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Abstract. Bounds on the volume fraction of the constituents in a two-component mixture
are derived from measurements of the effective complex permittivity of the mixture, using the
analyticity of the effective property. First-order inverse bounds for general anisotropic materials,
as well as second-order bounds for isotropic mixtures, are obtained. By exploiting an analytic
representation of the effective complex permittivity, the problem of estimating the structural
parameters is reduced to a problem of evaluating the moments and support of a measure
containing information about the geometrical structure of the material. Rigorous bounds on
the volume fraction are found by inverting first- and second-order (Hashin–Shtrikman) forward
bounds on the complex permittivity. The inverse bounds are applied to measurements of the
effective complex permittivity of sea ice, which is a three-component mixture of ice, brine
and air. The sea ice is treated via the two-component theory applied to a mixture of brine
and an ice/air composite. The bounds on the brine volume of sea ice derived from the effective
permittivity measurements are in excellent agreement with data from experiments. The inversion
of forward bounds on the complex permittivity of composite media provides a basis for a
theory of inverse homogenization for recovering microstructural parameters from bulk property
measurements. Such results are applicable to problems in remote sensing, medical imaging and
non-destructive testing of materials.

1. Introduction

In recent years much effort has been focussed on estimating the effective complex
permittivity ε∗ [2–4, 9, 10, 18, 19, 22, 23] of periodic and random media. In the present
paper we formulate and solve the inverse problem: having measured the effective complex
permittivity we want to make some conclusions about the volume fractions of the
constituents and the geometry of the microstructure. We consider sea ice as an example
of a random medium. Sea ice is a polycrystalline medium of pure ice with random brine
and air inclusions on the millimetre scale. Its electromagnetic behaviour on this scale is
quite complicated, and is governed by the complex permittivityε(x), which varies spatially
and admits very different values in the brine, ice and air. Many important features of sea
ice such as age, type, salinity, temperature, thermal and fluid transport properties, growth
history, etc, are related to the details of its microstructure. In particular, the geometry
and relative volume fraction of the inclusions depend strongly on the temperature of the
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ice, the conditions under which the ice was grown, and the history of the sample under
consideration.

In the quasistatic regime, when the wavelengthλ is much larger than the microstructural
scale, the wave cannot resolve variations in the local complex permittivityε(x) on a fine
scale, and the brine and air microstructure on the millimetre scale is averaged out, or
‘homogenized’. The behaviour of the wave inside the sea ice in this case is primarily
governed by its effective complex permittivityε∗. For example, this is the case for synthetic
aperture radar (SAR) used in remote sensing, which operates in the microwave region,
such as in the C-band, with central frequencyf = 5.3 GHz and free-space wavelength
λ = 5.7 cm.

Various models and effective medium theories, such as the coherent potential
approximation, have been used to derive ‘mixing formulae’ forε∗ of the system. Typically
the sea ice was assumed to consist of a host medium, pure ice, containing ellipsoidal
inclusions of brine and air (see [23, 25]). While mixing formulae are certainly useful, their
applicability to the full range of microstructures is limited, and the assumptions under which
they are derived are not always satisfied. A general analytic method for obtaining bounds
on the bulk effective properties of composite materials was developed in [2, 3, 18, 19, 9],
and applies to any two-component medium. This analytic method has been applied to sea
ice in [10, 21, 11]. Given an increasing amount of information on the microstructure, such
as the brine volume fraction, statistical isotropy, or the assumption that the brine phase is
contained in separated inclusions (i.e. it does not form a connected matrix, or percolate),
these bounds restrict all possible values ofε∗ to increasingly smaller regions of the complex
ε∗ plane. However, as discussed before, it would be very useful to be able to deduce the
detailed microstructural properties of the medium, such as the geometry and the volume
fractions of the constituents, from electromagnetic measurements.

In the present paper, we invert the bounds on the effective complex permittivity to obtain
‘inverse’ bounds on structural parameters of a two-component mixture from given complex
permittivity data. Two types of inverse bounds on the volume fractions of the constituents are
derived: first-order bounds valid for general anisotropic two-component mixtures without
any geometrical constraints, and second-order bounds for isotropic mixtures. We obtain
both rigorous bounds on the possible range of volume fractions given a value of the
observed complex permittivity, valid in the quasistatic regime, and an accurate algorithm
for predicting the volume fraction associated with a given data set of permittivity values.
The sea ice is a three-component mixture of brine, ice and air. To apply the developed
algorithm, we modelled the three-component material as a mixture of brine and a composite
formed by ice and air. This is a significant simplification of a problem for three-component
materials which is possible due to the well known ‘bubbly’ structure of ice with a small
volume fraction of air. The algorithm is demonstrated on a representative data set from [1],
with excellent results.

It should be remarked that a similar idea of estimating structural parameters from
homogenized measurements was used previously, and applied to multifrequency data for
thin silver films [17]. Analytical expressions for first-order inverse bounds were derived
in [6]. They were applied to the estimation of volume fraction of a polarizable component
from multifrequency measurements of the effective complex conductivity of a geophysical
mixture in [26]. Other approaches to the inversion for microstructural information have
been considered in [8, 16, 14, 22]. The developed method is sufficiently general to be able
to invert these bounds for much more detailed information about the microstructure, such as
brine inclusion separation (which is intimately connected with temperature and percolation
properties), but this is dealt with in [20].
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2. Bounds for the effective complex permittivity

The bounds for the effective complex permittivity of a two-component mixture were obtained
using the analytic continuation method [2, 3, 18, 9]. We consider a random medium inRd ,
whered = 2 or d = 3. Let ε(x, η) be a (spatially) stationary random field inx ∈ Rd and
η ∈ �, where� is the set of all realizations of the random medium. We assumeε(x, η) takes
the valuesε1 in the brine andε2 in the ice, and writeε(x, η) = ε1χ1(x, η)+ε2χ2(x, η), where
χj is the characteristic function of mediumj = 1, 2, which equals one for all realizations
η ∈ � having mediumj at x, and equals zero otherwise. LetE(x, η) andD(x, η) be the
stationary random electric and displacement fields, related byD(x, η) = ε(x, η)E(x, η),
satisfying

∇ ·D = 0 ∇ × E = 0 (1)

where〈E(x, η)〉 = ek, ek is a unit vector in thekth direction, for somek = 1, . . . , d, and〈·〉
means ensemble average over� or spatial average over all ofRd . The effective complex
permittivity tensorε∗ is defined as

〈D〉 = ε∗〈E〉. (2)

For simplicity, we focus on one diagonal coefficientε∗ = ε∗kk. Due to homogeneity of
effective parameters,ε∗(cε1, cε2) = cε∗(ε1, ε2) for any constantc, ε∗ depends only on the
ratio h = ε1/ε2, and we definem(h) = ε∗/ε2. The two main properties ofm(h) are that it
is analytic off (−∞, 0] in the h plane, and that it maps the upper half plane to the upper
half plane [2, 9], so that it is an example of a Herglotz function. Based on this fact, a
representation forε∗ was developed in [2] for periodic composites, and a general integral
representation forε∗ was obtained in [9]. ForF(s) = 1− m(h), s = 1/(1− h), which is
analytic off [0, 1] in the s plane, the integral representation is

F(s) = 1− ε
∗

ε2
=
∫ 1

0

dµ(z)

s − z s = 1

1− ε1/ε2
(3)

where the positive measureµ on [0, 1] is the spectral measure of the self-adjoint operator
0χ1, where0 = ∇(−1)−1∇· .

Statistical assumptions about the geometry are incorporated intoµ through its moments
µn. Comparison of a perturbation expansion of (3) around a homogeneous medium(s = ∞,
or ε1 = ε2) with a similar expansion of a resolvent representation forF(s) [9], yields

µn =
∫ 1

0
zn dµ(z) = (−1)n〈χ1[(0χ1)

nek] · ek〉. (4)

Thenµ0 = p1 if the volume fractionsp1 andp2 = 1− p1 of the brine and ice are known,
andµ1 = p1p2/d if the material is statistically isotropic. In general, knowledge of the
(n+ 1)-point correlation function of the medium allows calculation ofµn (in principle).

Bounds onε∗, orF(s), are obtained by fixings in (3), varying over admissible measures
µ (or admissible geometries), such as those that satisfy onlyµ0 = p1, and finding the
corresponding range of values ofF(s) in the complex plane [4, 9, 18, 19]. Two types of
bounds onε∗ are readily obtained. The first boundD(1) assumes only that the relative
volume fractionsp1 andp2 = 1− p1 are known, so that onlyµ0 = p1 need be satisfied.
In this case, the admissible set of measures forms a compact, convex set. Since (3) is a
linear functional ofµ, the extreme values ofF are attained by extreme points of the set of
admissible measures, which are the Dirac point measures of the formp1δz. The values of
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F must lie inside the circlep1/(s − z),−∞ 6 z 6∞, and the regionD(1) is bounded by
circular arcs, one of which is parametrized in theF plane by

C1(z) = p1

s − z 06 z 6 p2. (5)

To display the other arc, it is convenient to use the auxiliary function [2]

E(s) = 1− ε1

ε∗
= (1− sF (s))
s(1− F(s)) (6)

which is a Herglotz function likeF(s), analytic off [0, 1], with a representation like (3)
whose representing measure has massp2. Then in theE plane, the other circular boundary
of D(1) is parametrized by

Ĉ1(z) = p2

s − z 06 z 6 p1. (7)

In the ε∗ plane (see figure 1),D(1) has verticesA1 = ε2(1−C1(0)) = p1ε1+ p2ε2 and
B1 = ε1/(1−Ĉ1(0)) = (p1/ε1+p2/ε2)

−1, and collapses to the interval(p1/ε1+p2/ε2)
−1 6

ε∗ 6 p1ε1 + p2ε2 whenε1 andε2 are real. In the last case, these bounds are the classical
arithmetic (upper) and harmonic (lower) mean bounds. The complex bounds (5) and (7) are
optimal and can be attained by a composite of uniformly aligned spheroids of material 1 in
all sizes coated with confocal shells of material 2 and vice versa [18, 19]. These arcs are
traced out as the aspect ratio varies. When the volume fractions of the components in the
mixture vary, the corresponding domainsD(1) cover the regionD(1)

0 , a general bound on
ε∗ for arbitrary composites mixed from the initial materials.

If the mixture is further assumed to be statistically isotropic, i.e.ε∗ik = ε∗δik, then
µ1 = p1p2/d must be satisfied as well. A convenient way of including this information is
to use the transformation introduced in [4]:

F1(s) = 1

p1
− 1

s F (s)
. (8)

The functionF1(s) is, again, a Herglotz function having a representation like (3) with
representing measureµ1, with only a restriction on its massµ1

0 = p2/p1d.

A1

A2

B1

B2

D(1)

D(2)

D0
(1)

ε2

ε1

Figure 1. Illustration of bounds on the bulk permittivity of a two-component mixture. For
a given volume fraction of one component, all possible effective permittivities of the mixture
lie in the lens shaped regionD(1), whereas isotropic mixtures lie in the smaller lens shaped
domainD(2). All possible bulk permittivities of mixtures with arbitrary volume fractions lie in
the regionD(1)

0 which is a union of the domainsD(1) over all volume fractions.
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Applying the same procedure as forD(1) yields a regionD(2), whose boundaries are
again circular arcs. In theF plane, one of these arcs is parametrized by

C2(z) = p1(s − z)
s(s − z− p2/d)

06 z 6 (d − 1)/d. (9)

In theE plane, the other arc is parametrized by

Ĉ2(z) = p2(s − z)
s(s − z− p1(d − 1)/d)

06 z 6 1/d. (10)

In the ε∗ plane,D(2) has verticesA2 andB2 (see figure 1), and collapses to the interval

ε2+ p1

(
1

ε1− ε2
+ p2

dε2

)−1

6 ε∗ 6 ε1+ p2

(
1

ε2− ε1
+ p1

dε1

)−1

(11)

whenε1 andε2 are real withε1 > ε2. These are the Hashin–Shtrikman bounds [13]. When
ε1 6 ε2, the sequence of inequalities is reversed. The verticesA2 andB2 (which correspond
to the expressions in (11)), are attained by the Hashin–Shtrikman coated sphere geometries
(spheres of all sizes of material of permittivityε1 in the volume fractionp1 coated with
spherical shells of materialε2 in the volume fractionp2 and vice versa), and lie on the arcs
which boundD(1).

3. Inverse bounds for structural parameters

From equations (3) it immediately follows that the effective complex permittivity of the
mixture of two constituents can be represented as an integral with some positive Borel
measureµ (dz) on unit interval:

ε∗ = ε2− ε2 Fµ(s) = ε2− ε2

∫ 1

0

µ (dz)

s − z (12)

whereFµ = 1−ε∗/ε2 ands = 1/(1−ε1/ε2), s 6∈ [0, 1]. An important feature of the integral
representation (12) of the effective property is that it separates the properties of the mixture
constituents, which are contained in the variables, from the structural information about
the geometry of the mixture, which is contained in the measureµ. Wishing to recover this
geometrical information from the measurements of the effective complex permittivity, we
need to describe a set of measuresµ which generates a measured valueε∗ for the effective
property:

M(µ) = {µ : Fµ(s) = 1− ε∗/ε2}. (13)

The structural information about the geometry of the mixture is contained in the moments
µn of the measureµ (see equation (4)). Using an expansion ofF(s) for |s| > 1 about a
homogeneous medium

F(s) = µ0

s
+ µ1

s2
+ · · · µn =

∫ 1

0
zn dµ(z) (14)

the moments of the measureµ can be determined. If all the moments are known, then the
measureµ is uniquely determined. Theoretically, if only a measured value of the effective
permittivity is given, we cannot determine the moments, nor the structure of the material.
This is because there can exist a great variety of structures generating the same response
under the applied field. But instead, we can determine an interval confining the first moment
of the measureµ. This will give us an interval of uncertainty for the volume fraction of
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one material in a mixture for a general anisotropic medium with no assumptions on the
geometrical structure.

To obtain information about other structural parameters, we can parametrize a subset
M of M in (13) which consists of singular measuresµ̃ concentrated on pointsτ from the
interval [0, 1]. Geometrically, this corresponds to the parametrization of the set of possible
microstructures using ‘coated sphere’ composites: inclusions of one material coated with
the second material. For the measures from this subsetM the corresponding value ofF is
given by

F(s) = α

s − τ . (15)

For the zeroth-order bounds on the complex permittivity given by the domainD
(1)
0 in

figure 1, 06 α 6 1, 0 6 τ 6 1 andF(1) 6 1, which produces all possibleε∗ formed
from the initial materials. Now, having a prescribed value forF(s) we want to find the
appropriate intervals forα andτ .

The interval forα gives us an interval of uncertainty for the volume fractionp1 of one
material in the mixture,

p
(1)
l 6 p1 6 p(1)u (16)

while the corresponding values forτ estimate the support of possible Dirac measuresµ̃

from the setM which are equivalent to the true spectral measure from the point of view of
the measured value ofε∗:

µ̃
(1)
l = p(1)l δ(z

(1)
l ) µ̃(1)u = p(1)u δ(z(1)u ) µ̃ ∈ M. (17)

The measures̃µ(1)l and µ̃(1)u are on the boundary of the setM.
By changingτ in (15) the corresponding structures trace out the arcs(A1, A2, B1)

or (A1, B2, B1) (see figure 1) changing from the laminates (in 2D case) or cylinders (in
3D case) oriented along the field through coated spheroids with varying aspect ratio to
isotropic structures and then to laminates (or cylinders) oriented across the field. Hence
the last estimate for the measure support can be extended into an estimate for geometrical
parameters such as, for example, the degree of an anisotropy of the mixture [20].

These are the first-order bounds. However, if some information about the structure
of the composite is available, then bounds can be derived for the next moments, and the
uncertainty intervals will be essentially decreased. Pursuing this approach for isotropic
materials, we use the second-order expansion for the functionF . Therefore the inverse
bounds for the volume fraction of a component in an isotropic mixture can be referred to
as second-order inverse bounds.

Exploiting the transformation (8) from the functionF to the functionF1 preserves the
type of integral representation

F1(s) =
∫ 1

0

µ1 (dz)

s − z . (18)

Hence the same approach works here as well. We can also determine the support of
equivalent measures̃µ ∈ M

µ̃
(2)
l = p(2)l δ(z

(2)
l ) µ̃(2)u = p(2)u δ(z(2)u ) µ̃ ∈ M (19)

and an admissible interval for the second moment of the measure, which gives us an interval
of uncertainty for the volume fraction for an isotropic medium, or the second-order bounds:

p
(2)
l 6 p1 6 p(2)u . (20)
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First order
volume fraction bounds
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Figure 2. Illustration of bounds on the volume fraction of one component in the mixture derived
from the first-order anisotropic bounds (left-hand diagram) and from the second-order isotropic
bounds (right-hand diagram) for the effective permittivity. The small lens shaped domains each
contain the anisotropic (left) and isotropic (right) mixtures corresponding to the volume fractions
of the first componentpl andpu. These points give the lower and upper estimates for the volume
fraction of the first material in the mixture.

A geometrical illustration of the idea of the inversion is shown in figure 2.
Given an observed complex permittivity valueε∗, we increase the volume fractionp1

in the boundD(1) until one of the circular arcs on the boundary ofD(1) touches the point
ε∗. This defines the lower boundp(1)l on the possible range of volume fractions associated
with the data point. Similarly, we decreasep1 until the other arc touches the data point,
giving an upper boundp(1)u on the possible range of the volume fractions. Applying the
same procedure to the isotropic complex boundD(2) yields even tighter lowerp(2)l and
upperp(2)u bounds on the volume fractionp1.

Given a set of data pointsε∗(k) for a set ofN measurements,k = 1, . . . , N , we carry
out the inversion for each point, and then take the maximum overk of the p(1)l and the
minimum overk of thep(1)u , and similarly forp(2)l andp(2)u , which yield rather tight, accurate
estimates of the volume fractions in the mixture associated with the given data set.

Using this unified approach we rederive below the first-order bounds on the volume
fraction of a component in an anisotropic mixture, derived in [6], in the complexε∗ plane.
Then assuming isotropy of the mixture, we derive the bounds for the volume fraction in
an isotropic mixture. These are the second-order bounds. We then apply the technique
developed here to real measurements of the complex permittivity of sea ice and compare
our bounds with experimental results.

4. First- and second-order inverse bounds

Let f be the value ofF corresponding to the measured effective complex permittivityε∗

for the given propertiesε1, ε2 of the constituents. As shown above, if we do not input any
geometrical information about the mixture, aside from the volume fractions, the value off

lies inside the circular arc

C1(z) = p1

s − z 06 z 6 p2. (21)
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We varyp1 so that the given valuef lies on this arc and we obtain an equation for the
lower bound on the structural parameters{p1, z}:

p1 = f (s − z). (22)

Solving it, we find the lower first-order boundsp(1)l andz(1)l for the volume fractionp1 and
the support of the measure supp(µ̃):

z
(1)
l =

Im (f s)

Im (f )
p
(1)
l = |f |2

Im (s)

Im (f )
. (23)

Here the bar in the second expression denotes the complex conjugate. The value ofz
(1)
l in

(23) gives the bound for the interval of variation of the support of the measureµ̃ in (15),
p
(1)
l gives the lower bound for the first moment of the measureµ̃ or its mass in (15). But

the first moment of the measurẽµ equals the first moment of the true measureµ: µ̃0 = µ0.
Hencep(1)l gives a rigorous bound for the volume fraction of the first component in the
mixture.

In order to obtain the other bound, we can consider an auxiliary functionG(t) [4]:

G(t) = ε1− ε∗
ε1

= 1− s F (s)
1− s (24)

with the same properties asF for some positive measureν. The advantage to using
this function as opposed toE(s) is that the spectrum (or support ofµ in (3)) is trivially
transformed viat = 1− s, so that spectral bounds obtained forF are easily translated over
to G, which is not the case forE. The valueg of the functionG corresponding to the
measuredε∗, lies on the arc

C̃1(z) = p2

t − z 06 z 6 p1 (25)

hence we can derive bounds forz and p2 = 1− p1 similar to those considered above.
The formulae are analogous to (23), switchingp1 for p2, f for g, and s for t = 1− s.
Thus we obtain the upper boundpu for the volume fraction of the first component and the
corresponding bound for the supportingzu:

zu = Im (g t)

Im (g)
pu = Im (g g t)

Im (g)
. (26)

The estimate for the support of the measureµ̃ is obtained asz(1)u = 1− zu, because from
the auxiliary relationship

F(1− t) = 1− t G(t)
1− t (27)

it follows that poles of the functionsF andG sum up to unity. Simplifying (26), we obtain
the first-order bounds for the measure support and the volume fraction:

z(1)u = 1− Im (g t)

Im (g)
p(1)u = 1− |g|

2 Im (t)

Im (g)
. (28)

Now, assume that the mixture under consideration is known to be isotropic, which
means that the measuredε∗ has to belong to the domainD(2) (see figure 1). In order to
derive second-order bounds on the volume fraction of one component in a two-component
isotropic mixture, we consider the boundaryC2(z) in (9) of the circle containing the point
f inside:

F(s) = p1(s − z)
s(s − z− p2/d)

06 z 6 (d − 1)/d (29)
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and choose the parameters such that the valuef lies on the admissible part of the arcC2(z).
Separating real and imaginary parts we obtain a system of equations forz andp1. Solving
the system we need to choose a solution of (29) which satisfies 06 z 6 (d − 1)/d:

{p1, z} : 06 z 6 (d − 1)/d. (30)

In order to obtain the other bound we again consider the auxiliary functionG(t) (24), which
is obtained from the functionF(s) by changingp1 for p2 = 1− p1 and s for t = 1− s.
The explicit formulae are as follows. Let us introduce complex parametersv andw as

v = ε1 (ε
∗ − ε2)

ε∗ (ε1− ε2)
= t (1− w)

t − w w = ε1− ε∗
ε1− ε2

= t (1− v)
t − v . (31)

The second-order bounds{p(2)l , z
(2)
l }, and{p(2)u , z(2)u }, for the structural parameters are given

by the pair of solutions of (29) and the similar problem for the transformed functionG:

p
(2)
l = Q(v, s) z

(2)
l = R(v, s)

p(2)u = 1−Q(w, s) z(2)u = 1− R(w, s)
(32)

such that the constraint (30) (and the corresponding auxiliary constraint) is satisfied. Here
Q andR are

Q(v, s) = 2dvrsi + vi −
√
T

2(dsi + vi)

R(v, s) = 2dvi(1− sr)− vi −
√
T

2dvi

T = vi(vi − 4dsi |v|2+ 4dvrsi − 4d2vis
2
i )

(33)

and the subscripts refer to the real or imaginary parts.
It is shown in [5] that the support of the measureµ is directly related to the

separation distance between the particles in matrix–particle composite. Based on the
approach developed here, we extract structural information about separation between the
brine inclusions in [20].

The geometrical idea of the second-order bounds in the complexε∗ plane is illustrated
in figure 2. Complex permittivities of all possible mixtures formed from two materials with
the complex permittivitiesε1 and ε2 and arbitrary volume fraction of the constituents are
confined to the regionD(1)

0 . The composites with isotropic structure and arbitrary volume
fraction belong to the smaller regionD(2)

0 , which is a union of small lens shaped domains
corresponding to isotropic mixtures for all volume fractions. Two such domains are shown
in figure 2 for the volume fractions of the first material equal to 0.5 and 0.56. Inverse
bounds for the volume fraction [p(2)l , p(2)u ] provide a range of variation of the volume
fraction parameterp = p1 for all such small domains which could possibly contain the
measured value ofε∗.

For measurements corresponding to different frequencies, the inverse bounds for the
volume fraction of a component were derived in [17, 6, 26] as an intersection of particular
bounding intervals. In determination of the brine volume fraction in sea ice below, we
consider the case where several measurements are made at the same temperature and the
same physical conditions. In this situation, we believe that, though we deal with slightly
different microstructures, we do not have means to distinguish them. Hence as well as
for frequency dependent measurements, it is the same structure, and the bounds for the
volume fraction are an intersection of all particular bounds, corresponding to particular
measurements.
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For a set of data points corresponding to the same structure the bounds are given by
an intersection of all admissible intervals. Suppose we have several measurementsε∗(k),
k = 1, . . . , N , corresponding to the same composite structure which means that we do not
distinguish differences in geometry of the mixtures. We find that the intersection overk of
the intervalsp(q)l (k) 6 p 6 p(q)u (k) gives the bounds for the volume fractionp = p1:

P
(q)

l = max
k
p
(q)

l (k) 6 p 6 min
k
p(q)u (k) = P (q)u q = 1, 2. (34)

Herep(q)l (k) andp(q)u (k) are, respectively, lower and upper bounds for the volume fraction
derived from the effective complex permittivityε∗(k) and q is the order of the bounds,
q = 1 for a general mixture,q = 2 for an isotropic mixture.

5. Inverse bounds for the sea-ice brine volume from measured effective complex
permittivities

Determination of the structure of sea ice and brine content from measurements of the
effective complex permittivity is an important problem in remote sensing. We apply the
developed method to two data sets of 4.75 GHz measurements of the effective complex
permittivity of sea ice [1]. The data sets each contain nine measurements of the effective
complex permittivity of sea ice for two different temperatures and for different volume
fractions of brine. The temperatures are−6 ◦C and−11 ◦C. Given a sea-ice sample of
temperatureT ◦C and salinityS parts per thousand (ppt), the brine volumep1 is calculated
from the equation of Frankenstein and Garner [7]. Given the frequencyf GHz as well,
the complex permittivityε2 of the brine is computed from the equations of Stogryn and
Desargant [24]. Furthermore, although the brine microstructure tends to be elongated in
the vertical direction, since only vertically incident waves are considered in [1], we are
justified in assuming that the geometry is isotropic within the horizontal plane, in which
case we taked = 2 above. These parameter calculations gave generally good agreement
with the boundsD(1) andD(2) in [10]. However, we found that closer agreement is obtained
if we slightly adjust the complex permittivityε2 of the ice by treating it as a composite
with a small volume fraction of air, and calculating its effective permittivityε2 with the
Maxwell–Garnett formula [15].

Sea ice is a mixture of three components: pure ice, brine and air with the unit complex
permittivity of air, εair = 1, the complex permittivity of iceεice = 3.15+ i 0.002, and the
complex permittivity of brine depending on the temperature and frequency. We consider
this three-component mixture as obtained in a two-step mixing procedure: a composite of
ice and air is mixed with brine. We assume that the first mixture of ice and air is a 3D
isotropic composite of an ice matrix containing inclusions of air. As the volume fraction
of the air inclusions is small, and the permittivities of ice and air are relatively close, a
good approximation of the effective complex permittivity of such a mixture is given by the
Maxwell–Garnett formula for a two-phase composite

ε2 = εice

[
1− d pair(εice− εair)

εice(d − 1)+ εair+ pair(εice− εair)

]
. (35)

The Maxwell–Garnett formula, as well as Bruggeman’s symmetric effective medium
formula [15], gives close results for the effective complex permittivity of the mixture of ice
and air. When the volume fraction of air in this mixture changes, the regionsD

(1)
0 , D(1) and

D(2) confining the possible effective permittivities of sea ice, change their location in the
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Figure 3. Experimentally measured complex permittivity values for sea-ice samples with brine
volume p = 0.036 (data set 1, left-hand diagram) and with brine volumep = 0.0205 (data
set 2, right-hand diagram), and bounds for the complex permittivity of composites formed from
the brine and ice/air mixture with the corresponding volume fractions. The bigger lens shaped
regionD(1) corresponds to all anisotropic composites, and the smaller lens shaped regionD(2)

confines the complex permittivities of two-dimensional isotropic mixtures. Points show the
measured values of the complex permittivity of sea ice containing the given percentage of brine.

complexε∗ plane (see figures 1 and 2). The air volume fraction in the ice/air mixture was
chosen so that the regionD(2) corresponding to 2D isotropic composites would contain all
points of measurements from both data sets. This gives 2.5% of air in the ice/air mixture
and the value for permittivityε2 = 3.07+ i 0.0019. We used this value as the complex
permittivity of the ice/air component in an ice/air/brine mixture. The complex permittivity
of the other component, brine, depends on the temperature, and it isε2 = 51+ i 45 for the
first set of measurements at the temperature−6 ◦C, andε2 = 42.2+ i 45.6 for the second
set of data at the temperature−11◦C. These data sets are shown in figure 3. (We remark
that the volume fraction of air could also be calculateda priori from knowledge of the
density as in [11]).

First-order inverse bounds. For each particular data point from data sets 1 and 2, we used
our technique to evaluate the brine volume from the measurements of the effective complex
permittivity. As a first step we applied the bounds (23) and (28) for a general medium
without any geometrical information.

For data set 1 with the volume fraction of brinep = 0.036, the intersection of
all particular admissible intervals for the brine volume fraction gives an estimate as
0.0213 6 p 6 0.0664. For data set 2 with the volume fraction of brinep = 0.0205,
this estimate is 0.01196 p 6 0.0320.

Second-order inverse bounds.The second-order inverse bounds for the brine volume
fraction were derived from the measurements of the effective complex permittivity with the
assumption of 2D isotropy of the mixture. The intersection of the bounding intervals for data
set 1 with brine volumep = 0.036, estimates the brine volume as 0.03336 p 6 0.0422.
For data set 2 with volume fraction of brinep = 0.0205, the inverse bounds for the brine
volume are 0.01896 p 6 0.0213. The algorithm estimates the brine volume well within
10% error of the actual value of 0.0205 for data set 2.
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Figure 4. Comparison of the first- and second-order bounds for data set 1 with the actual brine
volume of 0.036 (left-hand diagram) and data set 2 with the actual brine volume of 0.0205
(right-hand diagram). Joint plots ofp(1)l (k) andp(1)u (k) show the first-order inverse bounds for

general anisotropic composites, while plots ofp(2)l (k) andp(2)u (k) show second-order inverse
bounds for isotropic mixtures, wherek denotes the index of the data pointk = 1, 2, . . . ,9. The
dashed lines show the interval of uncertainty in determining the brine volume derived with the
assumption of 2D isotropy.

Comparison of the first- and second-order bounds for each particular data point is shown
in figure 4 for data sets 1 and 2. On the horizontal axis is shown the index of the data
point. The points of the lower boundpl and of the upper boundpu corresponding to all
nine different data points are joined on the plots to give better exposition. The shape of
the curves is not important, because the numeration of the data points in the data sets is
arbitrary, but the distance between the lower and upper curves is important.

In figure 4 the points corresponding to the first-order inverse boundsp
(1)
l (k) andp(1)u (k)

are plotted, giving the lower and upper estimates. The maximum ofp
(1)
l (k) and the minimum

of p(1)u (k) with respect tok give the first-order inverse bounds for general anisotropic
composites. For both data sets these are not very tight, permitting quite a large range of
variation for the volume fraction. The second-order boundsp

(2)
l andp(2)u derived with the

assumption about 2D isotropy of the composite, are shown for the same data sets. Again
the points of the lower boundp(2)l (k) and of the upper boundp(2)u (k) for nine different
data points,k = 1, . . . ,9, are joined on the plot. In this case the interval of uncertainty is
reduced by more than half compared with the first-order estimate.

The geometrical structure of the composites in each of the two sets of measurements
is believed to vary negligibly, reflecting the similarity of the physical conditions of the
experiments. Therefore the bounds for the volume fraction have to satisfy all particular
restrictions, and are given by the intersection of all particular volume fraction intervals.

6. Conclusion

We have developed a unified approach to the problem of inverse bounds on the
microstructural parameters of a mixture. Two types of inverse bounds are derived using
the analyticity of the effective complex permittivity of the composite. They are first-order
inverse bounds on the volume fraction and structural parameters for general anisotropic
mixtures, and second-order inverse bounds for mixtures with 2D or 3D isotropic geometrical
structure. The inclusion of additional information on geometrical structure of the composite
considerably improves the inverse structural bounds. This is an expected result, because
introducing isotropic restrictions for a geometrical structure, we restrict the class of the
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composites. The inverse bounds obtained are used to estimate sea-ice brine volume from
real measurements of the effective complex permittivity of sea ice. The bounds are in very
good agreement with the experimental results.
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