more melt seasons). The age of seathis problem [27]. The Fast-learning method differs from the

is manifested by a suite of physical properties, such as bribackpropagation in that the output of the fast-learning neural
pocket size and brine distribution, that affect scattering ame&twork is expressed as a linear function of the output weights,
emission of radiation. A separation between first-year amahd linear equations can be solved exactly to minimize the
multiyear ice, however, only gives rough information aboutaining error. The basis functions of these linear equations are
ice thickness. the sigmoid activations commonly found in neural networks.

For thin sea ice, proxy indicators other than ice type haviéhe advantages of the fast-learning neural network over the
recently been investigated. In the microwave, experiments doackpropagation neural network for a sea ice classification
models have indicated that electromagnetic signatures of npmblem are demonstrated in this section.
sea ice are tied to surface roughness and dielectric propertiegvhen considering training data for neural networks to
[31, [29], [89], [91], [101]. Through modeling, Zabedt al. perform classification, it is necessary that the training data
[113] looked into the competition between the influence dtilly represent all of the domain of the input set rather than
near-surface dielectric changes and surface roughness chapgesarily the means, as in A-means classification. This is
on the microwave backscatter of young, growing sea icgue to the fact that the neural network needs to know where
They found that surface roughness changes tend to dominatgosition the discrimination planes #mdimensional space.
over dielectric changes after the initial 10 cm of ice growthilhe performance of a neural network in classification problems
Unfortunately, surface roughness is not a reliable proxy ifls more dependent on having representative training samples,
dicator of ice thickness because it can change rapidly duewbereas the statistical classifiers need to have an appropriate
events, such as snowfall and ridging. A more reliable, thouglistribution model for each class. This is an important differ-
transient, event may be the growth of frost flowers, whichnce between the neural network and conventional statistical
typically happens while the ice is about 5-20 cm thick antlassification.
results in strong microwave backscatter. Zabelal. [113] A large amount of data currently available to the remote-
also hypothesized that the surface dielectric constant of ssasing community originate from aircraft and satellite-based
ice may serve as a proxy indicator for young sea ice thickngdatforms. These data usually have little or no ground-truth
when using microwave sensors operating at an incidenioformation that would allow them to serve as training data,
angle of about 12 At this angle, experiments showed thats required in a supervised classification scheme. Although
the microwave backscatter is largely insensitive to surfatiee unsupervised classifiers or clustering algorithms can group
roughness. data into logical sets that have similar features, these classifiers

Another proxy indicator for thin sea ice thickness is ice sudo not identify what specific ice type each cluster represents.
face temperature. The basic idea is that the surface temperafungossible method to identify the ice type associated with a
of thin ice tends to be higher than that of thick ice. This tereluster is to compare it with clusters from known ice types,
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TABLE I
SUMMARY OF RADIOMETRIC AVERAGES FOR THEEIGHT CLASSES CONSIDERED. ALL VALUES GIVEN ARE IN KELVIN

Channel  Open  Frazil Ice Thin Ice FY 2nd Year Inter. MY Old MY

Water (mix)
19V 197.6 241.5 252.6 246.7 239.7 234 231.6 223.7
29V 206.1 241.8 251 244.2 236.3 229.6 2264 2177
37V 214.5 241.4 247.4 2358 223.7 216.2  206.7 195.9
85V 240.9 244 237.1 218.7 210.8 208.7 195.1 193.1
19H 136.5 208.6 233.6 228.7 220.7 214.5 214.4 206.4
37H 160.3 215.5 232.5 2214 208.8 199.4 194.3 183.7
85H 203.6 226.7 225.9 207.9 199.8 197.2 185.6 183.5
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Fig. 15. Identification of unsupervised classification cluster centroids using an emission model from [34].

which serve as ground truth. If only the mean radiometriato eight classes using an unsupervised ISODATA algorithm
values of ice types are available, another method is to U3®] These eight classes of ice can be identified with either
a validated scattering or emission model. The model shoudtlisters of radiometric measurements from known ice types
produce the mean value, when the model parameters taloguired from radiometric images [27] or using a calibrated
on their mean values for a given ice type. Variations of themission model. An emission model can be calibrated with any
model parameters about their mean values should allow #mission data representative of known ice types. A sufficient
model to generate the cluster. Thus, a physical emission modember of such data sets are difficult to find. To illustrate this
calibrated by a data set from a known ice type may be usegproach, an emission model based on the radiative transfer
to identify a cluster of the same ice type. To illustrate thmethod [34] is used to fit centroids already established by
classification method with a fast-learning neural network, wj@3]. The centroids of the ice categories used are given in
shall consider a specific example using radiometric data frofable Il. An example of model calibration is shown in Fig. 15
the spaceborne SSM/I platform. for open water, frazil ice, first-year ice, and multiyear ice.
1) Classification ExampleThe SSM/I is a seven-channel,Once the calibration process is complete, we can apply this
four-frequency, linearly polarized, passive microwave raalibrated model to determine the ice types represented by the
diometer system [47], [80]. The instrument measures surfagight clusters found using unsupervised clustering.
brightness temperatures at 19.3, 22.2, 37.9, and 85.5 GHzAfter the original image is classified using the unsupervised
All data are at 53 from nadir. Data from March 1-15, 1988 ,method and the identity of each class is known, the final
are processed to remove outliers. The data are then clustariedsified image can be used as pseudoground truth for a
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188 TABLE Il
| COMPARISON OF TRAINING TIME, ITERATIONS, ERROR
] UsING 7-15-8-8 ToroLoGY—(THERE WERE 30512
“'4._;: e S PATTERNS IN THE CLASSIFICATION TRAINING FILE)
e Hh““n."w Kl ks Job Name Time Required Iterations Avg Time(sec) Min Error%
5 g T "-r"'.'.-'-'-":'-"'-."-""'r,' oMt ira /Iteration
"': : !_{r" . I BP-18522 19558.8 500 39.12 16.76
g 10 (8] Backfiog om0 wsld BP-18513  19526.9 500 39.05 14.86
) | et — DackPTOH Dol 6 gl B BP-18494 19521.07 500 39.04 34.51
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| Ly Back Frof domi 2 i
o et A FL+BP 6736.9 150 44.91 3.382
o - L
e
= [FL welh 2¥ lor Hidden
1 A S N —_— | i - i
3 00 200 300 00 o Wwas allowed to run three times as long as fast-learning, the

Trainig Eeenfion backpropagation training error is a full magnitude greater.
Although the combined fast-learningbackpropagation did
Fig. 16. Comparison of training classification error as a function of iteratiog) ightly better than fast-learning alone, the additional training
for the five cases listed. The training set contained 30512 patterns. All . iustifi h’ he f | . .
networks used the same fully connected 7-15-8-8 topology. time required may _nOt be Ju?’t' ied. Thus, the fast- earning 1S
the method of choice for this problem. The fast-learning
_ - backpropagation classified image is shown in Fig. 17(b) along
supervised neural network classification scheme. Represegan the results of the NASA Team Algorithm (NTA) [90] in
tive data from each of these eight classes and an associgigfl 17(a). This figure provides a qualitative comparison of
class identification tag are dumped to a file and used fQitiyear concentration from NTA with the ice ages estimated
data. For the example considered, the neural network Wilam Strait (north of Svalbard) labeled “p1” and the region
need to have seven inputs (one for each radiometric chanl]ggt north of Ellesmere Island (labeled “p2”).
and eight outputs (one binary output for each class). Fromin symmary, a validated emission model can be combined
experience with similar data, two hidden layers with 1gjith other techniques, such as the fast-learnindpackpropa-
and 8 units, respectively, are used in the neural netwogation neural network, to effectively perform classification for
This four-layer network is commonly denoted by 7-15-8-&omplex problems, such as sea ice. In this example, we used
A conventional backpropagation learning algorithm and the clystering algorithm that is better suited for data without
fast-learning algorithm are used to train the neural networkround truth and then applied an emission model to determine
The primary difference between the fast-learning method aggss identity. This approach allows us to use the results of the

the backpropagation method is that the fast-learning methggstering algorithm to train a neural network that can then be
finds the global minimum of the error function with respecised to process data in large volumes.

to output weights, not with respect to all weights within
the network as the backpropagation method does. The fast-
learning method is optimizing the output weights rather than
all hidden weights as required by the backpropagation al-Techniques of electromagnetic inverse scattering theory
gorithm. In addition to these two methods, a third hybrilave been applied to the problem of sea ice remote sensing.
method combining fast-learning and backpropagation is alkwerse algorithms designed to reconstruct complex permittiv-
used (fast-learning- backpropagation). After solving for theity profiles and thickness information on sea ice have been
output weights as performed by the fast-learning methodeveloped and tested in settings ranging from a foam/dry
the combined fast-learning backpropagation method useswall slab system in the laboratory to laboratory grown saline
backpropagation to correct the hidden weights. ice and Arctic sea ice. The work presented here represents
Results: All three algorithms (backpropagation, fastthe first concerted, interdisciplinary effort aimed specifically
learning, and fast-learning- backpropagation) were testedat the problem of reconstructing sea ice physical parameters
on the same training file using the same 7-15-8-8 fulliyom scattered electromagnetic field data. For example, sea ice
interconnected topology. The training set consisted of 30 5ftickness has been a long sought after parameter. The present
training patterns. Three separate attempts to train the netwarbrk establishes a foundation upon which practical methods
using backpropagation were made; each with different learninfjlarge-scale inversion for sea ice thickness, at least for the
rates and momentum factors [83]. The time required fémportant case of thin ice, may well be based, as well as
training the network, the final classification error, and thédirections for further inquiry.
number of iterations required are given in Table Ill. The One of the byproducts of a focused effort on such a tech-
classification error during training for all methods is plottedologically challenging problem as remotely reconstructing
as a function of epoch in Fig. 16. the physical characteristics of a complex random medium, is
From Table Ill, we see that the backpropagation trainiredvances in the mathematical theories underlying the problem.
algorithm did very poorly in comparison to the fast-learnin@ur work on the sea ice inverse problem has led to fundamen-
algorithms. Note that even in cases in which backpropagatitad advances in the application of layer-stripping techniques

VI. CONCLUSION
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Fig. 17. Qualitative comparison of (a) multiyear ice concentrations with (b) ice age classification results from fast-kpabaicigpropagation neural
network. Based on seven radiometric channels from SSM/I for March 1-15, 1988.

to inverse scattering problems. A new causality method o] S. G. Beaven, G. L. Lockhart, S. P. Gogineni, K. C. Jezek, A. R.

stabilizing solutions, which is a principal challenge in inverse
problems, has been developed. This type of approach has led
to a surprising nonlinear generalization of Fourier analysis,
which is quite significant mathematically in its own right. 4]
Furthermore, rigorously addressing the composite nature of s
ice in this context has led to new developments in the theory of
effective parameters of composite media and, in particular, 5]
a theory of inverse homogenization for recovering microstrucgy

tural features from bulk electromagnetic measurements.

Finally, it should be noted that there still remains much work®!
in refining the algorithms and theoretical results developed
here into practical, accurate techniques for reconstructing sea
parameters from satellite data. Nevertheless, the present w
does take a step in that direction, and we hope that others will]

be motivated to build upon it.
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