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Modeling the fractal geometry of Arctic melt ponds

using the level sets of random surfaces
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Abstract. During the late spring, most of the Arctic Ocean is covered by sea ice with a layer

of snow on top. As the snow and sea ice begin to melt, water collects on the surface to form

melt ponds. As melting progresses, sparse, disconnected ponds coalesce to form complex,

self-similar structures which are connected over large length scales. The boundaries of

the ponds undergo a transition in fractal dimension from 1 to about 2 around a critical

length scale of 100 square meters, as found previously from area–perimeter data. Melt

pond geometry depends strongly on sea ice and snow topography. Here we construct a

rather simple model of melt pond boundaries as the intersection of a horizontal plane,

representing the water level, with a random surface representing the topography. We show

that an autoregressive class of anisotropic random Fourier surfaces provides topographies

that yield the observed fractal dimension transition, with the ponds evolving and growing

as the plane rises. The results are compared with a partial differential equation model of

melt pond evolution that includes much of the physics of the system. Properties of the

shift in fractal dimension, such as its amplitude, phase and rate, are shown to depend on

the surface anisotropy and autocorrelation length scales in the models. Melting-driven

differences between the two models are highlighted.
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1. Introduction

Polar sunrise leads to the melting of snow on the surface of sea ice in the frozen

Arctic Ocean. The melt water collects in surface pools called melt ponds. While

white snow and ice reflect the majority of incident sunlight, melt ponds absorb

most of it. The albedo of sea ice floes, which is the ratio of reflected sunlight

to incident sunlight, is determined in late spring and summer primarily by the

evolution of melt pond geometry [23, 20]. The overall albedo of the sea ice



122 B. Bowen, C. Strong, and K. M. Golden

pack itself then depends on the configurations of ice floes and ponds, as well

as the area fraction of open ocean [28]. As melting increases, the albedo of

the ice pack decreases, thus leading to more solar absorption and more melting,

further decreasing the albedo, and so on. This ice–albedo feedback has played

a significant role in the rapid decline of the summer Arctic ice pack [19], which

most climate models underestimated [24, 2]. Sea ice albedo has been a significant

source of uncertainty in climate projections and remains a fundamental challenge

in climate modeling [6, 23, 15, 20]. Overall, even in the simplest energy balance

models used to predict Earth’s equilibrium temperature [12], the albedo is the most

important parameter except for the amount of solar energy incident on Earth.

From the first appearance of visible pools of water, often in early June, the

area fraction of sea ice covered by melt ponds can increase rapidly to over 70% in

just a few days [20, 22], dramatically lowering the albedo. The resulting increase

in solar absorption in the surrounding ice and upper ocean further accelerates

melting [17], possibly triggering ice-albedo feedback. The spatial coverage and

distribution of melt ponds on the surface of ice floes and the open water between

the floes thus exert primary control on ice pack albedo and the budget of solar

energy in the ice-ocean system [4, 20]. Some images of melt ponds illustrating

the evolution of pond connectivity are shown in Figure 1.

a b c

Figure 1. Examples of melt ponds on summer Arctic sea ice. The aerial photos in (a) and (b)

were taken in early July during the 1998 Surface Heat Budget of the Arctic Ocean (SHEBA)

Experiment [18], and the photo in (c) was taken in late August during the 2005 Healy–Oden

TRans Arctic EXpedition (HOTRAX) [16]. The images depict the evolution of melt pond

connectivity, with disconnected ponds in (a), transitional ponds in (b), and fully connected

melt ponds in (c). The scale bars represent 200 m for (a) and (b), and 35 m for (c).

While melt ponds form a key, iconic component of the Arctic marine environ-

ment, comprehensive observations or theories of their formation, coverage, and

evolution remain sparse. Available observations of melt ponds show that their

areal coverage is highly variable, particularly for first year ice early in the melt sea-

son, with rates of change as high as 35% per day [22, 20]. This variability, coupled

with the influence of many competing factors controlling melt pond and ice floe
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evolution, makes the incorporation of realistic treatments of albedo into climate

models quite difficult [20]. Small and medium scale models of melt ponds that

include some of these mechanisms have been developed [5, 25, 23], and melt pond

parameterizations are being incorporated into global climate models [6, 10, 15].

Analysis of area–perimeter data from hundreds of thousands of melt ponds

revealed an unexpected separation of scales, where the pond fractal dimension D,

calculated using area–perimeter methods, exhibits a transition from 1 to about 2,

around a critical length scale of 100 square meters in area [9], as shown in

Figure 2. Pond complexity increases rapidly through the transition region and

reaches a maximum for ponds larger than 1000 m2 whose boundaries resemble

space filling curves [21] with D � 2. This change in fractal dimension is

important for the evolution of melt ponds in part because it regulates the extent

of the water-ice interface where lateral expansion of the ponds can occur. In fact,

the existence of multiple equilibria in a simple energy balance model has been

explored in connection with the transition in fractal dimension displayed by Arctic

melt ponds. Pond area, and thus pond contribution to albedo, scales differently

with system size below and above the critical transition length, leading to complex

dynamical behavior [27]. Increasing pond fractal dimension may also slow pond

deepening, which is important because deeper ponds absorb more solar energy.

Moreover, the transition in fractal dimension provides a benchmark result that

may be helpful in providing additional observational data for comparison with

melt pond parameterizations being incorporated into climate models [6, 10, 15].

Melt pond geometry depends strongly on sea ice and snow topography, and

here we investigate an autoregressive class of anisotropic random Fourier sur-

faces that provide realistic topographies. They yield the observed fractal dimen-

sion transition when paired with two simple melt pond models. The first model

represents the melt pond surface as a plane rising through the topography, and the

second alters the topography via melting and uses partial differential equations to

simulate horizontal transport.

The level set model that we develop here for Arctic melt ponds is based

on a continuum percolation model which has been used in studies of statistical

topographies arising in problems of electronic transport in disordered media and

diffusion in plasmas [11]. Percolation analysis of statistical topographies has also

been useful in understanding recent observations about ponds in tidal flats [3].

We believe that this type of level set model could potentially be quite useful in

climate modeling, as it captures much of the basic behavior of melt ponds, while

being computationally much simpler than PDE models incorporating most of the

physics of melt pond evolution.
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Figure 2. Using the data from [9] shown in (a), the fractal dimension transition can be

calculated by taking the derivative of the best fit curve and multiplying by 2, as shown

in (b).

The generation of the surfaces that we use as the underlying topography for

these models is based on two-dimensional (2D) random Fourier series as detailed

in Section 3. Using random Fourier series as our underlying surface generator

enables us to generate many surfaces that have certain statistical properties such

as anisotropy or autocorrelation length scales. In Section 4, we show that both the

plane model and the PDE model provide a sufficiently realistic basis for studying

the observed melt pond fractal dimension shift, and there are some interesting

contrasts arising from melt-driven modification of the topography in the PDE

model. For example, we found that the ability for the PDE model to change its

topography significantly increased the depth of its ponds, typically resulting in the

PDE model having a greater final fractal dimension than the plane model while

also transitioning to this fractal dimension sooner than the plane model.
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2. Models

2.1. Evaluating fractal dimension. The main definition of fractal dimension

that will be used here [8] involves the following relationship between the areas

and perimeters of the ponds,

P D kAD=2; (1)

where P and A are perimeter and area, respectively, k is a scaling constant, and

D is the fractal dimension of the pond boundary. This area-perimeter method for

calculating fractal dimension has been used in the sciences for finding the fractal

dimension of boundaries when the shapes in question are statistically similar after

scaling [1]. Solving for log P gives the following equation

log P D
D

2
log A C log k: (2)

From equation (2), and with k constant under the assumption that the melt

ponds are statistically scale invariant, D can be found as twice the slope of a curve

which best captures the relationship between the logarithmic variables y D log P

vs. x D log A,

D D 2
dy

dx
: (3)

To find the fractal dimension D as a function of area A based on a large set of

observations, in the context of the transitional behavior observed for melt ponds

in [9], here we introduce a method based on a least-squares fit to the function

D.x/ D a1 � tanh Œa2.x � a3/� C a4: (4)

This model allows us to determine the fractal dimension for any value of the

area, and yields the following parameters (Figure 3): D1 D a4 C a1, the limiting

fractal dimension as area increases, D�1 D a4�a1, the limiting fractal dimension

as area approaches zero, and C D 10a3 , the inflection point of the curve in units

of area. The term M D a1a4 is the value of the slope at this inflection point, and

is also the maximal slope of the curve. These parameters together characterize

how the melt pond fractal dimension varies with area.

In order to solve for the four variables in (4), we first look at the corresponding

model for y D log P , which is the result of using separation of variables on (3),

substituting into (4) and integrating both sides,

y.x/ D
1

2

Z

D.x/ dx D
a1

2a2

ln.cosh.a2.x � a3/// C
a4

2
x C a5; (5)
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Figure 3. Varying a3 changes the midpoint as shown in (a), while varying a2 changes the

slope of the function as shown in (b). Similarly, a combination of a1 and a4 changes the

two asymptotes related to the initial and final fractal dimension.

where a5 is a constant of integration. Now, equation (5) can be fit to the log A vs.

log P data by standard methods of nonlinear n-variable regression. This model

was used to find the best fit curve and fractal dimension of the melt pond data

from [9], as shown in Figure 2.

The fractal dimension calculated using the area-perimeter relation in equa-

tion (1) is similar to that calculated through box-counting methods, and they are

both asymptotically equivalent to the Hausdorff dimension [8]. Below we will

demonstrate the equivalence of box-counting and area-perimeter methods for our

pond system by examining the definitions and assumptions made in each case.

Starting from the standard formulation of the box-dimension, let N. 1
n
/ be the

number of boxes intersecting the perimeter of a pond for a grid with cell dimen-

sions 1
n

by 1
n
. Then the box-counting dimension D is such that N. 1

n
/ � LDnD

for large n, where LD is non-zero and finite, and represents the D-dimensional

measure of the length of the boundary [8]. We also define N2. 1
n
/ as the number

of boxes that intersect the pond including the boundary. Since we assume that the

ponds are statistically similar under scaling, as n ! 1 we obtain the following

by scaling with a constant c,

N
� 1

n

�

� cDN
� 1

nc

�

; (6)

N2

�1

n

�

� c2N2

� 1

nc

�

: (7)

Relation (6) comes directly from the definition of the box-dimension, as

N

�

1

nc

�

� LD.nc/D:
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Figure 4. Reducing the grid size results in different values for both N and N2, colored black

and gray respectively. Scaling by c has a similar effect on the images. Going left to right,

the first row has scaling c D 1 and c D 2, while the second row has scaling c D 4 and

c D 8.

One may think the same for relation (7), but instead we note that the dimension of

area in the plane R2 is 2. Another motivation for relation (7) comes directly from

scaling: as the number of boxes containing the boundary of any pond is negligible

compared to the number of boxes inside the pond, we are effectively multiplying

the number of boxes inside by c2 [8]. Solving for c in (7) and substituting it into (6)

yields

N
�

1
n

�

N
�

1
cn

� �
� N2

�

1
n

�

N2

�

1
cn

�

�D=2

: (8)

Since the ponds are statistically similar under scaling by c, then this relation can

be re-written as
N

�

1
n

�

ŒN2

�

1
n

�

�D=2
�

N
�

1
cn

�

ŒN2

�

1
cn

�

�D=2
� k; (9)

for some constant k. Noting that we can retrieve both perimeter and area from N

and N2, respectively, we obtain the following,

N
� 1

n

�

� kN2

�1

n

�D=2

; (10)
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or

P � kAD=2: (11)

Therefore, the fractal dimension calculated with box-counting methods is

consistent with the fractal dimension retrieved through area-perimeter methods,

given the assumption that the ponds are statistically invariant under scaling [8]. To

further illustrate the equivalence of the two methods, we consider the Koch curve.

Figure 5. The Koch curve after 6 iterations, along with its base line, to indicate the area

contained by the curve.

After a significant number of iterations, the Koch curve becomes self-similar

under scaling, yet the perimeter is still finite, allowing us to use the methods

above. In this case, scaling two dimensional space by a multiple of c D 3 results

in the perimeter being scaled by a multiple of 4 and the area being scaled by

a multiple of 9. Therefore, when we graph the function representing the curve

in the .log A; log P /-plane and calculate its slope, we get
log 4

log 9
. Since the fractal

dimension of the curve is equal to twice this value, the resulting fractal dimension

of the Koch curve is D D 2
log 4

log 9
D

log 4

log 3
, which is consistent with the box-counting

calculation of the dimension of the Koch curve [8].

2.2. Melt pond simulation. As noted in the Introduction, we used two models

to simulate melt pond evolution using our stochastic surfaces. The first model rep-

resents the melt pond surface as a plane rising through the topography represented

by the stochastic surface Z, and the second alters the topography via melting and

uses partial differential equations to simulate horizontal transport. The meltwater

depth h evolves in the PDE model [14] according to the equation

@h

@t
D He.h/

h

� s C
�ice

�water
m � r � .hu/

i

; (12)
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where the Heaviside step function

He.h/ D

´

1 if h � 0;

0 if h < 0;
(13)

prevents h from becoming negative. The parameter s D 0:8 cm day�1 is the

seepage rate, � is material density, g is gravitational acceleration, and the ice melt

rate m begins at 1.2 cm day�1 and increases linearly with melt pond depth up to

a maximum of 3.2 cm day�1 once the pond is 10 cm or deeper. The horizontal

velocity of melt pond water through porous sea ice is governed by Darcy’s law

u D �
g�water

�
…hr‰; (14)

where � D 1:7 � 10�3 kg m�1 s�1 is the dynamic viscosity, …h D 3 � 10�9 m2

is the fluid permeability (taken here to be a constant), and ‰ D z C h is the

height of the surface Z at the location plus any overlying melt pond water depth at

that location. A detailed discussion of parameter settings and related sensitivity

analyses are given in [14].

For the plane model, we define melt ponds as the volume between a plane at

elevation z D zc and the surface topography Z (i.e., a melt pond exists where

Z < zc). To correlate the plane model with the PDE model, zc was chosen

at each time step so that the total melt pond water volume was equal over time

between the two models. The principal differences between the plane model

and PDE model is that the PDE model modifies the topography via melting and

simulates horizontal melt water transport, whereas the plane model retains the

initial topography through the simulation and assumes instantaneous horizontal

transport as the water surface rises.

3. Stochastic surface generation

The surfaces that will be used for studying the two models are generated by a

two dimensional Fourier series with random coefficients. In particular, we use

a finite cosine expansion with phase given by independent identically distributed

(I.I.D.) uniform random variables and amplitude coefficients given by the physical

properties of an autoregressive relation. The series that we use has the following

form
N

X

n;mD1

an;m cos.mx C ny C �n;m/; (15)



130 B. Bowen, C. Strong, and K. M. Golden

Figure 6. On the left is an example of a surface we use to represent the sea ice topography,

and on the right is the intersection of this surface with a plane representing the water level.

where the an;m are the amplitude coefficients, and the �n;m are I.I.D. uniform

random variables with values in Œ0; 2��. This formulation enables us to consider

random surfaces while still allowing specification of some of the base properties

of the surface, namely, the anisotropy and effective range of correlation in each

direction. Using Fourier series also allows simplification of the formulas due to

the periodicity across the domain.

The intersection of a horizontal plane with a realization of the random surface

will represent the boundary of a melt pond in the level set model. Now, since the

surface is generated by a finite sum of cosine terms, it is infinitely differentiable,

as are the curves defined by the intersection of the surface with the plane. It is

reasonable then to ask how we are investigating the fractal dimension of curves

in the plane with such a model, particularly when many famous examples such as

Brownian motion and the Koch, Peano-Hilbert, and Sierpiński curves are nowhere

differentiable. The usual constructions of these curves involve starting on a unit

scale and then ramifying basic structures in a self-similar fashion on smaller and

smaller scales. However, the fractal dimension of such objects can instead be

analyzed by starting on a unit scale and then building in a self-similar fashion

on larger and larger scales. By smoothing corners one can construct infinitely

differentiable, infinitely large versions of these fractal structures with the same

fractal dimension. Similarly, in standard lattice percolation models the smallest

scale is the unit lattice spacing, and then the fractal and other properties of

percolation clusters are studied over large length scales, with a similar situation

for some continuum percolation models [11]. This is exactly the type of behavior

we observed in [9], where real Arctic melt ponds – on much larger scales –

start exhibiting the elements of self-similarity expected of fractals. This large-

scale fractal behavior is seen in other examples in nature, such as in the coastline

of Britain. In order to capture the transition in fractal dimension that we have

observed in nature, we use the area-perimeter method described in Section 2.1.

Finding classes of surfaces which would ultimately yield the observed patterns

and fractal properties of Arctic melt ponds was a challenging problem.
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3.1. Autoregressive model. In order to choose the topographic amplitudes, we

use an autoregressive relationship. An AR.1/ process is defined by the following

equation,

XtC1 D �Xt C �t ; (16)

where XtC1 and Xt are the values of X at t C 1 and t , respectively, � 2 .�1; 1/ is

the AR.1/ coefficient and �t is white noise with variance �2. This AR.1/ process

has the spectrum [7]

S D
�2

1 � 2� cos.f / C �2
; (17)

where f 2 Œ0; 1� is the frequency normalized by its maximum value. Further, the

integral of S over all values of f gives the following relation [7],

Z 1

0

Sdf D

Z 1

0

�2

1 � 2� cos.f / C �2
df D 1=.1 � �2/:

As the surfaces we are looking at involve two independent orthogonal vectors,

we want to find a spectrum such that the restriction of the surface to one of these

vectors returns an AR.1/ process. Let

S D
�2

.1 � 2�1 cos.f1/ C �1
2/.1 � 2�2 cos.f2/ C �2

2/
(18)

be this spectrum [13].

To show that this spectrum reduces to an AR.1/ process along the specified

vectors, all that needs to be shown is that the integral over one of the vectors gives

an AR.1/ process for the other vector. Taking the integral of S over the values of

f2 yields

Z 1

0

Sdf2 D

Z

f22Œ0;1�

�2

.1 � 2�1 cos.f1/ C �1
2/.1 � 2�2 cos.f2/ C �2

2/
df2

D
�2

.1 � 2�1 cos.f1/ C �1
2/

Z 1

0

1

.1 � 2�2 cos.f2/ C �2
2/

df2

D
�2

.1 � 2�1 cos.f1/ C �1
2/

1

1 � �2
2

:

Letting � 02 D �2

1C�2
2 gives us the required form for an AR.1/ process,

Z 1

0

Sdf2 D
� 02

.1 � 2�1 cos.f1/ C �1
2/

:

Therefore, S is one of these spectra, and is what we will be using for melt pond

generation.
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3.2. Variogram of 2D Fourier Series. The variogram is a measure of the degree

of correlation the value at one point has to the value at another point some “lag”

distance away. It will be used to determine the range of each surface, as well as

its anisotropy. Typically used in the geosciences, the variogram has the following

structure,

2.p; p C h/ D Var.jZ.p/ � Z.p C h/j/; (19)

where h D .hx; hy/ is the lag distance vector and Z is the surface to which we are

applying a variogram analysis. The vector p D .x; y/ is the set of data points that

we are using to calculate the variance of the surface. In order to determine the

properties of the variogram when applied to a Fourier series, we use the following

notation to describe the variogram of a surface Z,

2Z.h/ D 2.p; p C h/ D Var.Z.p/ � Z.p C h//: (20)

Theorem 1. Given a surface Z D a cos.mx C ny C �/, the variogram of Z over

x,y 2 Œ0; 2�� is

2Z.h/ D 2a2 sin2
�mhx C nhy

2

�

: (21)

Proof. In order to calculate the variance represented in equation (20) we need

to randomly sample the vector p over the domain Œ0; 2�� � Œ0; 2��. Let X D

unif.0; 2�/ and Y D unif.0; 2�/ be the uniform random variables sampling

p D .x; y/. Then Z can be represented as Z D a cos.mX C nY C �/. From

this we will directly calculate the variogram of Z,

2Z.h/ D Var.a cos.mX C nY C �/ � a cos.m.X C hx/ C n.Y C hy/ C �//

D Var
�

� 2a sin
� .mX C nY C �/ C .m.X C hx/ C n.Y C hy/ C �/

2

�

sin
��mhx � nhy

2

��

D 4a2 sin2
�mhx C nhy

2

�

Var
�

sin
�2mX C 2nY C 2� C mhx C nhy

2

��

:

This should be equal to 2a2 sin2
�mhxCnhy

2

�

if the remaining variance is equal to

1/2. In order to show this, we first use the following substitutions and calculations,

X1 D cos
�2mX C mhx C �

2

�

; E.X2
1 / D

1

2
; E.X1/2 D 0;

X2 D sin
�2mX C mhx C �

2

�

; E.X2
2 / D

1

2
; E.X2/2 D 0;
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Y1 D cos
�2nY C nhy C �

2

�

; E.Y 2
1 / D

1

2
; E.Y1/2 D 0;

Y2 D sin
�2nY C nhy C �

2

�

; E.Y 2
2 / D

1

2
; E.Y2/2 D 0:

From here, we can use the double angle formula to compute the variance,

Var
�

sin
�2mX C 2nY C 2� C mhx C nhy

2

��

D Var.X1Y1 � X2Y2/

D Var.X1Y1/ C Var.X2Y2/ C Cov.X1Y1; X2Y2/

D E.X2
1 /E.Y 2

1 / � E.X1/2E.Y1/2 C E.X2
2 /E.Y 2

2 / � E.X2/2E.Y2/2 C 0

D
1

2
�

1

2
� 0 C

1

2
�

1

2
� 0

D
1

2
:

Therefore, the value of the remaining variance is 1=2, as needed. �

Due to the orthogonality properties of cosine, the variogram of a finite Fourier

series can be found by computing the sum of the variograms of each element,

resulting in the following relations,

2aZ.h/ D 2a2Z.h/; (22)

2ZCZ0.h/ D 2Z.h/ C 2Z0.h/: (23)

This allows for quick computation of the variogram for each surface, and

also shows that the only component that affects the variogram of the surface is

the amplitude of the cosine terms. The above proof does not require a specific

amplitude distribution, allowing us to compute the variogram for any distribution.

As the random phase angle is omitted in the computation of the variogram,

generating surfaces that share the same anisotropy and range becomes a trivial

matter of using the same amplitudes, and thus spectrum, for both.

3.3. Range and Anisotropy. Now that we can find the variance of any Fourier

series, we can use the variogram definition to determine the range and anisotropy

for each autoregressive coefficient pair .�1; �2/. Therefore, surfaces can be ar-

ranged by their anisotropy value A and the autoregression value of the x-direction

as the pair .A; �/. This also allows us to choose a length scale representative of

Arctic melt pond data.
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The use of variograms gives us an effective tool to calculate range between

our models and observed data. This range is defined as the distance at which the

variogram first achieves 95% of its maximum value. As every random Fourier

series with a given autoregressive coefficient pair has the same variogram, we

can compute the range for each surface. The definition that we will be using for

anisotropy is the ratio A D
range2

range1
where range2 > range1. This definition is

primarily used to describe the results and has a positive correlation with other

definitions of anisotropy. The following Table 3.3 displays the range for 10 values

of �, sampled along one of the major axes.

� range

0 0:1458

0:1 0:1532

0:2 0:1613

0:3 0:1701

0:4 0:1793

� range

0:5 0:1885

0:6 0:1972

0:7 0:2047

0:8 0:2106

0:9 0:2141

Given that the range is a fixed value for each choice of �, we can use it to

define a length scale for each surface. Realistic values of the range were chosen

based on values presented in Figure 12 of [26], and our analysis of the snow and

ice topography data shown in Figure 11 of the same manuscript. Specifying the

range enables us to assign our surfaces a grid spacing in meters. This constant is

necessary for the use of the PDE model where we need to know the horizontal

grid spacing. While it is less important for the plane model, the length scale is

still needed to determine the scale of the fractal dimension transition in meters.

4. Results

4.1. Surface Analysis. The selection of the autocorrelation coefficients drasti-

cally affects the shape of the ponds as well as their overall structure and mean

direction. Using equation (4) to analyze the melt ponds from both the PDE and

the plane model, we found that there was a fractal dimension shift regardless of

the values of the auto-correlation coefficients (e.g., Figure 7).

As seen in Figure 8, higher values of anisotropy resulted in pond elongation

along the x-axis, and higher values of the auto-correlation [AR.1/] coefficient �

resulted in larger scale features. To compare and contrast the fractal dimension

change between the two melt pond models, we use the same axes of anisotropy

and AR.1/ coefficient � in Figure 9a-f.

There are several general features apparent in both models. The limiting max-

imum fractal dimension (Figure 9a,d) tends to primarily increase with decreasing
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Figure 7. As the plane rises through the generated surface, we see different stages of melt

pond growth. When the plane is at 30% (left image) of the maximum height, the melt

ponds are just starting to form, with simple, disconnected shapes. At 40% (center image),

the melt ponds have become more complex, joining up so that proto-fractal boundaries

form between black and white. Most of the individual melt ponds have coalesced at 47.5%

(right image) into one giant, complex melt pond with a fractal boundary.

�, especially in the PDE model. The anisotropy, by contrast, has minimal influence

on the limiting fractal dimension. While the PDE model reaches a maximum frac-

tal dimension of approximately 1.8, the plane model only reaches 1.7. Similarly,

the minimum of the PDE model is around 1.55 at the extremum of the values while

the plane model can have a minimum limiting fractal dimension of 1.35. Looking

at how the initial surfaces were generated, this change in the maximum fractal di-

mension makes physical sense. When the Fourier series is primarily populated by

high frequency waves there is a greater chance of interference between the waves.

It is this interference that causes the small channels and lengthy perimeters that

result in higher maximum fractal dimension. A similar statement can be made

about the Fourier series dominated by low frequency waves. As there is less ex-

treme interference, the ponds tend to be compact with the only sign of interference

being the curved boundaries.

Another important relation between the models is the initial fractal dimen-

sion (Figure 9c,f). While the noise in the PDE model data can be attributed to

the volatility of the random Fourier series, the plane model helps show the main

trend that the maximum initial fractal dimension occurs at the upper boundary of

anisotropy, and in general a decrease in anisotropy or an increase in � decreases

this initial dimension down to a limiting value of around 1.15. Our fit to observa-

tions in Figure 2 yields a limiting fractal dimension of 1.02, which is close to unity

as expected for simple 2D shapes. The inflated value derived from our simulated

surfaces likely stems, at least in part, from the grid cells in our simulation domain

being approximately 50% larger than those in the melt pond imagery. In other

words, recovering the expected slope of unity may require resolving extremely

small incipient ponds.
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Figure 8. Pond structures generated as a function of anisotropy and � in the plane model

are shown. Notice that the ponds become more elongated as anisotropy increases while

increasing � gives rise to more complex pond shapes.
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Figure 9. For the plane model, various properties of the fractal dimension shift are shown

as a function of anisotropy (A) and autocorrelation in the x-direction (�; defined in Sec-

tion 3.3): (a) D1 is the limiting fractal dimension as A increases, (b) phase is the value

of log.A/ at which the transition in fractal dimension occurs (a3 in equation (3)), and (c)

D�1 is the limiting fractal dimension as A decreases to 0 (limit as log(A) goes to �1).

In (d-f), the same quantities corresponding to (a-c) are shown for the PDE model.



138 B. Bowen, C. Strong, and K. M. Golden

The last major relationship and distinction that we found between the two

models was the phase at which the shift in fractal dimension occurred (Figure 9

b,e), where larger phase corresponds to larger total pond area (e.g., Figure 3),

as would be seen later in the melt season. We observed that anisotropy strongly

influenced the phase of the fractal dimension change. However, in the majority of

cases, the plane model transitioned at a later time, roughly an order of magnitude

greater than the PDE model.

4.2. Physical Analysis. In order to further analyze the differences between the

models, it is useful to compare the evolution of their ponds over time. Figures 10

and 11 show a few time steps for each model on the same surface.
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Figure 10. The images show a zoomed-in portion of ponds generated by the PDE and level

set models to illustrate their differences. It can be seen that the PDE model better preserves

the chaotic boundary while the plane model floods it.

The two main differences between the models are how they deal with where the

water accumulates and how their evolution affects the topography of the surface.

The PDE model will nearly always immediately fill the local minima of the surface

while the plane model instead floods the lowest portions of the surface first.

Similarly, the PDE model actively affects the topography, as seen in Figure 11a-d

while the plane model does nothing to the topography.

These differences largely explain the contrast between the fractal dimension

results of the models. The main reason why the limiting fractal dimension of

the plane model is lower than the PDE model on average is due to the plane

model flooding the surface, in comparison to the PDE model’s tendency to melt

downward into the surface and create complex pond shapes (Figure 11). Similarly,
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Figure 11. Looking at the height along the yellow line in Figure 10 helps show how the PDE

model maintains the fractal boundary while the plane model floods it. In particular, the

peak at 50 m is flooded in the plane model while it persists in the PDE model

the size at which these ponds undergo their fractal dimension change is also

affected by downward melting. Specifically, the PDE model tends to connect

ponds together by thin paths (Figure 10), and these thin paths are usually preserved

rather than flooded due to the modification to the topography.

5. Conclusions

In conclusion, we have found a method to generate realistic melt ponds using

random Fourier series. These surfaces are constructed using mathematical tools

common in statistical physics such as an AR.1/ process, which enable us to

incorporate some of the properties of actual sea ice topography into the generated

models. Therefore, the evolution of the melt ponds produced by these models

are realistic in both the length scales and in how fractal dimension evolves with

increasing size. Surface anisotropy most heavily influenced the timing (phase)

of the fractal dimension transition, whereas surface auto-correlation most heavily

influenced the upper limit of pond fractal dimension.

When comparing the plane model to the PDE model, we found some signif-

icant differences in the fractal dimension transition between the two. Specifi-

cally, the PDE model underwent a later fractal dimension shift (larger phase) and

achieved a higher final fractal dimension, in part because of its modification of

the topography by melting. Nonetheless, there is enough similarity to consider

the plane model as a parsimonious framework that captures first order effects in a

computationally efficient and conceptually simple way. Through further modifica-

tions to the underlying structure of the random Fourier series, it might be possible

to generate melt pond fields that further reflect properties observed in real Arctic

melt ponds.
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