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Abstract—Inverse scattering algorithms for reconstructing the
physical properties of sea ice from scattered electromagnetic field
data are presented. The development of these algorithms has
advanced the theory of remote sensing, particularly in the mi-
crowave region, and has the potential to form the basis for a new
generation of techniques for recovering sea ice properties, such
as ice thickness, a parameter of geophysical and climatological
importance. Moreover, the analysis underlying the algorithms
has led to significant advances in the mathematical theory of
inverse problems. In particular, the principal results include the
following.

1) Inverse algorithms for reconstructing the complex per-
mittivity in the Helmholtz equation in one and higher
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dimensions, based on layer stripping and nonlinear opti-
mization, have been obtained and successfully applied to a
(lossless) laboratory system. In one dimension, causality has
been imposed to obtain stability of the solution and layer
thicknesses can be obtained from the recovered dielectric
profile, or directly from the reflection data through a
nonlinear generalization of the Paley–Wiener theorem in
Fourier analysis.

2) When the wavelength is much larger than the microstruc-
tural scale, the above algorithms reconstruct a profile of the
effective complex permittivity of the sea ice, a composite of
pure ice with random brine and air inclusions. A theory
of inverse homogenization has been developed, which in
this quasistatic regime, further inverts the reconstructed
permittivities for microstructural information beyond the
resolution of the wave. Rigorous bounds on brine volume
and inclusion separation for a given value of the effective
complex permittivity have been obtained as well as an
accurate algorithm for reconstructing the brine volume
from a set of values.

3) Inverse algorithms designed to recover sea ice
thickness have been developed. A coupled radiative
transfer—thermodynamic sea ice inverse model has
accurately reconstructed the growth of a thin, artificial sea
ice sheet from time-series electromagnetic scattering data.
Inversions for sea ice thickness have also been obtained
through the application of neural networks to an analytic
wave theory model, a reflectivity inversion scheme, and
the use of proxy indicators. The role of neural networks
in sea ice classification is also considered.

It is anticipated that the broad-ranging advances in inverse scat-
tering theory presented here may find application to closely re-
lated problems, such as medical imaging, geophysical exploration,
and nondestructive testing of materials as well as generating new
techniques for remotely reconstructing sea ice parameters.

Index Terms—Dielectric materials, electromagnetic scattering
by random media, electromagnetic scattering inverse problems,
nonhomogeneous media, remote sensing, sea ice, snow.

I. INTRODUCTION

A. Sea Ice Remote Sensing and Electromagnetic
Inverse Scattering

I N SEA ice remote sensing, observations of electromagnetic
fields scattered or emitted by sea ice are used to characterize

the physical state and dynamics of the sea ice pack. Large-
scale information obtained in this way is important for our
understanding of global climate and the world ocean system
and for conducting operations in the polar regions. Realizing
the potential of remote-sensing techniques depends on the
development of theoretical, as well as practical, methods of
inverting observed electromagnetic data to obtain information
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on sea ice. While there is a substantial body of existing
work on forward modeling of electromagnetic scattering and
propagation in sea ice [107], nevertheless, the application of
forward theory to the inversion of sea ice parameters has been
somewhat empirical andad hoc. In the forward, or direct, prob-
lem, the electromagnetic scattering properties of a multilayer
random medium, such as the sea ice system, are calculated
based on knowledge of its local complex permittivity ,
which takes a wide range of values in the principal constituents
of the sea ice system: pure ice, air, brine, and sea water. In the
corresponding inverse problem, we wish to obtain information
about and the sea ice characteristics from knowledge
of the far-field scattering properties. Electromagnetic inverse
scattering theory [13], [22], [48], [54] has been developed
to address the fundamental problem of reconstructing the
parameters of a complex medium from scattering data.

Here we report on the first systematic effort to use such ideas
to develop inverse scattering algorithms for reconstructing sea
ice physical properties from data on scattered electromagnetic
fields and to compare the reconstructions with experimental
data. This effort has led to significant advances in inverse
scattering theory itself, as well as the successful recovery in
some circumstances of important sea ice parameters, such as
ice thickness, brine volume, and geometry. The recovery of sea
ice thickness for the case of thin ice, as is considered here, is
particularly significant. Heat transfer in winter from the ocean
to the atmosphere can be one or two orders of magnitude
greater through thin ice cover than through thick multiyear
ice [67]. Thickness information on thin ice is thus essential
in heat budget calculations for the polar regions, as well as
in other considerations discussed below. The inverse models
considered here, which yield such reconstructions, are based
on the forward models presented in [41], and this paper is
a continuation of [41]. More background on the interaction
of electromagnetic waves with sea ice, remote sensing, and
the Office of Naval Research Sea Ice Electromagnetics Ac-
celerated Research Initiative (ARI), which led to the present
results, can be found.

As discussed in [41], there is a vast literature on the forward
electromagnetic scattering problem for general inhomogeneous
media extending back to the 1800’s [75], [97]. In contrast,
work on the inverse scattering problem has only recently
progressed from a collection ofad hoc techniques with little
rigorous mathematical basis, to a blossoming field of intense
activity, with the beginnings of a mathematical foundation
[22]. Much of the early work on inverse scattering took place
in the context of quantum mechanics [48], motivated by Ruthe-
ford’s efforts [84] to reveal the internal structure of atoms by
firing energetic particles at them. This work culminated in the
discovery of the atomic nucleus and prompted the development
of the quantum theory and Schrödinger’s wave equation.
Inverse scattering theory for the Schrödinger equation became
a subject of paramount importance. Eventually, Born [6]
showed that if the scattering interaction was sufficiently weak,
there was a simple relationship between the scattered field
and the scattering potential. The Born approximation was
able to verify Rutherford’s classical solution in the high-
energy limit and provided the first linearized solution to

the inverse scattering problem. More recently, much of the
activity has been driven by the central role that electromagnetic
and acoustic inverse scattering play in such technologically
important problems as radar, sonar, geophysical exploration,
medical imaging and tomography, nondestructive testing, and
remote sensing [22], [48]. From a theoretical standpoint,
inverse problems are difficult because not only are they non-
linear, but they are also “ill-posed.” In 1923, Hadamard [45]
introduced the concept of awell-posedproblem, originating
from the philosophy that a mathematical model of a physical
problem should have the properties of existence, uniqueness,
and stability of the solution [54]. If one of these properties
fails to hold, the problem is said to beill-posed. While the
forward electromagnetic scattering problem is well-posed, the
corresponding inverse problem is ill-posed, which is a general
feature of many inverse problems. In particular, given enough
scattering data, often the existence and uniqueness of solutions
to inverse problems can be forced by enlarging or reducing the
solution space. However, in the inverse scattering problem,
large changes in the medium can correspond to very small
changes in the measured data. Because of this, reconstruction
algorithms tend to be unstable, and much effort in this field
revolves around obtaining algorithms that are stable, as we
shall see below.

The main techniques for dealing with inverse problems
[22], [31], [54], [78] include the following: 1) optimization,
2) linearization, and 3) continuation methods, such as layer
stripping and successive linearization. Optimization methods,
in which parameters describing the reconstructed medium
are optimized to minimize the error between predicted and
measured scattering data, have the advantage of being robust
and broadly applicable; their disadvantage is that they tend to
be computationally intensive. Linearization is the method of
choice for a problem that is “close” in some sense to a known
one. For example, the weak scattering, or high-energy situation
necessary for the Born approximation, is “close” to the case
with no scatterer. Continuation methods exhibit different ad-
vantages and disadvantages. Layer-stripping methods involve,
in one way or another, solving for the index of refraction
at progressively increasing depths in the reflecting medium.
In this manner, the medium is mathematically stripped away,
layer by layer, and the medium parameters are found in the
process. Some forms of layer stripping are fast but unstable.
Other continuation methods are more stable but tend to be
computationally intensive.

An issue in inverse scattering theory that is particularly
relevant to the reconstruction of sea ice features is resolution.
The local complex permittivity of the sea ice system
exhibits variations over many length scales. For example,
varies dramatically on a submillimeter scale asmoves from
pure ice into a brine inclusion. When the wavelength is much
larger than the microstructural scale, the wave cannot resolve
the fine structure and it “sees” an effective, homogenized
medium. In the context of inverse scattering theory, the
reconstructed permittivity will then be the effective complex
permittivity for sea ice, which is considered at length in
[41]. This reconstructed effective permittivity will itself likely
vary on a larger scale throughout the ice sheet according to,
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for example, variations in brine volume with depth. In the
case of sea ice, it is quite desirable to be able to further
invert the reconstructed effective complex permittivity data
to obtain detailed information on the nature of the brine and
air microstructure. Such characteristics are closely connected
to the fluid and thermal transport properties of the sea ice as
well as the distinction between different ice types, such as
first year and multiyear, or frazil and columnar. In [41], we
dealt with the forward homogenization problem of how the
microstructure determines . Here we develop a theory of
inverse homogenization, in which data on homogenized coef-
ficients of a composite medium, such as the effective complex
permittivity of sea ice, are inverted to obtain information on
the microstructure, or the local complex permittivity . In
this way, inverse scattering theory can be used in conjunction
with inverse homogenization theory to recover information on
fine details well beyond the resolution of the wave. Our theory
applies at present to the quasistatic regime discussed in detail
in [41], in which scattering from individual brine inclusions is
neglected. The quasistatic assumption, which is certainly not
valid throughout the microwave region, nevertheless provides
a good approximation for the lower frequency part, such as
at C-band.

B. Summary of Main Results

In [41], we noted that the main goals of the ARI were to
improve our understanding of how the physical properties of
sea ice determine its electromagnetic behavior and, in turn, to
use this knowledge to develop and test inverse algorithms for
recovering sea ice parameters from observed electromagnetic
data. In this paper, we show how the forward scattering
models considered in [41] have been used to develop such
inverse algorithms. From an inverse modeling perspective, our
principal results include the following.

1) Stable inverse algorithms for the Helmholtz equation in
one dimension that have accurately reconstructed real
permittivity profiles (neglecting dissipation) from reflec-
tion data. The algorithms are based on a new, causally
stabilized layer-stripping technique, arising from a non-
linear generalization of the Plancherel equality in Fourier
analysis, and nonlinear optimization of parameters via
the Ribere–Polack algorithm. Layer thicknesses can be
deduced either from the reconstructed permittivity pro-
file or directly from the reflection data via an analog
of the Paley–Wiener theorem in Fourier analysis. A
layer-stripping algorithm to recover the complex per-
mittivity for the Helmholtz equation in higher dimen-
sions (including dissipation) has also been developed.
Through a geometrical optics-based technique, the algo-
rithm has accurately reconstructed surface permittivity,
yet at present is unstable for reconstruction at depth.

2) Stable inverse algorithms that have accurately recon-
structed thickness information on thin sea ice from
scattering data. The algorithms employ a variety of
methods: inversion of parameters from time-series scat-
tering data by the Levenberg–Marquardt nonlinear least-
squares optimization algorithm coupled with a radiative

transfer—thermodynamic sea ice model, neural network
inversion of an analytic wave theory model, and reflec-
tivity inversion. The use of proxy indicators of sea ice
thickness has also been explored.

3) A rigorous theory of inverse homogenization in the
quasistatic regime, which has produced an accurate algo-
rithm for reconstructing the brine volume of sea ice from
measurements of the effective complex permittivity. The
algorithm is based on inversion of a series of bounds
on the complex permittivity of sea ice, which in turn
yields bounds on microstructural parameters, such as
brine volume and inclusion separation.

The paper is organized as follows. In Section II, we present
rigorous inverse scattering theory for the Helmholtz equa-
tion and the algorithms that reconstruct permittivity profiles.
In Section III, we consider rigorous inverse homogenization
theory that further inverts these reconstructed permittivities
for microstructural information. Inverse algorithms designed
to recover sea ice thickness are presented in Section IV, and
in Section V, we consider a sea ice classification algorithm.

The main results are summarized as follows. In
Section II-A, we first consider the Helmholtz (2.2) with
an index of refraction (neglecting dissipation),
varying only in the vertical or depth variable, with
constant for (air). It has long been known that the
reflection coefficient , where is angular frequency,
uniquely determines . However, all previous layer-
stripping algorithms for continuous or discrete rely
on trace formulas, and (with one major exception [14])
these formulas are not stable enough to permit rigorous
analysis of convergence and stability. By basing the technique
instead on the nonlinear generalization of the Plancherel
theorem discussed in [41], the first mathematically complete
formulation of a stable layer-stripping algorithm for a
continuous medium has been obtained [94]. Indeed,
both convergence of the algorithm and well-posedness of the
(forward and) inverse scattering problem have been proven.
Moreover, the stability is achieved by imposing causality, at
every depth, on the estimate of the depth-varying reflection
coefficient. The resulting method is surprisingly stable under
noisy perturbations, with reasonable reconstructions, even
with significant noise in the data. The deep connection of
the approach in [94] to Fourier analysis has also led to a
nonlinear analog of the Paley–Wiener theorem [110]. This
classical theorem relates the growth of the transform in the
complex frequency domain to the width of the support of the
function in the real-time (or spatial) domain. The nonlinear
analog of this theorem, which requires only the modulus, but
not the phase of the reflection data, yields the thickness of
the reflecting layer, albeit in a depth coordinate scaled by
the travel time through the layer, so that an estimate of the
effective permittivity of the medium is required to obtain
the actual thickness. In the case of sea ice, even a rough
guess of the effective permittivity provides physical thickness
estimates with accuracies of about 10%.

Subsequently, in Section II-B, we consider an optimiza-
tion approach to inverting for in the one-dimensional
(1-D) Helmholtz equation, neglecting dissipation, developed
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by Borup and Johnson (which is published here for the first
time). The medium is assumed to consist oflayers, and the
forward scattering model used for comparison to the scattering
data is provided by the exact scattering solution for an
layer slab [71]. The least-squares functional measuring the
error between data calculated from the model for a given
discrete permittivity profile and the actual scattering data is
minimized using the Ribere–Polack algorithm [81]. Optimal
permittivity parameters describing are then obtained. The
method has been accurately compared with data taken on a
layered medium consisting of slabs of drywall and polystyrene
foam on top of sand. The causally stabilized layer-stripping
algorithm in Section II-A has also been applied with apparent
success to this same data set.

A layer-stripping algorithm that reconstructs the complex
permittivity , where is the (real)
permittivity, is the permittivity of free space, and is
the conductivity in a perturbed dissipative half space [16], is
presented in Section II-C. The algorithm involves two steps,
first finding the medium parameters on the surface and then
synthesizing the data on a subsurface. A method, based on
geometrical optics, which reconstructs the surface parameters
by taking into account the change in pulse shape when the
pulse is reflected from a dissipative medium, is developed.
In particular, geometrical optics predicts that an incident
delta function will reflect as a delta function plus a series
of terms with increasing smoothness. The coefficient of the
second-order term can be used to obtain the conductivity. To
synthesize subsurface data, the scattering data can be used
to obtain the Dirichlet-to-Neumann map, and then this map
can be used to obtain a Riccati equation for the subsurface
data, which is then solved iteratively, beginning with the
surface parameters constructed first. The reconstruction of
surface parameters gives good results on simulated stepped-
frequency radar data, but the layer-stripping algorithm is at
present unstable.

In Section III, the question of how to recover the mi-
crostructure of a composite material, such as sea ice, from
measurements of its effective complex permittivity in
the quasistatic regime is rigorously addressed. In [41], we
presented a series of forward bounds on, which grow
tighter as more microstructural information is known [36],
[39], [85]. These bounds are based on a Stieltjes integral
representation for involving a spectral measure, which
depends only on the geometry of the microstructure. A the-
orem is presented which establishes that, if the values of

are known along some arc in the complex plane, which
could be a small interval along the real axis, the measure

can be uniquely recovered [18]. Knowing yields all
the statistical properties of the microstructure, and from the
point of view of effective properties, completely determines
the microstructure. However, as may be expected from our
discussion of inverse problems, this problem is ill-posed and
requires regularization for stability of the solution. Never-
theless, for a single-known value of, the forward bounds
can be inverted to obtain rigorous bounds on microstructural
parameters, such as brine volume [19] and inclusion separation
[77], which is related to connectedness of the brine phase.

For many known values of , these inverse bounds yield an
accurate algorithm for recovering microstructural parameters.
This algorithm has been applied to C-band measurements of
the effective complex permittivity of laboratory grown sea
ice, and it has accurately reconstructed brine volume data.
Information on brine volume and connectedness is important
in understanding the transport properties of sea ice, which
undergo a fundamental transition at the critical brine volume
fraction % for percolation [40]. This transition in the
transport properties plays a significant role in a number of
processes in the geophysics [1], [62] and biology [33] of sea
ice, particularly in the Antarctic. Inversion for such detailed
microstructural information offers the prospect of remotely
monitoring these processes.

The thickness distribution of sea ice plays a key role in the
geophysics of the polar regions [102]. Together with the ice
extent, it defines the response of sea ice to climatic changes,
and together with ice velocity, it defines the mass flux of
sea ice. By itself, the thickness distribution is a quantity
of central importance in ocean-atmosphere heat exchange.
It is particularly important to understand the details of the
distribution for thin ice, such as in leads, which permit
large heat fluxes. Net heat flux through thin ice occupying
a relatively small aereal fraction is significantly larger than
through thick, multiyear ice [67], [68]. While recovery of the
sea ice thickness distribution is of clear significance, obtaining
such information on a large scale has remained a challenging
problem. Submarine sonar profiling has provided an accurate
characterization of the thickness distribution over some areas
of the Arctic basin, yet this method has serious limitations
of spatial coverage and temporal resolution [102]. Remote
sensing can overcome these limitations, but the success of
this approach has been somewhat limited. Analysis of active
and passive microwave signatures of sea ice, and how they
depend on thickness, has shed some light on this problem
[43], [46], [102], [108]. However, the basic question of how
to directly reconstruct the thickness of a complex, dynamic
medium, such as sea ice, from electromagnetic scattering data
has remained, from an inverse theoretic point of view, largely
unaddressed. In Section IV, we present inverse scattering
algorithms that can reconstruct sea ice thickness for the
important thin ice case. Along with the methods discussed in
Section II, namely, the nonlinear Paley–Wiener theorem and
recovery from the dielectric profile, these algorithms provide
the first concerted effort at directly attacking the thickness
reconstruction problem.

First, in Section IV-A, an algorithm, based on radiative
transfer theory, to invert for ice thickness from time-series
scattering data, is presented [86], [87]. The algorithm uses a
parametric estimation approach in which the radiative transfer
equation is used as the direct scattering model to calculate
the backscattering signatures from the sea ice. The Lev-
enberg–Marquardt method [65] is employed to retrieve ice
thickness iteratively. Additional information provided by the
saline ice thermodynamics is used to constrain the electro-
magnetic inverse problem to achieve a reasonably accurate
reconstruction. The algorithm is applied to reconstruct the
growth of a sheet of thin saline ice by using C-band (with
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center frequency 5 GHz) polarimetric radar measurements
taken sequentially in time, during the United States Cold
Regions Research and Engineering Laboratory, Hanover, NH,
1993 Experiment (CRRELEX’93). Agreement with the data
is obtained.

In Section IV-B, the use of neural networks to invert for the
thickness of young sea ice with multifrequency polarimetric
microwave data is demonstrated. The approach is to retrieve
the ice thickness by using the analytic wave theory model [41],
[72] to train the neural network to match measured data in the
selection of the ice thickness. The multilayer random medium
model used allows for the inclusion of surface and volume
scattering, contributions from a slush layer, and roughness at
the interfaces. There are several types of neural networks,
but here, the multilayer perceptron is used, with a modified
backpropagation algorithm to improve the convergence rate
and accuracy [49]. Interrelations among physical parameters
governed by sea ice physics under typical Arctic winter
environmental conditions are utilized to restrict the solution
space to avoid extraneous solutions and shorten the required
computation time. The algorithm accurately retrieves thin ice
thicknesses from polarimetric synthetic aperture radar (SAR)
data taken in the Beaufort Sea, Antarctica.

In Section IV-C, the relations between ice thickness and
both the coherent and incoherent reflectivity properties of a
layer of saline ice over saline water are considered. It is shown
that a new incoherent reflectivity along with the standard
coherent reflectivity are needed to explain reflectivity measure-
ments. For thicker ice, the coherency between the transmitted
and reflected field is lost and the reflectivities of VV- and
HH-polarizations become incoherent. The transition to this
type of behavior takes place when the ice thickness is between
one and two wavelengths, and it is found that thickness can
be inverted directly from reflectivity measurements when the
thickness is over one wavelength.

Proxy indicators of ice thickness are discussed in
Section IV-D. A remotely sensed proxy indicator is a
characteristic, physical property, suite of physical properties
that is tied to ice thickness, or some other characteristic,
and that has a measurable electromagnetic signature. In this
section, the use of surface roughness, dielectric properties,
and surface temperature are explored as proxy indicators
for sea ice thickness.

Finally, in Section V, we consider a classification scheme
for sea ice types based on a special neural network known
as the fast-learning neural network [28], [63]. The scheme is
illustrated with a specific example using passive radiometric
data from the spaceborne SSM/I platform. After the original
image is classified using an unsupervised method and the
identity of each class is known, the final classified image can
be used as pseudoground truth for a supervised neural network
classification scheme. Representative data from each class and
an associated class identification tag are dumped to a file and
used to train the neural network. The trained network classifier
can then be used for batch processing satellite or aircraft data.
Eventually, it is hoped that such practical methods can be
combined with the rather theoretical results and algorithms
presented earlier in this paper, to systematize the inversion of

important sea ice parameters of geophysical, climatological,
and operational significance.

II. I NVERSE SCATTERING THEORY

FOR THE HELMHOLTZ EQUATION

In this section, we formulate the inverse scattering problem
for the inhomogeneous Helmholtz equation with local complex
permittivity and present algorithms that reconstruct ,
or partial information about , such as layer thicknesses
or surface permittivities, from far-field scattering data. This
section is a continuation of [41, Section II]. For completeness,
we include here the basic setup and definitions.

The sea ice inverse scattering problem can be modeled
as a half-space problem in , where measurements are
made in the upper half-space, which is homogeneous and
nondissipative, while the lower half-space is inhomogeneous
and dissipative. We consider an electromagnetic wave of a par-
ticular frequency in such a medium (assumed nonmagnetic),
whose time-harmonic electric field is given by

in , with
and the frequency in hertz. The relative complex

permittivity of the medium, assumed locally isotropic,
is given by , as above. In the upper
half space occupied by air , with zero imaginary part.
In the lower half space occupied by sea ice, snow, and sea
water, takes a wide range of values in the constituents.
The electric field satisfies Maxwell’s equations, or the
vector wave equation derived from them. For simplicity, we
assume that the medium is unchanging in thedirection, and
we consider the transverse electric (TE) polarization case with

in the direction. Under the time-harmonic
assumption, satisfies the Helmholtz equation with
spatially varying complex permittivity

(2.1)

where is the free-space wavenumber ,
is the magnetic permeability of free space,is the velocity

of light in free space, and the Laplacian is two-dimensional
(2-D) in the and variables. It will be useful in (2.1) to
write , where is the index of
refraction and .

The inverse scattering problem for (2.1) consists of deter-
mining from the far-field pattern or, more precisely,
from knowledge of the scattering operator that maps incident
fields to scattered fields. Existence and uniqueness of solutions
to the inverse scattering problem for (2.1) in various settings
are discussed in [11], [12], [16], [21], [22], [54], [56], and
[64]. Due to the often layered nature of the sea ice system,
we are particularly interested in (2.1) in the 1-D case with
depth variable . The inverse scattering problem in
this case, including dissipation, with , has
been studied by a number of authors. In particular, the papers
[11], [12], [56], and [64] show that time-domain backscattered
data from a single incident plane wave is not enough data to
determine both and if and are smooth. In this
case, both reflected and transmitted data are needed. If, on
the other hand, and have a jump discontinuity at the
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bottom, backscattered data do suffice to determine both. This is
because the reflected data from the discontinuity at the bottom
provides information that is similar to transmission data. In the
following section, we consider a new type of layer-stripping
algorithm for solving the inverse scattering problem for the
Helmholtz equation in one dimension.

A. Inversion by Causally Stabilized Layer
Stripping in One Dimension

The term layer stripping applies to a variety of inverse
scattering methods that involve the use of reflection data to
solve for the index of refraction at increasing depths in the
reflecting medium (i.e., at progressively greater distances from
the level at which the observations are made). A “reflection
coefficient” at each depth is computed, which in physical
terms, is that reflection coefficient that would exist if we were
to replace all of the material above that depth with material
having a constant refractive index equal in value to that of
the actual refractive index value at that depth. If we take into
account no physics other than that inherent in the Helmholtz
equation, errors in refractive index estimates at shallow depths
lead to unphysical estimates of the reflection coefficient and
refractive index deeper in the medium.

The essential element in causally stabilized layer stripping
is that werequire, at every depth the estimate of the depth-
varying reflection coefficient correspond to a causal impulse
response for the remaining reflecting material. It turns out
that a simple enforcement for frequency-domain reflection
coefficients is sufficient to guarantee stability of our inverse
solution in the presence of noise in the data. Moreover,
work to establish the method has lead to two theorems
that generalize theorems in standard Fourier analysis to the
nonlinear inverse problem, that is, to the situation in which
multiple reflections in the reflecting medium are significant.
One of these theorems turns out to be useful in its own
right as means of estimating the travel time thickness of a
reflecting layer (and, if appropriate ancillary information about
the permittivity is available, the physical thickness of the layer
as well). These results have been established rigorously for
the case of wave propagation in a system governed by the
Helmholtz equation without loss and without discontinuities in
dielectric properties. Computational evidence shows, however,
that simple modifications of the same results provide usefully
approximate solutions in problems, including both dielectric
jumps and loss typical of sea ice.

In the following, we first briefly recall the forward scattering
problem from [41] and our analog, for the reflection problem,
of the Plancherel equality in linear Fourier analysis. We
then outline our causally stabilized layer-stripping algorithm,
followed by our analog of the classical Paley–Wiener theorem,
which relates the travel-time thickness of a reflecting layer
with finite physical thickness to a Fourier transform of a
nonlinear function of the reflection data. We demonstrate the
utility of these results using laboratory data from a system
somewhat simpler than sea ice.

The Helmholtz equation governing the time-harmonic wave
field in one dimension, assuming sources only at infinity

and neglecting dissipation, is

(2.2)

We assume that differs from one only on the interval
, and that is square-integrable on that interval.

The auxiliary equation for the wave field as
a function of the depth variable is

(2.3)

where and . For ,
may be written in the form

(2.4)

which uniquely defines the reflection coefficient . The
additional requirements that the time-domain impulse response
of the reflecting medium be real and causal, i.e., that there
can be no response prior to excitation, force ,
for on the real axis, where the overbar denotes complex
conjugation and to extend analytically to the upper half
of the complex -plane. Equation (2.4) represents the wave
field above the reflecting medium in terms of reflected and
incident plane waves. Inside the reflecting medium, we define
a “depth-dependent reflection coefficient”

(2.5)

where , so that and has the
physical meaning of a reflection coefficient [in the sense of
(2.4)] anywhere that . The nonlinear Plancherel equality
relating the “energies” of and [41], [93], [94] is
given by

(2.6)

Direct computation using (2.3) and (2.5) leads to a Riccati
equation for the depth-dependent reflection coefficient

(2.7)

with the boundary condition . Using an
integrating factor to formally solve (2.7) yields an integral
equation for

(2.8)

We solve the inverse problem via the following observation.
If we do not require that causality be satisfied, any choice
of and will produce an . If we insist
that causality be satisfied, the previous statement still holds
provided , i.e., when lies above . However, when

is beneath , i.e., , there is only one possible
choice of that can combine with a causal to
produce a causal . That is, when noncausal results are
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excluded, one input (a causal ) can only produce a
unique pair of outputs for [94].

While previous layer-stripping methods deduced via
an additionaltrace formula(which always relied on data in
the high-frequency limit), we deduce by simply requiring
that correspond to a causal impulse response (as any
true physical solution must). To accomplish this, we first
define a pair of projection operators that, when applied to a
frequency-domain function, project out its causal and acausal
parts.

Define Fourier transformation of a function ofto -space
by

(2.9)

and the corresponding inverse Fourier transformation by

(2.10)

Define to be the characteristic function of the
interval , i.e., that function that is one betweenand

and zero elsewhere. From these components, construct the
operator

(2.11)

where is just a test function. The idea here is to take
a function of , compute its (travel) time-domain counterpart
[the innermost operation in (2.11)], select out only that part of
the travel-time response in the interval , and then return
that edited response to the frequency domain.

Thus, selects that part of a function that could
be caused by events (in our case, reflections) below depth

. (Note that by our choice of coordinates, is a scaled-
depth coordinate rather than a physical time—it is negative
and decreasing with increasing depth in, or time lag until the
corresponding temporal response of, the reflecting medium.)
Correspondingly, selects that part of the function due
to events above ; because the refractive index is constant
above , in our problem. Clearly then,
any causal must satisfy

(2.12)

and

(2.13)

From (2.8) then, we must have

(2.14)

and

(2.15)

Equations (2.14) and (2.15) form a pair of equations that we
can solve iteratively at each depth step to estimate the unique
causal pair .

Our iterative solution proceeds as follows. We approximate
the terms in the integrands of (2.14) and (2.15) by the
product , thus obtaining a set of (approximate)
equations for at the discrete depths and . We implement
the projection operators in terms of Hilbert transforms by using
a numerical algorithm given by [105]. Finally, we choose a
sufficiently small depth step to allow approximation of
by a constant (which is unknowna priori); we estimate the
constant initially from alone, plug the estimate into
the system of equations to produce an estimate of and
a refined estimate of the constant, and so on until we obtain
a pair that satisfy the (discretized) causality-
enforcing equations to within a satisfactory tolerance. We then
use as the new “data” for the next depth step into
the medium. We proceed into the medium until the energy
of declines to a negligible fraction of its value just
above the reflecting medium. A rigorous, detailed proof of the
convergence of this algorithm to the true solution is contained
in a forthcoming paper [93]. A third paper explaining our
numerical methods, results, and the physical insight available
from those results is in preparation [109].

Note that all of the results and methods discussed so
far are established rigorously only for the case of a real,
square-integrable profile of , i.e., for a reflecting medium
that does not absorb (as sea ice and many other natural
media certainly do) and in which there are no abrupt jumps
in dielectric properties (as there are, for example, at the
upper and, probably, lower surfaces of sea ice). However,
the propagation regime in many lossy geophysical media,
including in particular sea ice, is nonetheless predominantly
a propagating regime—losses are not so high that the intuitive
picture of phase and energy transport in electromagnetic waves
in sea ice breaks down, and although the boundaries of sea ice
are sharp on the length scales of the centimeter-wavelength
radiation typically used to probe them, for any data of finite
bandwidth, we may approximate the boundaries as rapid but
continuous variations in refractive index. Thus, there are at
least heuristic reasons to believe that application of our meth-
ods to bandlimited sea ice data can yield usefully approximate
results. A quantitative investigation of these ideas will appear
in a forthcoming publication. For now, we simply note that
limited computational and experimental experience supports
some optimism. We substantiate this claim briefly below.

1) Analog to the Classical Paley–Wiener Theorem:The
Paley–Wiener theorem in classical Fourier analysis relates the
growth of the Fourier transform in the frequency domain to the
size of the region on which its (inverse) Fourier transform is
nonzero. Our analog of this theorem for the reflection problem
provides the depth range, in the scaled-coordinate, over
which is nonzero (i.e., the range of over which the
refractive index varies), as a Fourier transform of a simple
nonlinear function of the reflection data [93]. (This result arose
more or less as a byproduct of our investigation leading to the
preceding results.) Specifically, the width of the region on the
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-axis over which the function

(2.16)

takes nonzero values is equal to the thickness of the depth
range, in , over which the refractive index varies.

Thus, a relatively simple operation, performed directly on
data, suffices to determine the scaled thickness of a reflecting
layer—a remarkable simplification if we do not require a
full estimate of the refractivity profile. The price for this
simplicity is that the layer-thickness estimate is given only in
scaled depth; conversion to actual physical depth still requires
information on the refractive index within the layer.

There are many physical situations, though, in whicha
priori knowledge of the range of possible refractive index
profiles suffices to produce an acceptably accurate estimate
of physical layer thickness. Suppose that the profile of relative
permittivity, i.e., the square of the refractive index, is known
on physical grounds not to vary over a range larger than, say,

. Then the average relative permittivity within the layer is
between one and , and the accuracy of conversion from
scaled to physical layer thickness depends only the square root
of this average. Thus, our analog to the classical Paley–Wiener
theorem appears to constitute a useful practical result in its
own right.

2) Analysis of Experimental Data:The series of CR-
RELEX experiments conducted during the ARI has produced
at least two sets of wideband, vertical incidence reflectivity
measurements of simulated gray (sea) ice, in addition to indoor
laboratory measurements of a layered dielectric system with
lower losses and smaller dielectric jumps than those typical
of sea ice [42]. Both sets of measurements of simulated sea
ice are of high quality, but those by Gogineni and Jezek [42]
involve ice of only one, rather large thickness and evidently
do not contain frequencies low enough to probe the entire ice
thickness, while independent measurements by Onstott [42]
for a range of thicknesses lack reflection phase information.
We therefore present here a sample application of our methods
to the indoor laboratory data from a simplified system that
have been gathered by Borup and Johnson (see Section II-B).

Briefly, the laboratory system consisted of a pair of horn
antennas suspended over an artificial-layered system. The an-
tennas were arranged to measure vertically polarized reflection
at a reflection angle near 10. The layered system consisted of
two planar layers over a basement. The layers were composed
of common gypsum wallboard and styrofoam, measuring 2.54
and 5.59 cm, respectively. The deep (presumably, effectively
infinite) basement consisted of sand. Independent, contact-
method measurements of the permittivities of the system
constituents were not reported to us. Measurements of the com-
plex reflection coefficient of the system at frequencies from
roughly 1 to 18 GHz were obtained from stepped-frequency
observations. The geometry of the system is represented in
Fig. 1. We used these observations directly in a numerical
implementation of our inverse method (neglecting for now the
slight variation from vertical incidence in the experimental
data), with the results shown in Figs. 2–4.

Fig. 1. Geometry of the drywall-polystyrene foam-sand dielectric profile that
was scanned from 1 to 18 GHz at an incident angle of 11.5� in the laboratory
by Borup and Johnson.

Fig. 2 shows our retrieval of (solid line) as a function
of travel-time (in nanoseconds). Peaks at the boundaries of
the wallboard and sand interfaces are the dominant features.
For comparison, we also show (dashed line) a retrieval of

produced in exactly the same way as the first, but based
on data intentionally made noisier. Specifically, we corrupted
Borup and Johnson’s data by multiplying each of the real and
imaginary parts by one plus a normally distributed random
variable having a standard deviation, for given data value, of
70% of that value. Our retrieval of is clearly stable and
robust in the presence of such noise.

Fig. 3 shows our estimate of the profile of refractive index
versus physical depth (in centimeters, based on the data as
received from Borup and Johnson). Because the observed
magnitudes of reflections at the upper edge of the frequency
range do approach zero and we have not “tapered” the input
data, a modest amount of “ringing” is also apparent in our
result. The finite bandwidth of the data causes the transitions
between layers in our result to be smoothed. We estimate a per-
mittivity and thickness of the gypsum layer at approximately
2.3 and 2.7 cm, respectively, with the latter figure in particular
dependent on a particular interpretation of where our smoothly
varying results indicate layer boundaries to lie. Although
styrofoam is typically assumed to have a permittivity of very
nearly one at microwave frequencies, our inversion suggests a
figure closer to 1.1, with a thickness of approximately 4.5 cm,
the precise figure again depending on the interpretation of our
result. We estimate permittivity of the sand near the styro-
foam/sand interface to be two. For comparison, we also plot
in Fig. 3 (solid line) the first set of layer permittivity estimates
we received from the experimenters—2.3 for the wallboard,
one for the styrofoam, and two for the sand. Those estimates
resulted from an early application of an alternative reflection
inversion method that they had developed. The experimenters
later revised their estimates to 2.1 for the wallboard and
2.2 for the sand. A precise test of inversion methods awaits
independent information on the true permittivities (and any
dispersion) in the layered system.

Finally, Fig. 4 shows an application of our nonlinear analog
to the Paley–Wiener theorem to the uncorrupted data (solid
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Fig. 2. Causally stabilized layer-stripping reconstruction of the profile of� as a function of travel time in nanoseconds, based on wideband, near-vertical
incidence reflectivity data for the layered system of Borup and Johnson (solid line) and on the same data intentionally corrupted with multiplicative
noise (dashed line, 70% standard deviation).

Fig. 3. Causally stabilized layer-stripping reconstruction (dotted) of the depth profile of the (real) relative permittivity�(z) computed from the data of
Borup and Johnson for a layered system.
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Fig. 4. Application of the nonlinear Paley–Wiener theorem to the reflection data of Borup and Johnson, showingW (x) and �(x) as a function of
travel time in nanoseconds.

line). The function defined above falls essentially to
zero at a travel-time thickness of 0.32 ns, which agrees with
a travel time thickness indicated in Fig. 2 of approximately
0.32 ns.

B. Inversion by Multilayer Parameter
Optimization in One Dimension

In this section, a method for the inversion of 1-D dielectric
profiles from electromagnetic scattering data, developed by
Borup and Johnson, is presented. The method is based on the
minimization of an least-squares error functional by non-
linear optimization. The forward scattering model employed
is derived from the exact scattering solution for anlayer
slab [71]. The accuracy of the method is then demonstrated
by successfully applying it to laboratory scattering data taken
by Borup and Johnson.

We consider the 1-D Helmholtz (2.2) with real permittivity
and the exact solution for a layered medium

that will be used in the inversion. Assume that the medium
has layers , with indexes of refraction ,
and that layer 0 is a homogeneous half space of air
with and layer is a homogeneous half space
extending to with index of refraction . Each
of the finite layers is assumed to have uniform thickness

. As described above, we consider a TE wave with an angle
of incidence , which we assume for now is . The
wave field represents in . In each layer,
the solution is the sum of a forward and a backward

propagating plane wave

(2.17)

where is the free-space wavenumber and . At
each interface , continuity of and the magnetic
field in yields a recursion relation for

of the form

(2.18)

where the coefficients of the matrix involve , and
. Using and allows us to solve for

the reflection coefficient . This recursive scheme
requires only arithmetic operations, as opposed to

, required to solve via the moment method the 1-D
scattering integral equation

(2.19)

where

(2.20)

and is the incident field. We note that for an incidence
angle different than zero, we replacewith and
with .

Now, given a vector of dielectric parame-
ters and an incidence angle, the above solution can be used to
exactly calculate the complex reflection coefficient
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for the given layer slab. The idea of the inversion scheme
is to find a that minimizes the mean square error
between the measured scattering data and that calculated from
the forward model above. The scattering data is defined as the
rescaled complex reflection coefficient

(2.21)

Then the reconstruction of the dielectric profile consists of
applying nonlinear minimization to the functional

(2.22)

where is the vector of unknown dielectric parameters. The
minimization of is carried out using the Ribere–Polack
algorithm [81]. This algorithm is a variant of the conjugate
gradient algorithm for the minimization of a nonquadratic
functional. It requires a subroutine for computing the gradient
of the functional, as opposed to Newton’s method, which
requires the Hessian.

The number of computations needed to compute the re-
flection coefficient for one incident angle at one frequency is

. For wavenumbers (or frequencies) and angles
of incidence, the computation is . To minimize the
functional (2.22) via the Ribere–Polack algorithm, we need to
compute its gradient

(2.23)

where is the Jacobian of the model equations andis a unit
vector in the direction in -space of greatest increase in .
It turns out that a recursive algorithm for this calculation can
be derived from the 1-D layered slab solution for a givenand

. Thus, explicit computation and storage of the Jacobian is
not needed, and the resulting gradient calculation algorithm is
also . Thus, a single iteration of the Ribere–Polack
minimization algorithm requires only computations.
The memory storage requirement is .

We note that the rescaling of the scattering data in (2.21) is
suggested by the Born approximation, which gives

(2.24)

where denotes the Fourier transform of. Thus, for real
scattering potentials and for one angle of
incidence at , the rescaling in (2.21) gives a linear,
unitary (Fourier transform) equation

(2.25)

Thus, for real scattering potentials satisfying the Born approxi-
mation, the Ribere–Polack algorithm will converge in one step
[because (2.25) is unitary] if the frequency content of the data
(bandwidth) is sufficient. Note that (2.25) cannot be inverted
for a frequency-independent, complex because the data
determine only the positive spatial frequencies in the Fourier
domain. For the real dielectric constant case, (2.25) can be
inverted since for real . In the Ribere–Polack

algorithm, this realness condition can be enforced by simply
zeroing the imaginary part of the gradient (2.23) each time it
is computed.

Analysis of the Born approximation and numerical experi-
ments in the real dielectric constant case has shown that the
bandwidth requirement for a single, normally incident plane
wave is

(2.26)

i.e., the maximum wavelength in the medium should be one-
half the thickness of the problem and the spatial sample
increment of the reconstruction should be set at one-quarter the
minimum wavelength. In terms of frequency, and for multiple
view angles, we require

(2.27)

where is the depth (thickness) of the layered slab,
is a phase speed in the slab, and are the

minimum and maximum incident angles in the data set.
Results: Fig. 1 shows the geometry of a 1-D real dielectric

profile, which was constructed in the laboratory. The profile
consists of a 1″ slab of construction drywall and a 2″ slab
of polystyrene foam placed on top of a 15.5″ deep layer of
sand. The reflection coefficient of the profile was measured
at an incident angle of 11.5using two 1–18-GHz, ridged
horn antennas and a network analyzer. Calibration for the
antenna transfer functions was achieved by first collecting the
reflection data for a 1/8″ sheet of aluminum placed on top of
the drywall. The data without the metal plate was then divided
by the metal plate data and multiplied by1 (the plane wave
reflection coefficient of a perfectly conducting plane is1).
This procedure calibrates the frequency-domain data to match
plane wave theory.

The exact solution for a three-layer model was then com-
puted, and the three dielectric parameters(drywall), (foam),
(sand), and the two thicknesses, and ,

were optimized for by trial and error, comparing the resulting
time-domain signal visually with that for the collected data.
The best visual fit to the data was found to be(drywall)

, (foam) , (sand) , (drywall) ″, and
(foam) ″. An excellent match between the theory

and the data in the time domain was achieved, indicating a
successful calibration of the 1-D scattering experiment.

The data were then inverted using a 40-element, mm,
numerical model of the dielectric profile. The Ribere–Polack
algorithm was able to match the data to within 14% rms
error. The algorithm would reduce the error no further and
the normalized gradient magnitude was0.001, indicating
that the remaining 14% mismatch consists of data components
outside of the range of the forward model. Fig. 5 compares the
inverted solution with the true solution (based on the visually
optimized parameters discussed above).

Thus, a 1-D dielectric profile inversion method based on
the exact scattering solution for an layer slab has been de-
veloped and verified for laboratory data. The method requires
a wide bandwidth of data—the minimum frequency should
be such that the unknown thickness to be inverted is less
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Fig. 5. Multilayer parameter optimization reconstruction (dotted) of the
depth profile of the (real) relative permittivity�(z) � 1 computed from the
data of Borup and Johnson for a layered system.

than or equal to one-half the maximum wavelength, and the
resolution of the inversion is given by one half the minimum
wavelength (2.26). Present efforts are aimed at the inversion of
lossy media. In particular, data from partially water-saturated
foam rubber has been collected. Thus far, the authors have
been unable to accurately match this data to theory. Attempts
to invert simulated data from lossy media have been made, and
it has been found that this problem is considerably less well-
posed than the case of a lossless dielectric. Efforts to constrain
the dispersion of the dielectric to be causal, i.e., by enforcing
the satisfaction of the Kramers–Kronig relations [74], are being
investigated as a possible solution to this ill-posedness.

C. Inversion by Layer Stripping in Higher Dimensions

The problem of reconstructing the complex permittivity
of a complicated medium, such as the sea ice system, from
electromagnetic scattering data, has a mathematical structure
similar to the impedance imaging problem of reconstruct-
ing the local conductivity of an object from boundary
measurements of the potential induced by an applied current
density. Due to the importance of impedance imaging to
such areas as nondestructive materials testing, geophysical
prospecting, process control, and medical imaging, there has
been substantial work on this problem both from the theoretical
as well as computational and practical points of view (see
[88] for numerous references). For example, the lungs can
be monitored through impedance images of the conductivity
profile of the chest obtained from data provided by electrodes
on the skin [50]. In [88], a direct method was developed to
find the conductivity inside a body. The algorithm proceeds
via two steps. First, the conductivity near the surface of the
body is found, and then the boundary data on an interior
surface are synthesized using a Riccati equation. The process is
repeated, and an estimate of the interior conductivity is found,
layer by layer. In [16], such an approach has been developed
for the electromagnetic inverse scattering problem for the sea
ice system, treated as a perturbed, dissipative half space. The
forward scattering theory necessary for this development was
presented in [16] and [41].

To describe the inverse scattering algorithm for the sea
ice system, it is useful to briefly consider the impedance
imaging problem [88] for a body with local conductivity

occupying a region or , with a
smooth boundary . The electric potential satisfies

in and on , where denotes
the exterior normal derivative at the boundary andis the
current density applied to the boundary. We assume that we
can apply any current densityto the boundary and measure
the corresponding voltage at every point on the boundary.
In other words, we know theresistivemap

(2.28)

which is a linear operator on sufficiently smooth functions on
the boundary, in particular, , where

is the based Sobolev space on with smoothness
index . For the impedance imaging problem, working with

is more stable than working with its inverse, called the
Dirichlet-to-Neumann map

(2.29)

(The Dirichlet data of a function on is its set of boundary
values, and the Neumann data it the set of boundary values
of its normal derivative.) The inverse boundary value problem
is to reconstruct from partial knowledge of the resistive
operator on . Such maps have been used a great deal
recently in the study of inverse problems, e.g., [16], [88], and
[92]. The layer-stripping algorithm for impedance imaging is
based on first reconstructing on the boundary from and
then synthesizing on a subsurface infinitesimally close to the
boundary. This continuation can be accomplished because
satisfies a (nonlinear) differential equation, of Riccati type. The
method accounts fully for the nonlinear nature of the inverse
problem.

We now turn our attention back to inverse scattering theory
for (2.1) with dissipation

(2.30)

where for a TE wave. We assume
for , while in the lower half-space differs
from a positive constant only in a region of compact
support and differs from a positive constant only in
this region as well [16]. To apply the layer-stripping approach
developed for the impedance imaging problem, we must first
obtain the scattering operatormapping incident to scattered
fields, which plays the role of or above. Then the inverse
scattering problem is to reconstruct and from partial
knowledge of .

To define thescattering operator , we consider the wave
field in the upper half space. Then is the map from
the down-going part of the wave field to the up-going part.
We construct an explicit representationof this map in the
Fourier transform domain. In particular, we use the fact that
the medium parameters are known and constant in the upper
half space. For positive, we can therefore Fourier transform
(2.30) in the and coordinates. The result is an ordinary
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differential equation whose general solution for is

(2.31)

where and the hat denotes the 2-D Fourier
transform

(2.32)

with denoting . When is zero, the general
solution corresponding to (2.31) is simply linear function of

. When , the term in (2.31) is a down-going
wave, whereas the term is up-going. The coefficient thus
determines an incident wave. This incident wave, together with
continuity of and its normal derivative at the interface
and a radiation condition in the lower half-space, uniquely
defines the scattered wave, which determines. Consequently,
we can define as the map from to .

The inverse algorithm for the impedance imaging problem
is based on a Ricatti equation for the resistive map associated
with the inverse boundary value problem. Application of
this approach to the inverse scattering problem relies on
an equivalent formulation of the scattering problem as a
boundary value problem, defined by (2.30) for with
the boundary condition , together with an
out-going radiation condition in the lower half space. Ifis in
the Sobolev space and , the Lax–Milgram theorem
can be used to show that this boundary value problem has a
unique solution in the lower half space. Thus, the normal
derivative on the surface is uniquely determined.
The mapping

(2.33)

from to is the Dirichlet-to-Neumann map for this
problem. The inverse boundary value problem is to determine

and from knowledge of . This boundary value formu-
lation with is related to the scattering formulation withas
follows. Define via . Then it can be shown that

(2.34)

which holds as an operator equation in an appropriate function
space [16]. This relation can be used to findin terms of ,
or vice versa.

1) Layer-Stripping Algorithm:Now, the idea of the method
to solve the inverse scattering problem for (2.30) is to use the
measured data to find the medium parameters on the boundary

, then to use that information to synthesize data on a
nearby inner subsurface. The process is then repeated, and the
medium parameters are found layer by layer. To synthesize
the subsurface data, we obtain a differential equation forin
the depth variable. This requires that we extend the definition
of the Dirichlet-to-Neumann map to any

(2.35)

This map then satisfies the following Riccati equation:

(2.36)

with . This equation is obtained by differ-
entiating (2.35) with respect to, using (2.30) to eliminate

and (2.35) to eliminate . A similar equation
can be obtained for .

The layer-stripping algorithm proceeds by first finding the
medium parameters on the surface and then using (2.36) to
continue the recovery process into the interior. To find the
medium parameters on the surface, we use the following time-
domain approach. This will be discussed again, in more detail,
below. The time-domain version of (2.30), in the variable

, is

(2.37)

The plan is to obtain a progressing wave expansion [24] for
(2.37). We are interested in the small-time behavior ofin
the neighborhood of an interface at . For ,
where , we expect that is composed of an incident
plane wave plus a reflected wave, which
we expand in the form

(2.38)

Here and are the incident and reflected phases,denotes
the Dirac delta function, and denotes the Heaviside function
that is one for positive arguments and zero for negative
arguments. We take to be a plane wave propagating in
direction , which implies that .
Because we take this wave to be propagating in the downward
direction, is negative. Just below the interface, for a short
time, we expect to take the form of a transmitted wave,
which we also expand as

(2.39)

Here again denotes the phase of the transmitted wave.
On the interface , and its first derivative are

continuous. Using these conditions at the interface and forcing
to satisfy (2.37) results in expressions for the coefficients

in (2.38) and (2.39) [16]. The expressions for and at
involve and , while the expression for involves
and the derivatives of and .

To obtain the medium parameters and at a point on
the surface from scattering data, we send in an incident wave
that is planar in a neighborhood of . We then measure the
scattered field at all points on a plane constant. From
this information, the short-time scattered field can be inferred
in a neighborhood of and thus the value of at , which
tells us the value of at . In this manner, we obtain for
every point on the surface; this allows us to compute, at every
point, not only , but also the derivatives in the expression
for , which can then be used to obtain as well.

Having found the medium parameters on the surface, the
algorithm can proceed. Let us consider the layer-stripping
algorithm in the case when a complete set of incident fields are
used and measurements of the corresponding scattered fields
are made on a plane. We assume measurements are made at

frequencies. For experiments with stepped-frequency radar,
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for example, can range from 51 to 801. The algorithm
proceeds as follows.

1) From the measurements at wavenumbers ,
construct an approximation to each scattering operator

(the integer index here should
not be confused with the index of refraction). In
practice, we would represent by its matrix with
respect to some basis. Such a basis could perhaps be
constructed from antenna beam patterns for a large
number of incident angles. The operatorof (2.34), for
example, is the representation ofin a Fourier basis.

2) For each of at least two incident directions
, choose an incident field that looks like

in the neighborhood of some point
on the surface. Apply to these incident fields to
obtain the scattered field .

3) Fourier transform into the time domain to obtain
. In practice, we can do this by first synthesizing

an approximate delta function in the form

(2.40)

where the are, for example, Hamming weights [76].
Then the field

(2.41)

is locally the response to the incident approximate delta
function (2.40), where is the scattered field.

4) Extract the coefficients and . This
can be done, for example, by the least-squares mini-
mization

(2.42)

where for one uses (2.41), for one uses
, for one uses (2.40), and for the

Heaviside function one uses

(2.43)

5) From and for ,
determine , and . If
so that the system is overdetermined, we can use least
squares to find the best fit.

6) Repeat steps 2)–5) for a large number of pointson
the surface.

7) For each , synthesize the subsurface data either from
a Riccati equation for or use (2.34) to convert

to , use the Riccati (2.36), and convert back
to with (2.34). Again, in practice, the operators

and would be represented as matrices with
respect to some basis, and (2.34) and (2.36) would be
approximated as matrix equations.

8) Repeat, starting with step 2).

Although the above algorithm may seem ready to imple-
ment, it cannot be used in its present form because it is
unstable. This is partly because of the multiplication by
in the Riccati equation for [16] or, equivalently, because
of the and derivatives appearing on the right side of
(2.36). This is similar to the situation in [111]; this type of
instability can be overcome to some extent by smoothing in
the and directions, as discussed in [15]. Even when the
problem is independent of and , however, we expect the
methods to be unstable, due to the fact that only a little of the
energy put into the system on the top can propagate to great
depths. Thus, we expect the boundary data and scattering data
to contain little information about the deeper regions.

2) Recovery of Surface Parameters:We return to the algo-
rithm for reconstructing the medium parameters and
on the surface, and we consider the important special case in
which the medium is homogeneous near the surface. Refer to
[17] for the details. In the case of near surface homogeneity,
we have simply

(2.44)

In dealing with data from a stepped-frequency radar, we
have measurements from only a finite number of frequencies

. For the reflection coefficient we use

(2.45)

With , where is the bandwidth (again,
the integer index is not be confused with the index of
refraction ), each term of (2.45) contains a factor ,
and we consider . In place of the delta and
Heaviside functions in the progressing wave expansion, we
use appropriate (factored) versions and of (2.40)
and (2.43), respectively. It can be shown [17] that

(2.46)

where denotes a remainder term that is continuous and zero at
the origin. The left side of (2.46) is known from measurements;
from it we want to extract and . To do this, we minimize
the least-squares error

(2.47)

Differentiating with respect to and leads to a system
of equations for (the superscript denotes
transpose)

(2.48)

where is a remainder term assumed small (whenis small).
It can be shown that and the entries of the matrix are
given by

(2.49)
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(2.50)

(2.51)

where

if

if
(2.52)

In summary, the method to reconstruct the surface parame-
ters is as follows. Measure the reflection coefficient

for the available (equally spaced) frequencies. Use
(2.49) and (2.52) to construct. Solve the equation ,
where is given by (2.50) and (2.51), to obtain

. Solve (2.44) for and , assuming that .
To determine the possible utility of the bandlimited geomet-

rical optics method, it has been tested on synthetic data. To
generate the data, we used the well-known formula [55] for
the reflection coefficient from a two-layer medium, consisting
of a slab of thickness with medium parameters and ,
overlying a half space with parameters and . This
two-layer medium lies underneath a half space of air with
parameters and . After computing the
two-layer reflection coefficient, we added random noise, with
magnitude , to the real and imaginary parts. We then used the
bandlimited geometrical optics method above to reconstruct

and . In each case, we used the same values ofand
to compute the data, namely, and .

We considered two different frequency bands, namely, 1–4 and
26.5–40 GHz. Because the longer wavelength waves penetrate
deeper into the medium, we also considered media of different
depths. We chose the in (2.47) and (2.52) to be .
The results are discussed in detail in [17]. In general, for thick
enough samples, agreement was obtained for bothand .

We have also made some preliminary tests of this method on
experimental data. The data were collected using an HP8510
network analyzer. The data were composed of
measurements of the reflection coefficient, for equally spaced
frequencies between 26.5 and 40 GHz. To use these data,
we first did some processing to correct for the system re-
sponse. When we then used the bandlimited geometrical optics
method, we obtained a value of for a lucite sample
versus , as computed by the “bounce” method of
[61], [82]. The method did not return a reasonable value for.

III. I NVERSE HOMOGENIZATION AND THE

RECOVERY OF MICROSTRUCTURAL PARAMETERS

A. Forward and Inverse Homogenization
for Composite Materials

In the previous section, we considered inverse algorithms
designed to reconstruct the complex permittivity profiles of
inhomogeneous media. Ideally, given scattering data over all
frequencies, these algorithms can completely reconstruct the

local complex permittivity , from which the details of the
microstructure would become apparent. In the sea ice system,
such microstructural details could include the following: brine
and air volume fractions, brine and air inclusion size and
connectedness properties, sea ice grain size and texture, snow
grain size and texture, volume fraction and connectedness of
liquid brine in snow or slush, anisotropy and brine microstruc-
ture orientation, and crack size and orientation distributions. In
practice, however, often we only have available information in
a particular frequency band, which may be relatively narrow.
In the microwave regime, it is frequently the case that the
wavelengths involved are much larger than the scale of some
of the features listed above, such as at C-band (with a center
frequency of 5.3 GHz). With a free-space wavelength of
5.7 cm, the brine microstructure, with variations on a sub-
millimeter scale, cannot be resolved and the wave propagates
primarily according to effective electromagnetic parameters.
In this case, the reconstructed complex permittivity will be
an effective complex permittivity , which itself may vary
on larger scales resolvable by the wave, due to variations
in the average microstructural properties that determine.
For example, a 1-D reconstruction at C-band of the complex
permittivity profile of a slab of sea ice, over a range
of wavenumbers , would vary primarily due to the depth

variation of the brine volume. If we desire microstructural
information about the sea ice, such as the brine volume, it has
to be further extracted from the reconstructed profile .
A general theory of how to obtain microstructural properties
from known values of effective electromagnetic characteristics
is of clear importance for inversion of sea ice parameters.
Furthermore, such techniques would likely have application
to other areas where inverse scattering has been useful, such
as medical imaging, nondestructive testing of materials, and
geophysical exploration. For example, recovery of brine vol-
ume information from measurements of is similar to the
problem of monitoring fluid volume fraction in the lungs from
bulk electrical measurements. Recovery of brine inclusion
connectedness is similar to monitoring the porosity of bones or
oil bearing rocks as well as to testing the quality of a tenuous
conducting matrix in some smart composites of an insulating
host with conducting inclusions [38].

Here we develop a rigorous theory of inverse homogeniza-
tion for composite materials in the quasistatic regime, in which
microstructural information about the composite is inverted
from measurements of effective electromagnetic properties,
such as the complex permittivity . Our approach is based
on the Stieltjes integral representation for and its spectral
measure associated with the composite geometry, presented
in [36] and [41] and the resulting forward bounds on
incorporating given information on the microstructure. First,
we present a theorem, giving the conditions under which

and the statistical properties of the microstructure can be
uniquely reconstructed [18]. Then, we analytically invert the
complex elementary and Hashin–Shtrikman boundsand

, considered in [41, Section III], to obtaininverse boundson
the brine volume of sea ice (or the relative volume fractions of
any two component composite), for given complex permittivity
data [19]. We obtain both rigorous bounds on the possible
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range of volume fractions given a single value of the observed
complex permittivity, valid in the quasistatic regime, and an
accurate algorithm for predicting the brine volume associated
with a given data set of permittivity values. The algorithm is
demonstrated on a representative data set at C-band from [2],
with excellent results. We have also inverted the tighter matrix-
particle bounds and for separation information about
the brine inclusions, which indicates the connectedness of the
brine phase [77].

For completeness, we briefly review the forward homoge-
nization problem [41]. Consider a two-phase random medium
in all of , with an isotropic local complex permittivity

, taking values and , the permittivities of brine
and ice, respectively, with a stationary random field in

and , where is the set of all realizations of the
random medium. We write ,
where is the characteristic function of medium 1 and

. Let and be the stationary
random electric and displacement fields, related by ,
satisfying and , where

is a unit vector in the th direction, for some ,
and means ensemble average overor spatial average
over all of . The effective complex permittivity tensor
is defined as . For simplicity, we focus on one
diagonal coefficient . The key result is an integral
representation [4], [37] for exploiting its Stieltjes properties
as an analytic function of

(3.1)

where is a positive measure on , determined exclusively
from the geometry . In particular, is the spectral measure
of the self-adjoint operator , where

. Statistical assumptions about the geometry are
incorporated into through its moments

(3.2)

with if the volume fractions and
are known and if the material is statistically
isotropic. In general, knowledge of the -point correlation
function of the medium allows calculation of (in principle).

Bounds on , or regions in the complex -plane in which
the values of the effective complex permittivity must lie, are
constructed from (3.1) by assuming partial knowledge of the
moments of . For example, the region (the complex
elementary bound) is obtained by assuming knowledge of only

, while the region (the complex Hashin–Shtrikman
bound) is obtained by assuming knowledge of
as well. The deep relationship between the connectedness
properties of a particular phase in the composite and the
support of (where it is nonzero), in particular, the existence
of a spectral gap around the endpoints zero and one, has been
explored in [7], [39], and [41]. The spectral gap that exists
for matrix-particle composites (a host material containing
separated inclusions), like sea ice, which is cold enough, has

been exploited to derive tighter versions and of the
complex bounds above. These bounds depend on a parameter

that measures the separation of the brine inclusions, and
they are compared with C-band complex permittivity data [2]
in [41, Fig. 2].

We now present a theorem that tells us when we can be
assured that the microstructure, as characterized by, can
be uniquely recovered [18]. This result can be viewed as
a type of existence and uniqueness theorem for the inverse
homogenization problem.

Theorem (Existence and Uniqueness for Microstructural Re-
covery): The measure in the integral representation (3.1)
for the effective complex permittivity can be uniquely
reconstructed if the values of are known along an arc in
the complex -plane.

For example, we may have a medium, such as sea ice, where
the complex permittivity of at least one of the constituents, in
particular, the brine, is dispersive. Then, as the frequency is
varied, an arc is traced out in the complex-plane (which
could be a segment of the real axis). If measurements of
are made all along this arc, the theorem tells us thatcan be
uniquely reconstructed. However, this is an ill-posed problem
that requires regularization to obtain a stable solution. The use
of Tikhonov regularization [54] in the reconstruction ofhas
been explored, yet it would also be interesting to examine the
potential of applying causality, through the Kramers–Kronig
relations, to stabilize the procedure.

In the above theorem, it is the measurethat is uniquely
reconstructed, yet it is the actual microstructure and its prop-
erties in which we are most interested. There arises the
question of whether uniquely determines the microstructure
or the stationary random field . Strictly speaking, the
answer is no. For example, the expressions for, given
in the Hashin–Shtrikman bounds in [41, Section III], can
be attained by either a coated sphere geometry or a type
of laminate geometry. Nevertheless, from an effective prop-
erty point of view, these two “different” geometries are
the same, in that they have the same effective property
function . In particular, all the statistical properties
of the two composites, such as volume fractions, isotropy,
and all higher order correlation functions of the geometry, as
measured by the moments of, are the same. Thus, the above
theorem reconstructs the microstructure uniquely, up to the
identification of composite geometries with the same effective
complex permittivity functions, in the above way.

B. Inverse Bounds on Microstructural Parameters

We now describe how to invert the complex boundsand
on to obtain rigorous bounds on the brine volume in sea

ice from measurements of. The idea of the inversion is very
simple, as follows. Given an observed complex permittivity
value from a set of data points
inside the bound , as in [41, Fig. 2], we increase the brine
volume fraction in the bound until one of the circular
arcs on the boundary of touches this point, which defines
the upper bound on the possible range of volume
fractions associated with the data point. Similarly, we decrease



GOLDEN et al.: INVERSE ELECTROMAGNETIC SCATTERING MODELS FOR SEA ICE 1691

until the other arc touches the data point, giving a lower
bound on the possible range of brine volume fractions.
Applying the same procedure to the isotropic complex bound

yields even tighter lower and upper bounds
on the brine volume fraction . Given a set of data points,
we carry out the inversion for each point and then take the
maximum over of the and the minimum over of
the , and similarly for and , which yield
rather tight, accurate estimates of the brine volume associated
with the given data set. It should be remarked that a similar
idea was used previously, at least to first order for, and
applied to multifrequency data for thin silver films [70]. Also,
first-order analytical inverse bounds were derived in [20] and
applied to geophysical mixtures in [95]. Other approaches
to the inversion of microstructural information have been
considered in [69] and [70].

We now make explicit the above outlined procedure. First
recall that one arc of the region can be parametrized in
the -plane by

(3.3)

The given, measured value of the complex permittivity
determines a corresponding value . As-
suming that the given value lies on the lower boundary
of the region , by solving (3.3) for , we obtain for the
lower bound on the brine volume fraction

(3.4)

It should be remarked that if the different measurements over
are made at different frequencies, then in general the value

of will also depend on . Separating real and imaginary
parts, we can immediately obtain

(3.5)

where the bar denotes complex conjugation. Note that our
complex-valued data point allows us to solve not only
for the real brine volume fraction, but also for the real spectral
parameter , which is associated with other details of the
geometry, such as inclusion separation, and presumably forms
a bound on the possible spectrum.

To obtain the upper bound on the brine volume, it
is useful to turn to another auxiliary function [5] associated
with the interchanged material, where and (as well as

and ) are switched

(3.6)

The advantage to using this function as opposed to is that
the spectrum [or support of in (3.1)] is trivially transformed
via , so that spectral bounds obtained forare
easily translated over to , which is not the case for . In the

-plane, the corresponding arc becomes

(3.7)

Again assuming that the corresponding data point lies
on this arc, we obtain

(3.8)

To obtain even tighter bounds on under the assumption
that the microstructure is statistically isotropic, we apply the
same inversion procedure to the complex bound. Recalling
that one arc of is given in the -plane by

(3.9)

This arc gives an upper bound on defined by the
corresponding analogue of (3.4)

(3.10)

Separating real and imaginary parts yields coupled, nonlinear
equations for and . The resulting expressions are
rather complicated and are omitted. We obtain the lower bound

on by applying the same procedure to the analogue
of (3.9) in the -plane, as above.

Finally, for a set of data points , we
find that the intersection over of the intervals

for general media [20], given by

(3.11)

provides a good practical bound on the volume fraction.
For isotropic media, the intersection overof the intervals

, given by

(3.12)

provides a very tight practical bound on the volume fraction
. In Fig. 6, we demonstrate our inverse bounds on the

brine volume for a set of nine data points with frequency
4.75 GHz taken from [2]. The actual brine volume for
the data is . Complex permittivities of the ice
and brine are calculated as described in [41, Section III].
The solid lines represent the intervals
and . The dotted lines represent the
very tight prediction given by the inverse algorithm (3.12) for
isotropic microstructures, which is in excellent agreement with
the actual brine volume .

Finally, we consider inversion of the matrix-particle bounds
and to obtain inverse bounds on the microstructural

parameter , measuring the separation of the
brine inclusions [77]. We consider a horizontal slice of sea
ice (for the vertically incident waves of [2]) and assume that
the brine is contained in separated, circular discs. Such an
assumption allows us to use the exact calculations in [7] of
the size of the spectral gap in the support of. In particular,
we consider discs of brine of radius, which hold random
positions in a host of ice, in such a way that each disc of brine
is surrounded by a “corona” of ice, with outer radius. Then
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Fig. 6. Inverse bounds on the brine volumep1 of sea ice derived from
measured values of the complex permittivity��(n); n = 1; . . . ; 9; at
4.75 GHz. The solid lines represent the intervalsP1(n) � p1 � Q1(n)
for general media andP2(n) � p1 � Q2(n) for isotropic media. The
dotted lines represent the very tight prediction given by the inverse algorithm
(3.12) for isotropic media, which is in agreement with the actual brine
volumep1 = 0:02. For the data, the temperatureT = �11�C, the salinity
S = 4:1 ppt, and�1 = 42:2 + i45:6 and �2 = 3:07.

the minimal separation of brine inclusions is then .
Such a medium is called a-material, where . For
such a material, the matrix-particle bounds and [39],
[41] assume the following form. The complex permittivity
lies in the intersection of two circular discs, the boundaries of
which are images of the real line under different fractional
linear transformations. With , these circles have the
form

(3.13)

where the parameters of interestand enter the fractional
linear transformation through the coefficients

and .
For observed complex permittivities, these forward bounds

are inverted, yielding curves in -parameter space. Such
a curve is the locus of points for which an observed

lies on the circle . Each observed value gives a
different boundary curve. The resulting family of curves may
be thought of as being parameterized by the observed complex
permittivity. In all situations encountered for the forward
bounds, the functional form of the coefficients

and are polynomials in the two variables
and . A general theorem is proved [77], stating that for such
cases the inverse bound is a real algebraic curve .
This avoids having to solve coupled nonlinear equations that
involve the spectral parameterappearing in the argument of

. As an example, under the assumption that the sea ice
is a matrix particle composite, but without the assumption of
statistical isotropy, the following polynomial is obtained:

(3.14)

The bar denotes complex conjugation, andis a constant,
depending only on the complex permittivities of brine and pure
ice . The region of admissible
values is bounded by the real algebraic curve .

Solving for as an implicit function of gives

(3.15)

Numerical calculation of the forward bounds using pairs
of -parameter values that lie in the acceptable region
determined by the inversion algorithm yields consistent results.
The essentially distinct algorithms used for computing forward
and inverse bounds agree. Work on accurately reconstructing

pairs for actual data sets is ongoing.

IV. I NVERSE SCATTERING ALGORITHMS FOR

THE RECOVERY OF SEA ICE THICKNESS

In this section, we consider a variety of methods for
inverting electromagnetic scattering data for sea ice thickness.
The recovery of thickness information is one of the central
challenges of sea remote sensing. The algorithms presented
below, along with the methods of Section II, provide a foun-
dation for meeting this challenge.

A. Radiative Transfer—Thermodynamic Inverse Model for
Thickness Retrieval from Time-Series Scattering Data

Sea ice thickness is an important factor in understanding
the dynamics of sea ice cover as well as the air–ocean
heat exchange. Although spaceborne SAR images have been
successfully applied in mapping the extent and identifying
the types of sea ice [59], the direct use of simple empirical
models, based on the SAR measurements, for sea ice thickness
retrieval is still limited because of the complex interactions
of electromagnetic waves with the dynamically varying sea
ice medium. Also, it becomes too difficult to derive ana-
lytic inverse solutions from direct scattering models of sea
ice [25], [34], [72], [97], [98], [107] for the ice thickness.
To utilize such developed scattering models, the parametric
estimation method can offer a greater flexibility in the choice
of forward models, the parameters to be inverted, and the
data to be employed [52]. However, such an approach usually
has associated problems of nonunique solutions and inversion
stability with noisy data. Although it might be possible to
reduce the effects of these uncertainties by using diversified
multifrequency, multiangle, and polarimetric data, the cost of
such extensive measurements may be prohibitive for satellite
remote sensing of sea ice. On the other hand, orbiting satellites
repeat their passes at a fixed time interval; it is natural for them
to make timely sequential observations. With these time-series
measurements, more data become available, which is helpful in
resolving the nonuniqueness and stability problems and useful
for the geophysical parameter reconstruction.

Recently, ice-thickness reconstruction algorithms based on
the combined use of sea ice electromagnetic scattering models,
time-series remote-sensing data, and a parametric estimation
technique have been developed [52], [86], [87], [99], [100].
Veysoglu et al. [99], [100] have developed an inversion
algorithm using passive microwave measurements of sea ice.
They have shown that, by incorporating a Stefan’s growth
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Fig. 7. Block diagram of the radiative transfer—thermodynamic inversion
algorithm using time-series measured data. The dynamic electromagnetic
scattering model, which includes the electromagnetic scattering model and
the ice growth model, is enclosed by a dashed rectangle.

model [9] into the sea ice inverse scattering problem, the
thickness estimation can be constrained sufficiently to pre-
dict more accurately the evolution of sea ice growth. The
inversion scheme is based on nonlinear optimization using
the Levenberg–Marquardt method [65]. Shihet al. [86], [87],
from the experimental observations and the thermophysics of
ice growth, developed a retrieval algorithm for ice thickness
based on a dynamic electromagnetic scattering model of saline
ice and time-series active remote-sensing data. This inversion
algorithm using active radar measurements is summarized in
Fig. 7.

In this algorithm, the growth model for saline ice consists
of the following set of equations:

(4.1)

(4.2)

(4.3)

The estimation of the growth of ice thickness is given by (4.1),
which is a heat and mass balance equation [53], [104], where

is the ice thickness, is the growth rate, is the air
temperature, and is the ice melting temperature, where all
temperatures are inC. The thermal conductivity of saline ice
in W/m/ C is is the latent heat of freezing in J/kg, the
quantity is the heat transfer coefficient between ice and air,
which accounts for contributions from both convection and
radiation, and is the density of the ice. The growth of sea
ice also accompanies the desalination process [26], and (4.2)
approximates the reduction of the bulk salinity, in ,
of thin saline ice by a monotonic decreasing function of ice
layer thickness and a desalination factor . Equation (4.3)
describes the change of brine inclusion sizewith the ice
thickness and a size expansion factor. This assumption
has been tested by comparing the theoretical model results
with the experimental data on radar backscatter signatures
[73], [86], [87]. From these equations, the state of the ice at
a certain stage can be estimated from previous states. With

electromagnetic measurements made in a time series, it is
helpful to use these correlations to improve the retrieval of
relevant physical parameters.

The radiative transfer scattering model of sea ice [25], [86],
[87] described in [41, Section V] is used in this algorithm
to provide a relationship between the expected backscatter
measurements to the radar parameters and the saline ice
characteristics. This relationship can be expressed as

(4.4)

where is the measurement data vector whose elements
consist of backscattering coefficients, is the model
response, and represents the discrepancy between the obser-
vation and the model result. The indexis used to denote the
measurement time at. The array denotes the set of known
radar parameters, such as the frequency, polarization, and
looking direction. The vector contains the pertinent model
parameters of saline ice

(4.5)

where is the ice layer thickness at time at
which the reference time for the first set of data is taken. The
other parameters , and have been defined in
(4.1)–(4.3). (The notation and should not be confused
with the different meanings used above.)

In the retrieval analysis, the model parametersare to
be reconstructed from the scattering data. The approach is
to measure the data and invert the relation (4.4), i.e., to
express the parameter in terms of . The minimization of
the sum of squares of the difference between the measured
data and the model response is performed by using the Leven-
berg–Marquardt algorithm [65]. [This method is a hybrid of the
steepest descent (SD) method and the inverse Hessian method.
When initial parameters give a solution far from a minimum,
the SD method is used to get close to the minimum, the
problem is assumed to become quadratically convergent, and
the inverse Hessian method is employed to further converge
to the solution within the specified accuracy. During the
parameter adjusting process the Levenberg–Marquardt method
blends or varies smoothly between these two methods.] At the
-th iterative step in Fig. 7, the vector of estimated parameters

consists of ice parameters at a specific time, including
the initial ice thickness, initial salinity, initial brine pocket
size, desalination factor, brine size growth factor, and the
heat transfer coefficient. (In this figure, , and denote
the dimensions of the brine inclusions in the three principal
directions, denotes the volume fractions of the inclusions,
and denotes the permittivity of the sea ice.) The subsequent
thicknesses, salinity, and brine pocket sizes at different growth
stages are calculated according to the saline ice growth model
described in (4.1)–(4.3) and the elapsed time between each
measurement. This set of ice parameters is then substituted
into the electromagnetic scattering model, which solves the
radiative transfer equation and generates a simulated time
series of backscattering coefficients that is compared with the
vector of measurement data. Thus, the object function contains
the whole time-series measured and model data, in contrast to
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Fig. 8. Thickness retrieval without time-series information. The circles show
possible combinations of thickness, brine pocket size, and brine volume, which
may give similar backscattering coefficients at a specific time. Filled triangles
represent inversion results without time-series information. The ground truth
of ice thickness is represented in cross.

the data at one specific time. If the model data do not agree
with the measured data, the model parameters are adjusted. To
minimize the least-squares object function, the entire series
of simulation and experimental results must be matched. In
this way, the range of possible retrieved thicknesses from an
initial trial thickness can be reduced and the retrieval may
be robust to the discrepancy between model responses and
measurements. The procedure is then repeated until the error
threshold is reached. The inverted initial thickness is finally ap-
plied back to (4.1) to reconstruct the ice thickness for the entire
growth stage. This inversion algorithm was applied to retrieve
the growth of a sheet of thin saline ice by using the set of
C-band polarimetric radar sequential measurements from the
CRRELEX’93 experiment. The experiment is detailed in [73].

We first consider the thickness retrieval without incorpo-
rating the time-series information. For this case, each 25
incident angle data set [73], [86], [87] at a specific time
is inverted separately. The open circles shown in Fig. 8
indicate the possible solutions of thickness corresponding to
the backscatter at that specific time, while the cross symbols
represent the measured thickness. This ambiguity in the thick-
ness retrieval is to be expected since different combinations
of thickness, brine volume, and brine pocket size may give
a similar backscattering coefficient, i.e., the electromagnetic
scattering model alone does not provide sufficient information
to reconstruct the ice thickness uniquely. We further reduce
the number of unknowns to let the thickness be the only
unknown model parameter, the same set of backscatter data
at 25 incident angle is applied to invert ice thickness. The
retrieved thickness, as denoted by the filled triangles in Fig. 8,
still shows large fluctuations from the measured ground truth,
which is caused by some measurement uncertainties and the
inaccuracy of simplified saline ice scattering model. This
example demonstrates an unsuccessful inversion even with
only thickness being the unknown parameter.

To avoid the nonuniqueness and noise problems, the inver-
sion with time-series measured data is considered next. The
initial thickness is the pertinent parameter to be inverted. Since

TABLE I
INITIAL GUESSES, CONSTRAINTS, AND INVERTED MODEL PARAMETERS

FOR THE RADIATIVE -TRANSFER THERMODYNAMIC INVERSE MODEL

Fig. 9. Thickness retrieval with polarimetric time-series data. The boxes
represent the measured ice thicknesses. The solid curve indicates the evolution
of reconstructed ice thickness using measured time-series data at 25� incident
angle.

the growth rate of ice is nota priori information, the heat
transfer coefficient is also included as an unknown model
parameter. The unknown model parameters are constrained
within appropriate physical ranges instead of letting all pa-
rameters vary freely, which will cause the inversion algorithm
inefficient as well as susceptible to some local minimum
attractions or divergences. Table I gives the initial guesses,
constraints, and the inverted values of model parameters for
this inversion. The constraints on model parameters ,
and are determined by referencing the measured ground
truth and the findings in published literature. On the other
hand, the model parameters and are determined based
on the forward model simulations and allowed a15%
variation range. The reconstructed ice thicknesses are shown
in Figs. 9 and 10 for two different incident angles 25 and 30,
respectively. It is noted that the retrieved ice thickness obtained
by using this time-series inversion algorithm agrees very well
with the measured ice growth. The retrieved thickness for the
25 data set appears better than the one for 30, which may
be due to the larger deviation between model simulation and
measured data in cross polarization at the 30incident angle
[73], [86], [87].

In summary, an accurate inversion algorithm for the thick-
ness of thin saline ice has been developed based on the
electromagnetic scattering model, ice growth physics, and
parametric estimation method. Time-series measured data were
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Fig. 10. Thickness retrieval with polarimetric time-series data. The boxes
represent the measured ice thicknesses. The solid curve indicates the evolution
of reconstructed ice thickness using measured time-series data at 30� incident
angle.

used instead of multifrequency or multiangle data to re-
duce the effects of uncertainty and noise. The saline ice
growth model provides more information to constrain the
parametric estimation method. As a result, a better retrieval
of thickness is achieved by utilizing these time-series mea-
surements in this method. The demonstrated accuracy of
the thickness retrieval suggests the potential use of this al-
gorithm for retrieving geophysical parameters from time-
series satellite remote-sensing data. The inversion algorithm
is recently applied to the case of ice growth under diurnal
variations. Comparisons with experiment for such cases will
be reported shortly.

B. Neural Network Inversion for Sea Ice Thickness

In general, the inversion of geophysical parameters is com-
plex because of the multidimensionality, the interrelationship,
the dynamics, and the physical interactions under different
environmental conditions. In this respect, neural networks are
particularly suitable because of their ability to adapt to the
geophysical multidimensionality and their robustness to noise
in realistic remote sensors. Neural networks have been studied
intensively [60] and have found remote-sensing applications in
snow parameter retrieval with passive microwave data [96] and
particle size determination with optical data [51] for instance.

In this section, we demonstrate the use of neural networks
to invert for thickness of young sea ice with multifrequency
polarimetric microwave data. The approach is to retrieve the
ice thickness by using the analytic wave theory model [72]
described in [41] to train the neural network to match measured
data in the selection of the ice thickness. There are several
types of networks, such as the Hopfield net, the Hamming net,
and the Kohonen self-organizing feature mapping. Here, we
use the multilayer perceptron with a modified backpropagation
algorithm to improve the convergence rate and accuracy [49].
Interrelations of physical parameters governed by sea ice
physics under typical Arctic winter environmental conditions
are utilized to restrict the solution space to avoid extraneous
solutions and shorten the required computation time.

The C-band and L-band polarimetric SAR data used in this
study were collected in March 1988 by the Jet Propulsion
Laboratory, Pasadena, CA, SAR onboard the NASA/DC-8
aircraft during the Beaufort Sea Flight Campaign [10] over
a sea ice experimental area, located near 75N latitude and
spanned 140–145W longitude. Each frequency channel has
the capability of simultaneously collecting linear like-polarized
(HH and VV) and cross-polarized (HV and VH) backscatter
data. The transmitter alternately drives the HH- and VV-
polarized antennas, while dual receivers simultaneously record
the like-polarized and cross-polarized echoes. In this manner,
the scattering matrix of every resolution element in an image
is measured. The spatial resolution of the four-look SAR data
used here is approximately 6.6 and 11 m in the slant range
and azimuth directions, respectively. The range of look angles
is between 20 and 70.

In the Beaufort Sea experiment region, ice conditions com-
prised a mixture of first-year and multiyear ice forms in this
region of transition between the polar pack and younger near
shore ice [30]. High ice drift speeds experienced during the
experiment [106] create newly opened and refrozen leads and
offer the opportunity to acquire airborne radar data for young
ice over a large range of incident angles. Note that surface-
based data of young thin ice are scarce due to its inaccessibility
and fragility in the natural environment. Although we do not
have direct surface measurements of the thickness, the evi-
dence of the thickness range of the ice is given by the weather
and ice conditions acquired by the Applied Physics Laboratory
Ice Station (APLIS), University of Washington, Seattle, in
the experimental area [106] and the almost contemporaneous
high-resolution passive microwave observations. The passive
microwave observations were acquired by the Naval Research
Laboratory (previously NORDA), Washington, DC, Ka-band
scanning radiometer system (KRMS) [32]. Ice properties,
including salinity, temperature, brine inclusions, and surface
roughness, have been presented [58].

The neural network as a nonlinear estimator is used for
retrieving the mean thickness for the young ice. The scattering
model [58] is used to generate the polarimetric scattering
coefficients of sea ice with a range of thickness between
0 and 15 cm at the C- and L-band. The five polarimetric
coefficients used here are and

. This data set provides the input–output pairs to
“train” the neural network such that the resultant network
would provide an estimate of the thickness when presented
with a set of polarimetric scattering coefficients. The neural
network employed in this study consists of an input layer,
an output layer, and two hidden layers with the nodes in
each layer connected to each other. The number of input
nodes for the input layer equals the number of input elements.
In this case, the inputs are the five polarimetric backscatter
coefficients. The number of nodes in the second and third layer
are 10 and 30, respectively. There is only one output node
since the average ice properties are functions of ice thickness,
which provides an estimate of the thickness of the ice given
the polarimetric observations.

Fig. 11 shows the overall thickness results of young sea ice
in the refrozen new leads over the incident angle range, where
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Fig. 11. Comparison of theoretical predictions of ice thickness from neural
network inversion with data taken in the Beaufort Sea.

data are available. The near range incidence angles (less than
35 ) are not shown here because some of the radar data are
saturated in this range and saturated the network. At both C-
and L-bands, the estimated average thickness of the lead ice is
between 6 and 9 cm, which shows consistency in the process.
Fig. 11 also shows errors caused by1-dB uncertainty in the
radar measurements or model calculations in the incident angle
range common to C- and L-bands. This work has illustrated
the use of neural network in retrieving sea ice thickness from
polarimetric microwave SAR data with noise.

C. Reflectivity Inversion for Sea Ice Thickness

In most of the studies in the past on the use of active
measurements [35], [58], [86], backscattering coefficients have
been used for retrieving thin saline ice thickness. It is known
that there are a few decibels of fluctuation in these types
of data, and hence, statistical methods, such as the neural
networks, have been used for retrieval. Fluctuations are re-
solved by the use of multiple inputs in terms of frequency,
polarization, and/or the incident angle and their known relative
values. Clearly, a data set with much less fluctuations will
provide even better results in identifying ice thickness and
may allow a simple and more direct retrieval in some cases.

In this section, we consider the relations between ice thick-
ness and both the coherent and incoherent reflectivity proper-
ties of a layer of saline ice over saline water. It is shown that
a new incoherent reflectivity along with the standard coherent
reflectivity are needed to explain reflectivity measurements.
Physically, it is clear that when the ice is less than or
comparable to the incident wavelength, the transmitted and
reflected fields within the ice interfere coherently. This is
true when the ice thickness is about a wavelength or less
in ice. When the ice gets thicker, the lower interface gets
rougher and loss gets higher, the coherency between the
transmitted and reflected field is lost and the reflectivities of
VV- and HH-polarizations become incoherent. The transition
takes place between one and two wavelengths. Measurements
of reflectivity taken over two wavelengths in ice follow
incoherent reflectivity behavior quite well.

For a continuous incident wave, the impedance seen by it
at the air–ice boundary is the total field impedance accounting

for both the ice layer and the water below it. It is known that
the field reflection coefficient for such a layer is given by

(4.6)

where
are the Fresnel reflection coefficients at the air–ice and

ice–water interfaces, respectively;is the incident angle, and
is the thickness of the ice layer. The coherent reflectivity

is given by

(4.7)

An incoherent reflectivity was given by Ulabyet al. [98] as

(4.8)

However, it is found that an expression that fits the measure-
ment better is

(4.9)

where

(4.10)

1) Surface Backscattering Model Approach:A surface
backscattering model was used in [35] to explain backscat-
tering from the saline ice layer. It was found that surface
scattering was responding to the total effective permittivity of
the ice layer and the water beneath it. It is clear that, when the
water below is not seen by the radar, only the permittivity of
ice will be in effect. Otherwise, an effective total permittivity
for the combination of the ice layer and water is sensed. It
is this property that allows the ice thickness to be calculated
at a given wavelength. Note that the conventional idea of a
perfectly plane layer in which we can expect two echoes from
the top and bottom ice interfaces is not applicable here because
the ice–water interface may be rough and the echo may be
diffused and difficult to detect. In the next subsection, we shall
see that this idea is supported by reflectivity measurements.

It is known that when the ice surface is randomly rough,
many samples are required to reach the statistical average.
Thus, generally, there is some fluctuation in the data. In
Fig. 12, we show a comparison between backscattering calcu-
lations at 5.3 GHz and data plotted versus ice layer thickness
at 25 and 40 incidence using the integral equation surface
scattering model [34]. The coherent reflection coefficient due
to a layer is used for ice thickness up to 2 cm, beyond which
we use the effective permittivity inverted from the incoherent
reflectivity to calculate backscattering. The permittivity of the
saline ice is taken to be 3.4-i0.2. The permittivity of the
saline water is computed based on the formula given in [98]
at 5 C. The correlation function of the surface is taken
to be exponential, and its rms height and correlation length
are taken to be 0.08 and 0.8 cm, respectively. While there is
an overall agreement, a deviation of a few decibels between
model predictions and data are evident. Similar deviations
between model predictions and data are also evident in [58]
and [86].
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(a) (b)

Fig. 12. Comparisons between surface-scattering model and data for VV- and HH-polarizations at 5.3 GHz (a) 25� and (b) 40�, respectively, wherec
denotes coherent scattering,D denotes data, andi denotes incoherent scattering.

(a) (b)

Fig. 13. Comparison between model and data using measured permittivity as input at 5.3 GHz for VV- and HH-polarization and incidence angle of
(a) 25� and (b) 40�, respectively.

(a) (b)

Fig. 14. Comparisons of coherent and incoherent reflectivity model results with measurements at incidence angles of (a) 25� and (b) 40�. C denotes coherent
reflectivity, R denotes incoherent reflectivity in (4.9), andG denotes the reflectivity in (4.8).

If instead of theoretical estimates of reflectivity we use the
permittivity inverted from measured reflectivity in the surface
scattering model, we obtain better agreement at 25incidence
but no significant improvement at 40incidence, as shown in
Fig. 13. For this reason, a direct retrieval of ice thickness is
not feasible. A statistical method, such as a neural network,
could be used [58].

2) Ice Thickness Retrieval:Reflectivity measurements
were carried out over saline ice at 25 and 40incidence
and 5.3 GHz. In Fig. 14, comparisons are shown between
measured data and the coherent and incoherent reflectivities
given by (4.7)–(4.9) as a function of ice layer thickness. Of
the two incoherent reflectivity models, it is seen that (4.9)
gives a better fit to the data than (4.8). More importantly,
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there is very little data fluctuation after the ice thickness is
larger than 4 cm. It appears that, when the ice thickness is
less than or around one wavelength, the wave transmitted
into the ice interferes coherently with the field reflected from
the ice–water interface. Thus, we can only interpret the data
using a coherent reflectivity model given by (4.7). After about
4 cm (which is about two wavelength in thickness), the waves
become incoherent and a specific trend appears, as shown in
Fig. 14. This specific data trend is much clearer and more
stable than what can be obtained from the backscattering
measurements shown in the previous subsection. It appears
that ice thickness can be inverted directly from reflectivity
measurements when the thickness is over one wavelength.

D. Proxy Indicators of Sea Ice Thickness

Faced with the difficulties of determining sea ice thickness
through electromagnetic means, people have developed alter-
natives to direct thickness measurements, one of these being
the use of proxy indicators. A remotely sensed proxy indicator
of sea ice thickness is a characteristic, physical property, or
suite of physical properties that is tied to ice thickness and
has a measurable electromagnetic signature. To date, the most
successful general proxy indicator of ice thickness that can
be determined through remote sensing has been ice type or
age [8], [57], [59], [103] First-year ice (ice that is less than
a year old) is in general thinner than multiyear ice (ice that
has survived one or more melt seasons). The age of sea ice
is manifested by a suite of physical properties, such as brine
pocket size and brine distribution, that affect scattering and
emission of radiation. A separation between first-year and
multiyear ice, however, only gives rough information about
ice thickness.

For thin sea ice, proxy indicators other than ice type have
recently been investigated. In the microwave, experiments and
models have indicated that electromagnetic signatures of new
sea ice are tied to surface roughness and dielectric properties
[3], [29], [89], [91], [101]. Through modeling, Zabelet al.
[113] looked into the competition between the influence of
near-surface dielectric changes and surface roughness changes
on the microwave backscatter of young, growing sea ice.
They found that surface roughness changes tend to dominate
over dielectric changes after the initial 10 cm of ice growth.
Unfortunately, surface roughness is not a reliable proxy in-
dicator of ice thickness because it can change rapidly due to
events, such as snowfall and ridging. A more reliable, though
transient, event may be the growth of frost flowers, which
typically happens while the ice is about 5–20 cm thick and
results in strong microwave backscatter. Zabelet al. [113]
also hypothesized that the surface dielectric constant of sea
ice may serve as a proxy indicator for young sea ice thickness
when using microwave sensors operating at an incidence
angle of about 12. At this angle, experiments showed that
the microwave backscatter is largely insensitive to surface
roughness.

Another proxy indicator for thin sea ice thickness is ice sur-
face temperature. The basic idea is that the surface temperature
of thin ice tends to be higher than that of thick ice. This ten-

dency is observed in infrared imagery [44], [66], [112]. Using
thermal infrared imagery and a thermodynamic model for ice
growth, Yu and Rothrock [112] have demonstrated calculations
of thin sea ice thickness distributions largely to within 2% of
sonar-based distributions (sonar is considered the most reliable
remote-sensing tool for measuring ice thickness). The largest
difference between the two distributions (20%) occurs for very
thin ice. For ice thickness itself, they report an uncertainty
in their method of roughly half the ice thickness. Infrared
methods suffer by comparison to microwave methods in that
infrared sensors are limited by cloud cover. Nevertheless, ice
surface temperature appears to be a useful proxy indicator for
sea ice thickness.

V. NEURAL NETWORK CLASSIFICATION OF SEA ICE TYPE

The purpose of this section is to introduce a classification
scheme for sea ice types based on a special neural network
known as the fast-learning neural network [63], [28]. Learning
in a neural network can be viewed as minimizing the sum
of the squared errors between the desired outputs and the
computed network outputs by adjusting the weights inside the
network. One problem with the conventional backpropagation
neural network learning method is that the resultant error is
highly dependent on the initial weights [83] and may not
find the global minimum of the error function. The fast-
learning algorithm has been shown to be much less sensitive to
this problem [27]. The Fast-learning method differs from the
backpropagation in that the output of the fast-learning neural
network is expressed as a linear function of the output weights,
and linear equations can be solved exactly to minimize the
training error. The basis functions of these linear equations are
the sigmoid activations commonly found in neural networks.
The advantages of the fast-learning neural network over the
backpropagation neural network for a sea ice classification
problem are demonstrated in this section.

When considering training data for neural networks to
perform classification, it is necessary that the training data
fully represent all of the domain of the input set rather than
primarily the means, as in a-means classification. This is
due to the fact that the neural network needs to know where
to position the discrimination planes in-dimensional space.
The performance of a neural network in classification problems
is more dependent on having representative training samples,
whereas the statistical classifiers need to have an appropriate
distribution model for each class. This is an important differ-
ence between the neural network and conventional statistical
classification.

A large amount of data currently available to the remote-
sensing community originate from aircraft and satellite-based
platforms. These data usually have little or no ground-truth
information that would allow them to serve as training data,
as required in a supervised classification scheme. Although
the unsupervised classifiers or clustering algorithms can group
data into logical sets that have similar features, these classifiers
do not identify what specific ice type each cluster represents.
A possible method to identify the ice type associated with a
cluster is to compare it with clusters from known ice types,
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TABLE II
SUMMARY OF RADIOMETRIC AVERAGES FOR THEEIGHT CLASSES CONSIDERED. ALL VALUES GIVEN ARE IN KELVIN

Fig. 15. Identification of unsupervised classification cluster centroids using an emission model from [34].

which serve as ground truth. If only the mean radiometric
values of ice types are available, another method is to use
a validated scattering or emission model. The model should
produce the mean value, when the model parameters take
on their mean values for a given ice type. Variations of the
model parameters about their mean values should allow the
model to generate the cluster. Thus, a physical emission model
calibrated by a data set from a known ice type may be used
to identify a cluster of the same ice type. To illustrate the
classification method with a fast-learning neural network, we
shall consider a specific example using radiometric data from
the spaceborne SSM/I platform.

1) Classification Example:The SSM/I is a seven-channel,
four-frequency, linearly polarized, passive microwave ra-
diometer system [47], [80]. The instrument measures surface
brightness temperatures at 19.3, 22.2, 37.9, and 85.5 GHz.
All data are at 53 from nadir. Data from March 1–15, 1988,
are processed to remove outliers. The data are then clustered

into eight classes using an unsupervised ISODATA algorithm
[79] These eight classes of ice can be identified with either
clusters of radiometric measurements from known ice types
acquired from radiometric images [27] or using a calibrated
emission model. An emission model can be calibrated with any
emission data representative of known ice types. A sufficient
number of such data sets are difficult to find. To illustrate this
approach, an emission model based on the radiative transfer
method [34] is used to fit centroids already established by
[23]. The centroids of the ice categories used are given in
Table II. An example of model calibration is shown in Fig. 15
for open water, frazil ice, first-year ice, and multiyear ice.
Once the calibration process is complete, we can apply this
calibrated model to determine the ice types represented by the
eight clusters found using unsupervised clustering.

After the original image is classified using the unsupervised
method and the identity of each class is known, the final
classified image can be used as pseudoground truth for a
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Fig. 16. Comparison of training classification error as a function of iteration
for the five cases listed. The training set contained 30 512 patterns. All
networks used the same fully connected 7-15-8-8 topology.

supervised neural network classification scheme. Representa-
tive data from each of these eight classes and an associated
class identification tag are dumped to a file and used to
train a neural network. The trained neural network classifier
can then be used for batch processing satellite or aircraft
data. For the example considered, the neural network will
need to have seven inputs (one for each radiometric channel)
and eight outputs (one binary output for each class). From
experience with similar data, two hidden layers with 15
and 8 units, respectively, are used in the neural network.
This four-layer network is commonly denoted by 7-15-8-8.
A conventional backpropagation learning algorithm and the
fast-learning algorithm are used to train the neural network.
The primary difference between the fast-learning method and
the backpropagation method is that the fast-learning method
finds the global minimum of the error function with respect
to output weights, not with respect to all weights within
the network as the backpropagation method does. The fast-
learning method is optimizing the output weights rather than
all hidden weights as required by the backpropagation al-
gorithm. In addition to these two methods, a third hybrid
method combining fast-learning and backpropagation is also
used (fast-learning backpropagation). After solving for the
output weights as performed by the fast-learning method,
the combined fast-learning backpropagation method uses
backpropagation to correct the hidden weights.

Results: All three algorithms (backpropagation, fast-
learning, and fast-learning backpropagation) were tested
on the same training file using the same 7-15-8-8 fully
interconnected topology. The training set consisted of 30 512
training patterns. Three separate attempts to train the network
using backpropagation were made; each with different learning
rates and momentum factors [83]. The time required for
training the network, the final classification error, and the
number of iterations required are given in Table III. The
classification error during training for all methods is plotted
as a function of epoch in Fig. 16.

From Table III, we see that the backpropagation training
algorithm did very poorly in comparison to the fast-learning
algorithms. Note that even in cases in which backpropagation

TABLE III
COMPARISON OF TRAINING TIME, ITERATIONS, ERROR

USING 7-15-8-8 TOPOLOGY—(THERE WERE 30 512
PATTERNS IN THE CLASSIFICATION TRAINING FILE)

was allowed to run three times as long as fast-learning, the
backpropagation training error is a full magnitude greater.
Although the combined fast-learningbackpropagation did
slightly better than fast-learning alone, the additional training
time required may not be justified. Thus, the fast-learning is
the method of choice for this problem. The fast-learning
backpropagation classified image is shown in Fig. 17(b) along
with the results of the NASA Team Algorithm (NTA) [90] in
Fig. 17(a). This figure provides a qualitative comparison of
multiyear concentration from NTA with the ice ages estimated
using the fast-learning backpropagation approach described
here. Note the general agreement in shape, especially in the
Fram Strait (north of Svalbard) labeled “p1” and the region
just north of Ellesmere Island (labeled “p2”).

In summary, a validated emission model can be combined
with other techniques, such as the fast-learningbackpropa-
gation neural network, to effectively perform classification for
complex problems, such as sea ice. In this example, we used
a clustering algorithm that is better suited for data without
ground truth and then applied an emission model to determine
class identity. This approach allows us to use the results of the
clustering algorithm to train a neural network that can then be
used to process data in large volumes.

VI. CONCLUSION

Techniques of electromagnetic inverse scattering theory
have been applied to the problem of sea ice remote sensing.
Inverse algorithms designed to reconstruct complex permittiv-
ity profiles and thickness information on sea ice have been
developed and tested in settings ranging from a foam/dry
wall slab system in the laboratory to laboratory grown saline
ice and Arctic sea ice. The work presented here represents
the first concerted, interdisciplinary effort aimed specifically
at the problem of reconstructing sea ice physical parameters
from scattered electromagnetic field data. For example, sea ice
thickness has been a long sought after parameter. The present
work establishes a foundation upon which practical methods
of large-scale inversion for sea ice thickness, at least for the
important case of thin ice, may well be based, as well as
directions for further inquiry.

One of the byproducts of a focused effort on such a tech-
nologically challenging problem as remotely reconstructing
the physical characteristics of a complex random medium, is
advances in the mathematical theories underlying the problem.
Our work on the sea ice inverse problem has led to fundamen-
tal advances in the application of layer-stripping techniques
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(a) (b)

Fig. 17. Qualitative comparison of (a) multiyear ice concentrations with (b) ice age classification results from fast-learning+ backpropagation neural
network. Based on seven radiometric channels from SSM/I for March 1–15, 1988.

to inverse scattering problems. A new causality method of
stabilizing solutions, which is a principal challenge in inverse
problems, has been developed. This type of approach has led
to a surprising nonlinear generalization of Fourier analysis,
which is quite significant mathematically in its own right.
Furthermore, rigorously addressing the composite nature of sea
ice in this context has led to new developments in the theory of
effective parameters of composite media and, in particular, to
a theory of inverse homogenization for recovering microstruc-
tural features from bulk electromagnetic measurements.

Finally, it should be noted that there still remains much work
in refining the algorithms and theoretical results developed
here into practical, accurate techniques for reconstructing sea
parameters from satellite data. Nevertheless, the present work
does take a step in that direction, and we hope that others will
be motivated to build upon it.
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