1. Evaluate the integral

$$\iint_{R} (x+y)dA,$$

where R is the triangular region with vertices (0,0),(0,4) and (1,4).

2. Evaluate the iterated integral,

$$\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} (x+y) dy dx.$$

3. Evaluate the following integral by changing to polar coordinates,

$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} x dx dy.$$

- 4. Compute the surface area of the bottom part of the paraboloid $z = x^2 + y^2$ that is cut off by the plane z = 9.
- 5. Compute the surface area of the part of the sphere $x^2 + y^2 + z^2 = a^2$ inside the circular cylinder $x^2 + y^2 = b^2$, where $0 < b \le a$.
- 6. Compute the volume of the solid in the first octant bounded by $y = 2x^2$ and y+4z = 8.
- 7. Compute the Jacobian $J(r, \theta)$ of the transformation from polar coordinates to Cartesian coordinates given below:

$$x = r \cos \theta$$

$$y = r \sin \theta$$
.

8. Compute the Jacobian J(x,y) of the transformation from Cartesian coordinates to polar coordinates given below:

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

What is the relationship between $J(r,\theta)$ in the previous problem and J(x,y)?

- 9. Let $u(x, y) = \log \sqrt{x^2 + y^2} = \log r$.
 - (a) Find the vector field associated with this scalar field, by computing grad $u = \nabla u$.
 - (b) Compute $\operatorname{curl}(\operatorname{grad} u) = \nabla \times (\nabla u)$.
 - (c) What are the level sets of u(x, y)?

- 10. Let $\varphi(x, y) = x^2 y^2$.
 - (a) Compute $\vec{F} = -\operatorname{grad} \varphi = -\nabla \varphi$.
 - (b) Sketch a diagram in the plane of the vector field \vec{F} .
 - (c) Compute $\nabla \cdot (\nabla \varphi)$.
 - (d) Based on your findings, what kind of function is φ ?
- 11. Let $\varphi(x, y) = x^2 + y^2$.
 - (a) Compute $\vec{F} = -\operatorname{grad} \varphi = -\nabla \varphi$.
 - (b) Sketch a diagram in the plane of the vector field \vec{F} .
 - (c) Compute $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$.
- 12. Find div **F** and curl **F**, where $\mathbf{F}(x, y, z) = x^2 \mathbf{i} 2xy \mathbf{j} + yz^2 \mathbf{k}$.
- 13. Find the volume of a spherical ball of radius a using a triple integral.
- 14. Find the mass of a cylinder of radius a and height h if its mass density is proportional to the distance to its base.