CHAPTER 10

Fourier Series, Integrals,
and Transforms

Fourier series! (Sec. 10.2) are series of cosine and
practical task of representing general periodic
important tool in solving problems that involv
equations. In the present chapter we discuss these
a practical viewpoint. Further applications foll
differential equations. :
The theory of Fourier series is rather complicated, but the application of these series
is simple. Fourier series are, in a certain sense, more universal than Taylor series,
because many discontinuous periodic functions of practical interest can be developed

in Fourier series, but, of course, do not have Taylor series representations,
The last four sections (10.8-10.11) concern Fourier integrals and Fourier
as and techniques of Fourier series to nonperiodic

transforms, which extend the ide
sponding applications to partial differential equations

sine terms and arise in the important

e ordinary and partial differential
series and their engineering use from
ow in the next chapter on partial

functions defined for all x. (Corre
will be considered in the next chapter, in Sec, 11.6.

Prerequisite for this chapter: Elementary integral calculus. :
Sections that may be omitted in a shorter course: 10.5-10.10. '

functions. They constitute a very .

T
References: Appendix 1, Part C. ]

Answers to problems: Appendix 2.

cevioy

1.IEAN-BAPT ISTE JOSEPH FOURIER (1768—1830), French physicist and mathematician, lived and

taugut in Paris. accompanied Napoleon to Egypt, and was later made prefect of Grenoble. He utilized
Fourier series in his main work Théorie analytique de la chaleur (Analytic Theory of Hear, Paris 1822),
in which he developed the theory of heat conduction (heat equation, see Sec. 11.5). These new senes

became a most important ool in mathematical physics and also had considerable influence on the further
development of mathematics itself; see Ref [9] in Appendix |

Periodic Functions. Trigonometric Series 527

eriodic Functions. Trigonometric Series

function f(x) is called periodic if it is defined for all® real x and if there is some positive

f&x + p) = f(x) for all x.

is number p is called a period of f(x). The graph of such a functiqn i§ obtained by
4] 'c repetition of its graph in any interval of length p (Fig. 236). Periodic phenomena
functions have many applications, as was mentioned before.

e
A

flx)

:g’ /\\/,/ /\\L/f/\\// :

I P g
Fig. 236. Periodic function

Familiar periodic functions are the sine and cosine functions. Wt.t note that thfa fun.ction
f = ¢ = const is also a periodic function in the sense of the defmiuon'. because 1t2 sat;sﬁe;s
. (1) for every positive p. Examples of functions that are not periodic are x, x2, x3, %,
"cosh x, and In x, to mention just a few.
o, From (1) we have f(x + 2p) = f[(x + p) + p] = f(x + p) = f(x), etc., and for any
.intcger n,
y 2) f(x + np) = f(x) for all x.
Hence 2p, 3p, 4p, - - - are also periods of f(x). Furthermore, if f(x) and g(x) have period
p, then the function

h(x) = af(x) + bg(x) (a, b constant)

- also has the period p. %

t‘ If a periodic function f(x) has a smallest period p (> 0), thlS.lS S)ften called the
fundamental period of f(x). For cos x and sin x the fundamental period is 27, for cos 2x

and sin 2x it is 7, and so on. A function without fundamental period is f = const.

Trigonometric Series

Our problem in the first few sectioas of this chapter will be the representation of various
functions of period p = 27 in terms of the simple functions

®) 1, cosx sinx,  cos2x sinlx---, cosnx, sinnx---.

2Except perhaps for certain isolated x, such as + /2, =3/2, - - - in the case of tan x (which is periodic
with period ).
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Fig. 237. Cosine and sine functions having the period 27

These functions have the period 27r. Figure 237 shows the first few of them. o
The series that will arise in this connection will be of the form b

4) ag + aycos x + by sinx + ap cos 2x + by sin2x + +

sxgn,3 we may wnte lhlS series

00"'2 (a,,cosnx+b smn.x)
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The set of functions (3) from which we have made up the series (4) is often called thed
trigonometric system, to have a short name for it. A

We see that each term of the series (4) has the period 2. Hence if the series 'i‘
converges, its sum will be a function of period 2. 3

The point is that trigonometric series can be used for representing any practicall ‘
important periodic function f, simple or complicated, of any period p. (This series ¥ &
then be called the Fourier series of f.) 48

PROBLEM SET 10.1

Fundamental Period. Find the smallest positive period p of
1. cosx, sinx, cos2x, sin2x, coswx, sinwx, cos2wx, sin27x \‘
2. cos nx, sinnx, cos ZLX sin -Zﬂ cos 2mnx sin il ‘

' ' k k' ko k P

3. (Vector space) If f(x) and g(x) have period p, show that h = af + bg (a, b constant) has .A

period p. Thus all functions of period p form a vector space. Bt

4. (Integer multiples of period) If p is a period of f(x), show thatnp, n = 2,3, - -, isa pefi"d
of f(x).

PRSI g o5-1 23

3 nd . .
3And inserting parentheses: from a convergent series this gives again a convergent series with the
same sum, as can be proved.
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5. (Constant) Show that the function f(x)
positive p.

6. (Change of scale) If f(x) is a periodic function of x of period p, show that f(ax), a # 0, is a
periodic function of x of period p/a, and f(x/b), b # 0, is a periodic function of x of period bp.
Verify these results for f(x) = cosx, a = b = 2. )

= const is a periodic function of period p for every

Graphs of 27-Periodic Functions
Sketch or plot the following functions f(x), which are assumed to be periodic with period 27 and,
for — < x < m, are given by the formulas

7. f(x) = x 8. f(x) =
10. f(x) = 7 — |4 11. f(x) = |sin x|

9. f(x) = |«
12, f(x) = e~ M

0 if ~r=x=0
14. f(x) = .

x° if O0=x=nmn

x if —7=x=0
13. f(x) =
0

if O=x=nw

-1 if -7<x<0 X if —r<x<0
15. f(x) = 16. f(x) =
1 if O<x<m T—x if 0<x<m
0 if —r<x<0 2 if ~r<x<0
17. f(x) = 18. f(x) =
e* if O<x<m ~x2 if O<x<m

19. CAS PROJECT. Plotting Periodic Functions. (a) Write a program for plotting periodic
functions f(x) of period 2 given for —7 < x = #. Using your program, plot the functions
in Probs. 7—12 for — 107 = x = 10m. Also plot some functions of your own choice.

(b) Extend your program to 27r-periodic functions given on two subintervals of the same length,
as in Probs. 13— 18. Apply your program to those problems with —107 = x = 107.

20. CAS PROJECT. Partial Sums of Trigonometric Series. (a) Write a program that prints a
partial sum® of a trigonometric series (4). Applying it, list all partial sums of up to five nonzero
terms of each of the series

1 1 1
§ﬂ2—4(cos.r— Zcos2x+ ;cos3x— Ecosir + - )

4 ([ 1. 1 1
— {sinx + —sin3x + —sinSx + —sin7x + - - -
T 3 5 7

| 1 |
2(sinx—;sin2x+§sin3x—-i-sin4x+ —)

(b) Plot the partial sums in (a) (for each series on common axes). Guess what periodic function
the series might represent.

10.2 Fourier Series

Fourier series arise from the practical task of representing a given periodic function f(x)
in terms of cosine and sine functions. These series are trigonometric series (Sec. 10.1)
whose coefficients are determined from f(x) by the “Euler formulas” [(6), below], which
we shall derive first. Afterwards we shall take a look at the theory of Fourier series.

N a

“That is. ag + D, (@, cos nx + by sin o) for N = [, 2
a=1
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Euler Formulas for the Fourier Coefficients

Let us assume that f(x) is a periodic function of period 27 and is integrable over a period,
Let us further assume that f(x) can be represented by a trigonometric series,

¢)) flx) = aq + E (a, cos nx + b, sin nx);

n=1

5
that is, we assume that this series converges and has f(x) as its sum. Given such a function ’
f(x), we want to determine the coefficients a,, and b, of the corresponding series (1).

Determination of the constant term a,. Integrating on both sides of (1) from —mto m,
we get

Fourier Series 531

f fdx = f [ao + 2 (a,cosnx + b, sin nx)J dx

n=1

R et TSP RS TSP

If term-by-term integration of the series is allowed,® we obtain

BERN VL ) o 1o

ff(x)dx—-aof dr+2 (anf cosnxdx + b, f smnxdx)

-7

1,

3

The first term on the right equals 27a,. All the other integrals on the right are zero, as
can be readily seen by integration. Hence our first result is

4
@) ao=5=[ foax

Determination of the coefficients a,, of the cosine terms. Similarly, we multiply (1) by
cos mx, where m is any fixed positive integer, and integrate from —r to r:

A3) f f(x) cos mx dx = f l:ao + 2 (a, cos nx + b, sin nx):l cos mx dx.

n=l

Integrating term by term, we see that the right side becomes

o o™
aof cosmxdx+2 [a,,f cos nxcos mxdx + b, f smnxcosmxdx]

= n=1 -

The first integral is zero. By applying (11) in Appendix A3.1 we obtain

-

fcosnxcosmxdx——f cos(n+m)xdx+ fcos(n—-m)xdx,

-7

m

l m l m
fsinnxcosmxdx=;f sin(n+m)xdx+—7-f sin (n — m)x dx.

5This is justified, for instance, in the case of uniform convergence (see Theorem 3 in Sec. 14.5).

Integration shows that the four terms on the right are zero, except for the last term in the
first line, which equals 7 when n = m. Since in (3) this term is multiplied by a,,, the
right side in (3) equals a,, 7. Our second result is

l m
@) a,, = —f f(x) cos mx dx, m=1,2, -
Ten

Determination of the coefficients b, of the sine terms. We finally multiply (1) by
sin mx, where m is any fixed positive integer, and then integrate from —r to :

- n=1

) f f(x) sinmx dx = f |:ao + > (a,cosnx + b, sin nx):| sin mx dx.
Integrating term by term, we see that the right side becomes

” @« m
aof sinmxdx+2 l:a f cos nxsinmxdx + b, f smnxsmmxdx:l.

- n=1 -

The first integral is zero. The next integral is of the kind considered before, and is zero
foralln =1, 2, - - . For the last integral we obtain

m

| 1 ™
f sin nx sin mx dx = Ef_”cos (n — mxdx — -2- f_ﬂcos (n + m)xdx.

-

The last term is zero. The first term on the right is zero when n # i and is 7 when
n = m. Since in (5) this term is multiplied by b,,, the right side in (5) is equal to b,,m,
and our [ast result is

l m
b, = ;J‘J"f(x) sin mx dx, m=1,2---

Summary of These Calculations: Fourier Coefficients,
Fourier Series

From (2), (4), and the formula just obtained, writing n in place of m, we have the
so-called Euler® formulas

‘. T * l - ._.',....
@ a= o f_ Flx) dx

© ®) '.'anlf'f:;f__,f(_{)cos_nxd'x n=12--",

© 'b,,=-1-f-'f(x)sinnxdx =12
T en

8See footnote 9 in Sec 2 6.
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EXAMPLE 1

These numbers given by (6) are called the Fourier coefficients of f(x). The trigonome
series

M

with coefficients given in (6) is called the Fourier series of f(x) (regardless
convergence—we shall discuss this later in this section).

Rectangular wave
Find the Fourier coefficients of the periodic function f(x) in Fig. 238a. The formula is

—k if -—r<x<0
f&x) = and
k if 0<x<mw

flx + 2m) = f(x).

Functions of this kind occur as external forces acting on mechanical systems, electromotive forces in electric:
circuits, etc. (The value of f(x) at a single point does not affect the integral; hence we can leave f(x) unde
atx =0and x = *7)

Solution. From (6a) we obtain ap = 0. This can also be seen without integration, since the area under the
curve of f(x) between — and  is zero. From (6b),

-

L[ pwycosnxds = [ (~toosmeas + [k dJ '-"
a, = — x)cos nxdx = — —k) cos nx cos nx dx \
Toow - T -, 0 3
. i
1[  sinnx |0 sin nx |* H
= —] = +k =0 ¥
L n - 0 :
because sinax = O at —m, 0, and wforalln = 1,2, - - -, Similarly, from (6c) we obtain
b, = lf" in nx dx = 1~f° k) sin nx d +-f*k' d '
n = -"f(x) sin nxdx = 7L _"( ) sin nx dx A sm,nx x
1[ cosnx [ cos nx "J
=—|k -k .
T n — n 0

Since cos (—a) = cos a and cos 0 = 1, this yields

k 2k
b, = —[cos 0 — cos (—nm) — cos nmw + cos 0] = — (1 — cos nm).
nm nmw

Now, cos 7 = ~1, cos 27 = ], cos 3w = —1, eic.; in general,
-1 foroddn, 2 for odd n,
cos nT = and thus 1 —cosnw=
1 forevenn, 0 for evenn.

Hence the Fourier coefficients b,, of our function are

=2 by =0, by = by =0 by = ...
1“_”; 2 = U, 3—3_"_. 3 = U, 5 = , .

Since the a,, are zero, the Fourier series of f(x) is

4k { | I
8 —(smx+—sin3x+—sin5x+--- .
T 3 5

) Fourier Series © 533 .
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(a) The given function f(x) (Periodic square wave)
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(b) The first three partial sums of the corresponding Fourier series

Fig. 238. Example 1

The partial sums are

4k k(. 1
S5 = - sinx Sy = 7(smx + 3 sin Jx) ' etc.,

Their graphs in Fig. 238 seem to indicate that the series is convergent and has the sum f(x), the given functjon.
We notice that at x = 0 and x = 7, the points of discontinuity of f(x), all partial sums have the value zero, the
arithmetic mean of the values —k and k of our function.

Furthermore, assuming that f(x) is the sum of the series and setting x = 7/2, we have

T 4k 1 1
N f7=k=7l—3-+§'—+~".

thus N
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This is a famous result by Leibniz (obtained in 1673 from geometrical considerations). It illustrates that
the values of various series with constant terms can be obtained by evaluating Fourier series at specific
points. <

T

Orthogonality of the Trigonometric System
The trigonometric system (3), Sec. 10.1,

1, cos x, sin x, cos 2x, sin2x, ---, cosnx, sin nx,

is orthogonal on the interval — T = x = = (hence on any interval of length 2, because
of periodicity). By definition, this means that the integral of the product of any two different
of these functions over that interval is zero; in formulas, for any integers m and n #
we have

”

f cos mxcos nxdx = 0

-

(m # n)

and

T

f sinmxsinnxdx = 0

-

(m # n),

and for any integers m and n (including m = n) we have

€os mx sin nx dx = Q.
This is the most important property of the trigonometric system, the key in deriving the
Euler formulas (where we proved this orthogonality).

Convergence and Sum of Fourier Series

Throughout this chapter we consider Fourier series from a practical point of view. We
shall see that the application of these series is rather simple. In contrast to this, their theory
is complicated, and we shall not go into any details of it. However, we present a theorem
on the convergence and the sum of Fourier series that takes care of most applications.

Suppose that f(x) is any given periodic function of period 27 for which the integrals
in (6) exist; for instance, f(x) is continuous or merely piecewise continuous (continuous
except for finitely many finite jumps in the interval of integration). Then we can compute
the Fourier coefficients (6) of f(x) and use them to form the Fourier series (7) of f(x). It
would be nice if the series thus obtained converged and had the sum f(x). Most functions
appearing in applications are such that this is true (except at jumps of f(x), which we
disFuss below). In this case, in which the Fourier series of f(x) does represent f(x), we
.write

fx) = ag + >, (a, cos nx + b, sin nx)
n=]1

with an equality sign. If the Fourier series of f(x) does not have the sum f(x) or does not
converge, one still writes

fGx)~ag+ > (a, cos nx + b, sin nx)
n=]
with a .tilde ~, which indicates that the trigonometric series on the right has the Fourier
coefficients of f(x) as its coefficients, so it is the Fourier series of f(x).

i
]
¥

b4

g
A‘\
)
!
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THEOREM 1

PROOF OF CONVERGENCE IN THEOREM 1.

The class of functions that can be represented by Fourier series is surprisingly large
and general. Corresponding sufficient conditions covering almost any conceivable
application are as follows.

(Representation by a Fourier series)

If a periodic function f(x) with period 2T is piecewise continuous’ in the interval
—m = x = 7 and has a left-hand derivative and right-hand derivative® at each point of
that interval, then the Fourier series (7) of f(x) [with coefficients (6)] is convergent. Its
sum is f(x), except at a point xo at which f(x) is discontinuous and the sum of the series
is the average of the left- and right-hand limits® of f(x) at x,.

We prove convergence for a continuous function
f(x) having continuous first and second derivatives. Integrating (6b) by parts, we get

mw

f(x) sin nx

| Sl
— i dx.
= 3= f_"f (x) sin nx dx

-

l ”w
a,,=—f f(x) cos nxdx =
KU

The first term on the right is zero. Another integration by parts gives

f'(x)cosnx |™ 1
= - —— | F"(x) cos nxdx.
n’m n’m
~ -

The first term on the right is zero because of the periodicity and continuity of f’(x). Since

f" is continuous in the interval of integration, we have
-

"ol < M

for an appropriate constant M. Furthermore, |cos nx| = 1. It follows that

faud = 2= || F@cosnxax| < == [ max = 22
a, = —— x) cos nx - =i
™ n?a n?rJ_, n?
"Definition in Sec. 5.1.
flx) 8The left-hand limit of f(x) at xq is defined as the limit
£(1-0) of f(x) as x approaches xq from the left and is frequently
denoted by f(xg — 0). Thus
1
/ flxg — 0) = lim_f(xg — h) as h — 0 through positive values.
£1+0) h=0
5 i - The right-hand limit is denoted by f(xo + 0) and
Fig. 239. Left- and flxg + 0) =’Ili_x.no f(xg + h) as h — 0 through positive values.
right-hand limits The left- and right-hand derivatives of f(x) at x, are
fa-0=1, defined as the limits of
+0) =1
AL+ 0=z flzo — B) — f(xo = 0) fxo + ) = f(xg + 0)

of the function ~h h
respectively, as & — O through positive values. Of course if
f(x) is continuous at xg, the last term in both aumerators is

simply f(x).

x? ifx <™

(x) =
da [x/Z



Fourier Series, Integrals, and Transforms Chap. 10

EXAMPLE 2

Similarly, |b,| < 2 M/n® for all n. Hence the absolute value of each term of the Fourjer
series of f(x) is at most equal to the corresponding term of the series

1 1+ 1 1
|a0|+2M(1+1+?‘+F+?+?+---)

which is convergent. Hence that Fourier series converges and the proof i.s complete,
(Readers already familiar with uniform convergence will see that, by the We}erstrass test
in Sec. 14.5, under our present assumptions the Fourier series converges uniformly, and
our derivation of (6) by integrating term by term is then justified by Theorem 3 of Seg,
14.5.) )

The proof of convergence in the case of a piecewise continuous funcngn f(x) and the
proof that under the assumptions in the theorem the Fourier series (7) with coefficients
(6) represents f(x) are substantially more complicated; see, for instance, Ref. [C9).

Convergence at a jump as indicated in Theorem 1

The square wave in Example 1 has a jump at x = 0. Its left-hand limit there is —k and its righ}-hand limit is k
(Fig. 238). Hence the average of these limits is 0. The Fourier series (8) of the square wave doe.s 1f1df:ed converge
to this value when x = 0 because then all its terms are 0. Similarly for the other jumps. This is in agreement
with Theorem 1. |

Summary. A Fourier series of a given function f(x) of period 27 is a series of the form
(7) with coefficients given by the Euler formulas (6). Theorem 1 gives conditions that are
sufficient for this series to converge and at each x to have the value f(x), except at
discontinuities of f(x), where the series equals the arithmetic mean of the left-hand and
right-hand limits of f(x) at that point.

PROBLEM SET 10.2

Fourier Series

Showing the details of your work, find the Fourier series of the function f(x), which is assumed to
have the period 27, and plot accurate graphs of the first three partial sums, where f(x) equals

1. flx) 2. fx)
1 1
1 -] L 1
-n -2 0 2 n x -1 o] n2 4 x
3. fx) 4, flx)
k 1}
1
o 0 T - r %
-1
5. fx)=x (—m<x<m) 6. f(x)=x O<x<2m)

~1

(—r<x<m 8.
(—r<x<m 10.

. flx) = x2
9. f(x) = x°

f(x) =32 0<x<2m
fW=x+xl (—m<x<m

Functions of Any Period p = 2L 537

fis]

s

1 f-r<x<0 -1 if O<x< a2
1. f&x) = 12. f(x) =
-1 if O0<x<mw 0 ifr2<x<27
if —m2 <x < w2 " f-m2<xi<mn
13. f(x) = 14. f(x) =
=1 if mR2<x<3n2 m—x if #W2<x<3m2
x if-aR<x< 72 2 f-m2<x<anR
15. f(x) = 16. f(x) =
0 if mR<x<3w2 w24 if w2 < x < 37/2

17. (Discontinuity) Verify the last statement in Theorem 1 regarding discontinuities for the function
in Prob. 1.

18. CAS (Orthogonality). Integrate and plot a typical integral, for instance, that of sin 3x sin 4x,
from —a to g, as a function of g, and conclude orthogonality of sin 3x and sin 4x fora = o
from the plot.

19. CAS PROJECT. Fourier Series. (a) Write a program for obtaining any partial sum of a
Fourier series (7).
(b) Using the program, list all partial sums of up to five nonzero terms of the Fourier series in
Probs. 5, 11, and 15, and make three corresponding plots. Comment on the accuracy.

20. (Calculus review) Review integration techniques for integrals as they may arise from the Euler
formulas, for instance, definite integrals of x sin nx, x2 cos nx, €= sin nx, etc.

Answers to Odd-Numbered Problems

PROBLEM SET 10.1, page 528
L 2m2m 7w 72,211

PROBLEM SET 10.2, page 536

1.l+‘2“(cosx—lc033x+lcos5x—+---)
2 7 3 5
3.£+Zk—(sinx+lsin3x+lsin5x+---)

2 T 3 5

. Ly Lz 1

52 sxnx*-i-sxn2x+§sm3x—-zsm4x+—---)

2 1 1 I
7.—3"—4(cosx-—zc052x+;cosSx*Ecos4x+—---)

9

7> 6\ . 7 861\ . 72 6\ |

2 T At e sin 2x + 3 P sin3x — +---
Arfv gyl ! .

11, — —[sinx + —sin3x + —sin5x + - - -
T 3 5

4 1 1
13. — |cosx — —cos3x+ —cosS5x— + - -
T 3 5

1 2 1
15. —sinx + —sin2x — —sin 3x ~ —sindx +
T 2 97

2
3 +...
2 25‘"_sm5x



