
Chapter 1

What is calculus about?
⊕

Calculus provides a framework to ask and answer quantitative questions about our
world. It is the language used to formulate most scientific laws, and serves as the
standardized platform upon which much of technology is built. Indeed, calculus is the
operating system of science and engineering.

1.1 The two central problems of calculus

Rate of change: zooming in locally. We see change and motion in the world around
us every day. For example, driving down a straight road in one direction changes the car’s
position, as measured by the odometer. The speedometer measures how fast we’re going,
or the rate at which the position changes. Suppose our car is equipped with a very precise
odometer recording how many feet F the car has traveled after t seconds. The graphs of
F (t) for two trips are shown in Figure 1.1. In (a), the car moves uniformly at a constant
speed. At t = 0 the odometer is set to F = 0, and F (t) = 88t is linear. In (b), the car is at
rest at t = 0 when the accelerator is pressed down, and F (t) = 16t2 is quadratic.
⊕

If the car’s speedometer is broken, how would you use the odometer output F (t) to
find your speed?

We already know how to solve this problem for the linear case in (a). The familiar
formula for uniform motion, distance = velocity × time, says that the distance ∆F =
F (t1) − F (t0) traveled during the time interval [t0, t1] seconds is

∆F = v ∆t, (1.1)
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Figure 1.1: (a) The odometer reading with time for a car traveling with constant speed.
(b) The odometer reading for a car traveling with constant acceleration, starting from rest.
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Figure 1.2: (a) The slope of the red hypoteneuse gives the rate of change of F (t) over [2, 3],
and a rough estimate for the velocity at t = 2 seconds. (b) Over the interval [2, 2.1], the
parabolic graph of F (t) is barely distinguishable from the line segment. The slope of this
segment provides a closer approximation to the instantaneous velocity at t = 2 seconds.

where v is the constant velocity1, and ∆t = t1− t0 is the length of the time interval. Solving
(1.1) for v yields v = ∆F/∆t. For the choice of t0 = 4 and t1 = 5 as in Figure 1.1 (a),

v =
∆F

∆t
=

F (t1) − F (t0)
t1 − t0

=
F (5)− F (4)

5− 4
=

440− 352
1

= 88 feet/second. (1.2)

We recognize the velocity v in (1.2) as the slope of the line in (a), or the steepness of the
linear graph. Any two points on the line give the same slope or velocity.

In Figure 1.1 (b), the velocity is no longer constant, but increases as the car accelerates.
Suppose we want to know the instantaneous velocity at t0 = 2 seconds. Over a short
interval around t0 = 2, as in Figure 1.2 (a), the graph of F (t) resembles a line segment, and
can be approximated there by the hypoteneuse of the red triangle. Its slope

∆F

∆t
=

F (3) − F (2)
3 − 2

=
144 − 64

1
= 80 feet/second (1.3)

is the rate of change of F (t) over the interval [2, 3] of length ∆t = 1. It provides an estimate
for the velocity at t0 = 2.

To get a better estimate, we zoom in more closely and look at the rate of change of F (t)
over a shorter time interval, such as [2, 2.1] with ∆t = 0.1 as in Figure 1.2 (b). Then

∆F

∆t
=

F (2.1)− F (2)
2.1 − 2

=
70.56− 64

0.1
= 65.6 feet/second. (1.4)

On this small scale, a piece of the curve looks like a line segment. It is natural then to
speak of the slope of the curve at t0 = 2, or the steepness of the graph there. Zooming
in even more, for the interval [2, 2.01] with ∆t = 0.01, we obtain ∆F/∆t = 64.16 f/s, and
∆F/∆t = 64.016 f/s for the interval [2, 2.001] with ∆t = 0.001. We’d probably all agree
that if our speedometer were working, it would read precisely 64 feet/second at exactly 2
seconds after the start, and that the slope of the parabolic curve at t0 = 2 is 64.⊕

The central problem of differential calculus is to find the rate of change of a function
at a point, which is the slope of the graph there.

In general, consider a function y(x). If x is increased from x0 to x1 = x0 +∆x, then y(x)
increases (or decreases) from y(x0) to y(x0 + ∆x) by an amount ∆y = y(x0 + ∆x)− y(x0).
The rate of change of y(x) over the interval [x0, x0 + ∆x] is

∆y

∆x
=

y(x0 + ∆x) − y(x0)
∆x

, (1.5)

1Velocity can be positive or negative depending on the direction of travel, while speed s is the absolute
value of the velocity, s = |v| ≥ 0. In the cases considered here they are the same.
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Figure 1.3: (a) The rate of change of y(x) = 2x − 1 with respect to x is 2, the slope of the
line. (b) The nonlinear function y(x) = x2 has a parabolic graph. The rate of change of y

with respect to x at a point x = x0 is the slope of the curve, or the steepness there.
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Figure 1.4: The odometer value F (T ) in (b) after T seconds is the area of the shaded region
under the graph of the speedometer function v(t) in (a) over the interval [0, T ].

as illustrated in Figure 1.3 (a) for a line. In differential calculus, we develop mathematics
to find the rate of change of a function y(x) at a point x = x0. The idea is to examine the
ratio in (1.5) as ∆x goes to 0 and we zoom in more and more closely around x = x0. For
motion, the rate of change of the position is the instantaneous velocity.

Area under a curve: summing up globally. Let’s again consider driving a car in
one direction down a straight road. Suppose now that our car is equipped with a working
speedometer which can record the instantaneous velocity v(t) of the car in feet/second.⊕

If the car’s odometer is broken, how would you use the speedodometer output v(t) to
find how far you’ve gone?

For the case of constant velocity v, over the time interval [0, t], Equation (1.1) yields
F (t) − F (0) = v · (t − 0). With F (0) = 0, we have

F (t) = vt, (1.6)

obtaining the odometer output F (t) from speedometer data. For example, if the speedome-
ter needle sits on 44 feet/second (30 miles per hour) throughout the trip, then we drive 440
feet, and F (10) = 44 · 10 = 440. After T seconds, F (T ) = 44 · T , which is the area of the
rectangular region under the graph of v(t) = 44, as illustrated in Figure 1.4.

If the velocity is not constant, such as when the accelerator is held down, we can still
find the odometer reading F (T ) after T seconds from the speedometer function v(t), by
finding the area under the graph of v(t) over the interval [0, T ]. The idea is to break up
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Figure 1.5: (a) The shaded region under the graph of the function y(x) = 2x − 1 on [a, b]
is a trapezoid with base width w = b − a and heights h1 = y(a) and h2 = y(b). Its area
is w · (h1 + h2)/2 = 1 · (1 + 3)/2 = 2. (b) The shaded region under the parabolic graph of
y(x) = x2 on [12 , 1] is not a shape whose area we know from basic geometry. (c) The area
of the shaded region can be approximated by summing up the areas of the rectangles.

[0, T ] into many smaller subintervals, each of length ∆t, and to approximate how far we go
during each subinterval of time, assuming a constant velocity on each subinterval. Then we
sum up the results over the entire interval to obtain an estimate for how far we go during
[0, T ]. The estimate gets better and better as ∆t gets smaller and smaller. We’ll explore
this process in more detail later.⊕

The central problem of integral calculus is to find the area under the graph of a
function on an interval.

In general, consider a function y(x) on an interval [a, b]. If the function has a line for
a graph, as in Figure 1.5 (a), then we already know how to find the area. However, for a
nonlinear function such as y(x) = x2 in Figure 1.5 (b), the region under the graph is a new
shape whose area we don’t know from basic geometry. By breaking up the interval [a, b] into
many subintervals of length ∆x, we can estimate the area under the curve by the sum of
the areas of the boxes, as illustrated in Figure 1.5 (c) for 5 boxes. The approximation gets
better and better the more boxes we consider, or the smaller ∆x gets. As in differential
calculus, the idea is that we obtain the exact result as ∆x goes to 0.
⊕

The two great problems of calculus may seem unrelated. In fact, they are inextricably
intertwined. The odometer and speedometer readings in a car may seem to evolve
independently. In fact, one function can be obtained from the other, and vice versa,
using techniques we’ll develop in calculus. The fundamental relationship exhibited
by the odometer and speedometer functions lies at the foundation of calculus, and is
repeated throughout mathematics, the sciences, and engineering.

BRIEF SUMMARY : The two main problems in calculus are finding the rate of change
of a function at a point, and finding the area under the graph of a function on an interval.

Exercises

1. Let F (t) = 66t feet be the odometer output after t seconds for a car driving in one direction
down a straight road. Find the car’s speed in feet/second, first using the pair of points at
times t0 = 1 and t1 = 2, then using t0 = 4 and t1 = 8. What is the car’s speed in miles per
hour, and in meters/second?
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2. Let x(t) = 40t be the position of a car on a long straight road as a function of time t, where
t is measured in hours, and x is measured in miles. (a) How far has the car gone after 15
minutes, after 1/2 hour, after 45 minutes, after 1 hour? (b) Find the rate of change of x with
respect to t using your measurements from (a). Interpret the rate of change of the position
with time using more common language.

3. Given a length x, let f(x) = 2x be the function which doubles x. Find the rate of change
of f(x) over the interval [x0, x0 + ∆x] for the following values of x0 and ∆x: (a) x0 = 0,
∆x = 0.5 (b) x0 = 1, ∆x = 1 (c) x0 = 1, ∆x = 3 (d) x0 = 3, ∆x = 0.1

4. Let C(r) = 2πr be the circumference of a circle of radius r. (a) What is the circumference for
r = 1, 2, 3, 4? (b) Find the rate of change of C with respect to r, using three different pairs of
points: r0 = 1, r1 = 2, r0 = 1, r1 = 4, and r0 = 3, r1 = 5. (c) Find the area under the graph
of C(r) on the interval [0, 1]. Do the same for [2, 4].

5. Let y(x) = mx + b, m 6= 0. Find the rate of change of y(x).

6. Consider a square of side x. Let P (x) = 4x be its perimeter and A(x) = x2 its area. (a) Let
x0 = 1. If x0 is increased by ∆x = 1, find the increases ∆P and ∆A in the perimeter and
area, respectively. Do the same for x0 = 2, with ∆x = 1 and then ∆x = 2. (b) Find the rate
of change of P (x). (c) Find the rate of change of A(x) over [1, 2], [2, 3], and [2, 4].

7. For F (t) = 88t as in Figure 1.2, estimate the instantaneous velocity at t0 = 8 seconds by
finding the rate of change of F (t) over the following intervals (a) [8, 9] (b) [8, 8.1] (c) [8, 8.01]
(d) [8, 8.001]. Convert your estimate to miles per hour. What type of car would likely be
required to accelerate to this speed after 8 seconds?

8. For F (t) = 88t as in Figure 1.2, estimate the instantaneous velocity at t0 = 8 seconds by finding
the rate of change of F (t) over the following intervals (a) [7, 9] (b) [7.9, 8.1] (c) [7.99, 8.01]
(d) [7.999, 8.001]. Compare with the previous exercise.

9. Find the rate of change of y(x) = x3 over the following intervals (a) [0, 1] (b) [1, 2] (c) [2, 3]
(d) [1, 1.1] (e) [1, 1.01] (f) [1, 1.001]. What do you think is the exact answer for the rate of
change of y(x) = x3 at x0 = 1?

10. Let y(x) = 5x + 2. If x is inceased by ∆x from x = x0, how much does y increase?

11. Let y(x) = 2x. Find the area of the region under the graph of y(x) on the following intervals
(a) [0, 1] (b) [1, 2] (c) [0, 2] (d) [5, 10].

12. Consider the function y(x) = x2, whose graph is shown in Figure 1.3. (a) Find the rate of
change of y(x) over the interval [x0, x0+∆x] for the following values of x0 and ∆x: (i) x0 = 0,
∆x = 0.5 (ii) x0 = 0, ∆x = 0.1 (iii) x0 = 1, ∆x = 1 (iv) x0 = 1, ∆x = 0.1 (v) x0 = −1,
∆x = 0.1.

13. Find the rate of change of y(x) = x2 over the interval [x0, x0 + ∆x] for the following values of
x0 and ∆x: (a) x0 = 0, ∆x = 0.05 (b) x0 = 0, ∆x = 0.001 (c) x0 = 1, ∆x = 0.05
(d) x0 = 1, ∆x = 0.001 (e) x0 = −1, ∆x = 0.05 (f) x0 = −1, ∆x = 0.001.

14. Let v(t) = 22 f/s be the speedometer function for a car driving down a straight road. How
far has the car gone after 2 seconds, or after 10 seconds? Do the same for v(t) = 44t f/s.

15. Let v(t) = t2 f/s be the speedometer function for a car driving one way down a straight road.
Estimate how far the car has gone after 2 seconds? How about after 10 seconds?

16. In Figure 1.5 (b), use a trapezoid with base from 1
2 to 1 to estimate the area of the shaded

region under y = x2 on [1
2
, 1]. In (c), find the sum of the areas of the rectangles to estimate

this area.

17. Consider a cube of side x. Each of the six faces has area x2. Let S(x) = 6x2 be the surface
area of the cube, and V (x) = x3 be its volume. (a) Plot the graphs of both functions on the
same axes. (b) For which side length x is the volume and surface area of the cube equal? Find
the rate of change of both functions over the interval [x0, x0 + ∆x] for the following values of
x0 and ∆x: (c) x0 = 0, ∆x = 0.1 (d) x0 = 0, ∆x = 0.01 (e) x0 = 2, ∆x = 0.1 (f) x0 = 2,
∆x = 0.01 (g) x0 = 10, ∆x = 0.1 (h) x0 = 10, ∆x = 0.01.
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Figure 1.6: Zooming in on the graph of y(x) = x2 around x0 = 1. In (a) the dotted line is
tangent to the graph at x0 = 1, intersecting only at the point (1, 1). The slope of the curve
at x0 = 1 is the slope of this tangent line. On smaller and smaller scales, as in (b) and (c),
the tangent line becomes practically indistinguishable from the curve.

18. Let V (x) = x3 be the volume of a cube of side x. (a) Find the rates of change of V (x) over
the intervals [2, 2.1], [2, 2.01], and [2, 2.001] to estimate the rate of change of V (x) at x0 = 2.
(b) Use 4 rectangles similar to Figure 1.5 (c) to estimate the area under the graph of V (x) on
[0, 2], then use 8 rectangles.

1.2 The derivative of a polynomial

Let’s focus on the problem of finding the rate of change of a nonlinear function such as
y(x) = x2 at a point x = x0. In Figure 1.3 (b) we see that the steepness of the graph
depends on location. At the bottom of the valley near x = 0 the topography is almost flat,
while climbing a slope as steep as that found near x = 1 would be challenging.⊕

A sufficiently small piece of any smooth curve looks almost like a line segment.

In Figure 1.6 the graph of y(x) = x2 is examined on smaller and smaller length scales
around x0 = 1. The line which intersects the curve only at the point (1, 1), and which has
the same steepness as the parabola at x0 = 1, is called the tangent line. It captures the
trend of the graph at x0 = 1, and closely approximates the function near x0 = 1. Indeed,
by the slope of the curve at x0 = 1, we mean the slope of this tangent line.⊕

The rate of change of y(x) with respect to x at x = x0 is the slope of the line tangent
to the graph of y(x) at x = x0.

Example 1.2.1. Find the rate of change of y(x) = x2 with respect to x at x0 = 1.

Solution: We must find the slope of the line tangent to the parabola at the point (1, 1).
However, (1, 1) is the only point we know on this line, and after all, it takes two to tango!
We would need to know a second point on the tangent line to find its slope directly. To
approximate this slope, we use a nearby point on the parabola, whose coordinates we do
know. The two points (1 + ∆x, y(1 + ∆x)) and (1, 1) determine the secant line shown in
Figure 1.7 (a). As ∆x approaches 0 in Figure 1.7 (b) and (c), the point (1+∆x, y(1+∆x))
slides down the parabola towards (1, 1), and the secant becomes closer and closer to the
tangent. The slope msec of the secant line is given by

msec =
∆y

∆x
=

y(1 + ∆x)− y(1)
∆x

=
(1 + ∆x)2 − 1

∆x
=

2∆x + (∆x)2

∆x
= 2 + ∆x. (1.7)
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and x = x0 + ∆x, and approximates the tangent line at x = x0. As ∆x gets smaller, the
approximation gets better, and the secant converges to the tangent as ∆x → 0.

To obtain the slope mtan of the tangent line, we allow the second point to slide all the way
down to (1, 1). More precisely, we let ∆x approach 0 in Equation (1.7) in a process called
taking the limit as ∆x → 0 (detailed in Chapter 2). Then 2 + ∆x approaches 2, and

mtan = lim
∆x→0

msec = lim
∆x→0

∆y

∆x
= lim

∆x→0
(2 + ∆x) = 2. (1.8)

⊕
The slope mtan of the line tangent to the graph of y(x) = x2 at a point x = x0 gives the
rate of change of y(x) at x = x0. The slope of the tangent line is called the derivative
of y with respect to x, and is denoted by

dy

dx
= lim

∆x→0

∆y

∆x
. (1.9)

Example 1.2.2. (a) Find the derivative of the function y(x) = x2 for any x. (b) Find the
equation of the tangent line at x0 = 1, as well as at x0 = −2.

Solution: (a)

dy

dx
= lim

∆x→0

∆y

∆x
= lim

∆x→0

y(x + ∆x)− y(x)
∆x

= lim
∆x→0

(x + ∆x)2 − x2

∆x
. (1.10)

By expanding (x + ∆x)2 = x2 + 2x∆x + (∆x)2 in the numerator, we obtain

dy

dx
= lim

∆x→0

2x∆x + (∆x)2

∆x
= lim

∆x→0
2x + ∆x = 2x, (1.11)

since (2x + ∆x) → 2x as ∆x → 0. (b) At x0 = 1, the slope of the tangent line is
m = dy

dx(x = 1) = 2 · 1 = 2. Since (1, 1) is on the line, its y−intercept b satisfies 1 = 2 · 1 + b

or b = −1, and the equation is y = 2x − 1. At x0 = −2, the slope of the tangent line is
m = dy

dx(x = −2) = 2 · (−2) = −4. Since (−2, 4) is on the line, its y−intercept b satisfies
4 = −4 · (−2) + b or b = −4, and the equation is y = −4x − 4.
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Remark: The derivative of y(x) = x2 is a new function dy/dx = 2x. The value of dy/dx
at x = x0 is the slope of the curve at x = x0. The operation of taking the derivative, where
y = x2 is assigned to dy/dx = 2x, is illustrated in Figure 1.8. We also write

dy

dx
=

d

dx
(y(x)),

d

dx
(x2) = 2x. (1.12)

Example 1.2.3. Consider the functions p(x) = 1, q(x) = x, f(x) = x3, and g(x) = x4. In
each case, find the derivative for any x.

Solution: The function p(x) = 1 is constant, and its graph is a straight line of zero slope,
so that dp/dx = 0 for all x. The function q(x) = x is linear and its graph is the straight
line with slope 1. Thus dq/dx = 1 for all x. To find df/dx, we do the same calculation as
in Equation (1.10), except we’ll use h instead of ∆x, and the cube rather than the square,

df

dx
= lim

h→0

f(x + h) − f(x)
h

= lim
h→0

(x + h)3 − x3

h
. (1.13)

By expanding (x + h)3 = x3 + 3x2h + 3xh2 + h3 in the numerator, we obtain

df

dx
= lim

h→0

3x2h + 3xh2 + h3

h
= lim

h→0
(3x2 + 3xh + h2) = 3x2. (1.14)

For g(x) = x4, we need the expansion (x + h)4 = x4 + 4x3h + 6x2h2 + ... . Then

dg

dx
= lim

h→0

(x + h)4 − x4

h
= lim

h→0
4x3 + 6x2h + ... = 4x3. (1.15)

Summarizing our results,

d

dx
(x1) = 1,

d

dx
(x2) = 2x,

d

dx
(x3) = 3x2,

d

dx
(x4) = 4x3. (1.16)

In view of the formulas in (1.16), it is reasonable to expect (and true) that

d

dx
(x5) = 5x4,

d

dx
(x6) = 6x5, ...,

d

dx
(xn) = nxn−1, ... . (1.17)

⊕
The derivative of y(x) = xn is

dy

dx
= nxn−1, n=0,1,2,3,... .
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Example 1.2.4. Let f(x) = x and g(x) = x2. Find the following derivatives: (a) d
dx(2f(x)),

(b) d
dx(3g(x)), (c) d

dx(f + g), (d) d
dx(f − g), (e) d

dx(f + 5g), (g) d
dx(x2 − 2x + 1)

Solution: (a)
d

dx
(2x) = lim

h→0

2(x + h) − 2x

h
= 2 lim

h→0

(x + h) − x

h
= 2 · 1 = 1, or

d

dx
(cf(x)) = c

d

dx
(f(x)), (1.18)

with c = 2. (b)
d

dx
(3x2) = lim

h→0

3(x + h)2 − 3x2

h
= 3

d

dx
(x2) = 6x, or

d

dx
(3g(x)) = 3

dg

dx
.

(c)
d

dx
(x + x2) = lim

h→0

(x + h) + (x + h)2 − x − x2

h
=

d

dx
(x) +

d

dx
(x2) = 1 + 2x, or

d

dx
(f(x) + g(x)) =

df

dx
+

dg

dx
. (1.19)

Similarly, in (d) we have d
dx(x− x2) = 1 − 2x, or

d

dx
(f(x) − g(x)) =

df

dx
− dg

dx
. (1.20)

In (e), d
dx(f +5g) = d

dxf +5 d
dxg = 1+10x, and in (f), d

dx(x2−2x+1) = 2x−2+0 = 2x−2.

⊕
The derivative of a constant times a function is the constant times the derivative; the
derivative of a sum is the sum of the derivatives; the derivative of a difference is the
difference of the derivatives.

The properties of the derivative in Equations (1.18), (1.19) and (1.20) are true in general,
and allow us to find the derivative of any polynomial. For example, the derivative of any
quadratic p(x) or cubic q(x) is

dp

dx
=

d

dx
(a2x

2 + a1x + a0) = a2
d

dx
(x2) + a1

d

dx
(x) + a0

d

dx
(1) = 2a2x + a1, (1.21)

dq

dx
=

d

dx
(a3x

3 + a2x
2 + a1x + a0) = 3a3x

2 + 2a2x + a1. (1.22)

Our results are summarized in the following.
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Theorem 1.1 (Derivative of any polynomial).
d

dx
(xn) = nxn−1, n = 0, 1, 2, 3, ..., and

for any nth order polynomial p(x) = anxn + an−1x
n−1 + ... + a2x

2 + a1x + a0,

dp

dx
= nanxn−1 + (n − 1)an−1x

n−2 + ... + 2a2x + a1. (1.23)

Example 1.2.5. Consider

f(x) = x − x3

3!
+

x5

5!
, (1.24)

where 3! = 3 · 2 · 1 = 6, or 3 factorial, and 5! = 5 · 4 · 3 · 2 · 1 = 120. Find df/dx.

Solution:
df

dx
=

d

dx
(x) − 1

3!
d

dx
(x3) +

1
5!

d

dx
(x5) = 1 − x2

2!
+

x4

4!
. (1.25)

Example 1.2.6. Find a function F (x) whose derivative is f(x) = x. That is, find F (x),
such that dF/dx = x.

Solution: From (1.16) we have
d

dx

(
x2

)
= 2x. Dividing both sides by 2 yields d

dx(x2

2 ) = x,

so that F (x) = x2/2 is such a function. It is useful to observe that for any constant C,
d
dx(x2

2 + C) = x + 0 = x. Then F (x) = x2/2 + C is an antiderivative of f(x) = x, since
its derivative is f(x).

BRIEF SUMMARY: The rate of change of a function f(x) at a point x = x0, is the
slope of the tangent line there, and is called the derivative, df/dx. It is found via

df

dx
(x0) = lim

∆x→0

f(x0 + ∆x) − f(x0)
∆x

. (1.26)

The key result is that the derivative of xn is nxn−1, n = 0, 1, 2, ..., which allows us to find
the derivative of any polynomial.

Exercises
1. Let φ(x) = 1

3x. Plot the graph of φ(x). Find [φ(x + ∆x) − φ(x)]/∆x for (a) x = 5 with
∆x = 1/2, 1/10, 1/100 and (b) x = 1 and ∆x = 1/2, 1/10, 1/100.

2. Let f(x) = x2 − 1. Plot the graph of f(x). Find [f(x + ∆x) − f(x)]/∆x for (a) x = 1 and
∆x = 1/2, 1/10, 1/100 and (b) x = 0 and ∆x = 1/2, 1/10, 1/100.

3. Let f(x) = 1
2x3. Plot the graph of f(x). Find [f(x + ∆x) − f(x)]/∆x for (a) x = 1 and

∆x = 1/2, 1/10, 1/100 and (b) x = 0 and ∆x = 1/2, 1/10, 1/100.

4. For each of the following functions, plot it on graph paper along with the tangent line at
each of the given points. Estimate the slope of the tangent line at each point and compare
your results with Theorem 1.1. (a) f(x) = 1

2x2 − 1 at x0 = −1, 0, 1, (b) f(x) = 1
4x3 at

x0 = −1,−1/2, 0, 1/2, 1,2, (c) f(x) = x(1 − x) at x0 = 0, 1/4, 1/2, 3/4, 1.

5. For each of the following functions f(x), find the rate of change of f(x) over the interval
[x0, x0 + ∆x] for given x0 and ∆x, and sketch the graph of f(x) along with the secant line
corresponding to the interval. In each case compare your results with what you obtain for
the derivative of f(x) at x = x0 using Theorem 1.1. (a) f(x) = x2 with x0 = 1

2
and

∆x = 1, 1/2, 1/10, 1/100, (b) f(x) = 2x3 − 1 with x0 = 1 and ∆x = 1, 1/2, 1/10,1/100,
(c) f(x) = 1

2x2 − 1 with x0 = −1 and ∆x = 1, 1/2, 1/10,1/100.
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6. Find the derivative of f(x) at any x0 for each of the following functions by directly computing
the limit in (1.26). In each case find the equation of the tangent line at x0 = 1. (a) f(x) = 1

5x2

(b) f(x) = 3x2 − 2 (c) f(x) = 3x− 4 (d) f(x) = x2 + π (e) f(x) = 2x3 + 4
(f) f(x) = x2 − 2x + 5 (g) f(x) = 2x3 + x (h) f(x) = x4

7. Find the derivative of f(x) at any x for the following functions by directly computing the limit
df
dx

= limh→0
f(x+h)−f(x)

h
. (a) f(x) = x2 (b) f(x) = 5x2 (c) f(x) = 3x−4 (d) f(x) = x2+2

(e) f(x) = 3x2 + 4 (f) f(x) = x2 − 2x + π (g) f(x) = 2x3 + x (h) f(x) = x4

8. Suppose the f(x) and g(x) are functions such that df/dx = 3x2 and dg/dx = x3 − 4. Find
(a) d

dx
(f(x) + g(x)), (b) d

dx
(f(x) − 2g(x)), (c) d

dx
(4f(x)), (d) d

dx
(2f(x) − 3)

9. Find the derivative df
dx for each of the following functions: (a) f(x) = x3 − x2 + 3x− 8, (b)

f(x) = πx2 +6x−3, (c) f(x) = x100+49x50 +1, (d) f(x) = 3x5 −2x4 +7x3 +x2 −6x+4.

10. The graph of the circumference C(r) of a circle as a function of its radius r is a straight line.
Plot the graph of C(r) for r ≥ 0 and find dC/dr.

11. The graph of the area A(r) of a circle as a function of its radius r is a parabola. Plot the
graph of A(r) for r ≥ 0 and find its derivative for any r ≥ 0. Plot the graph of its derivative
dA/dr, and compare with your result in the previous problem.

12. Let P (x) = 4x be the perimeter of a square of side x, and A(x) = x2 be the area of the square.
Find dP/dx and dA/dx for x ≥ 0. Plot the graphs of P (x) and A(x), and their derivatives.

13. Let V (x) = x3 be the volume of a cube with side x, and let S(x) = 6x2 be the surface area of
the cube. Find dV/dx and dS/dx for any x ≥ 0. Plot the graphs of V (x) and S(x), and plot
the graphs of their derivatives. Evaluate the derivatives at x0 = 0, 2, 10 and compare your
results with those from Problem 17 in Section 1.1.

14. Let g(x) = 1 − x2/2! + x4/4!. Find dg/dx.

15. Find a function F (x) whose derivative is f(x) = 2x, that is, find F (x) such that dF
dx = f(x) =

2x. Do the same for f(x) = 3x2, x and x2.

16. Farenheit 
 Celsius conversion. A temperature of 32◦ Farenheit (F) corresponds to 0◦

Celsius (C), and a temperature of 212◦ F corresponds to 100◦ C. (a) Find the equation of the
line for converting temperatures from Farenheit to Celsius, and sketch its graph. Use your
formula to convert 75◦ from F to C. (b) What is the rate of change of degrees Celsius with
respect to degrees Farenheit? (c) Find a function F (C) for converting temperatures from
Celsius to Farenheit, and sketch its graph. Use your formula to convert 15◦ from C to F. (d)
Find the derivative of F (C)? (e) The units of the Kelvin (K) scale are the same size as in the
Celsius scale, but zero is shifted so that 0◦ K corresponds to −273.15◦ C, called absolute zero,
and 273.15◦ K corresponds to 0◦ C. Find the function K(C) converting from C to K, and vice
versa, and use your formulas to convert 25◦ C to K, and 0◦ K to F. Find dK/dC.

17. Thermal expansion. A steel girder is 15 meters long when it is at a temperature of −20◦

C. When in use the girder will be subjected to temperatures between −20◦ C and 40◦ C.
As the temperature changes, the steel expands or contracts, so that the length of the girder
changes. When the girder is at temperature T its length L is given by L = L(T ) = 15.0036+
0.00018T, −20 ≤ T ≤ 40. Graph this equation and find dL/dT , which measures the rate of
thermal expansion per degree of temperature change.

18. Currency exhange. If the rate of exchange from US Dollars to Euros is 1.27 Dollars/Euro,
and the exhange fee is $10.00, find a formula for converting x Dollars to y Euros, taking into
account the exchange fee (which shifts the y−intercept). Sketch a graph of this function and
find out how many Euros $500 will buy.

19. Pressure under water. The pressure p experienced by a diver at a depth z meters below the
surface is given by an equation of the form p = kz + 1, where k is a constant and the pressure
at the surface z = 0 is 1 atmosphere. If the pressure at 100 meters is 10.94 atmospheres,
determine k and find the pressure at z = 50 meters. What is the meaning of k, and what
units are used to measure k? Find dp/dz.
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Figure 1.10: High-speed train in uniform motion. Displayed on the right is data on its
position x in feet vs. time t in seconds, taken at 1 second intervals.

1.3 Instantaneous velocity

Let’s again consider motion, which is one of the most important applications of the deriva-
tive. The position x(t) of a train speeding uniformly down a track is shown in Figure 1.10.
From Equation (1.1), the constant velocity of the train is the slope of the line,

v =
∆x

∆t
, (1.27)

measured from any two points t0 and t0 +∆t. For the two data points (4, 880) and (6, 1320)
shown, the train travels a distance ∆x = x(t0 + ∆t) − x(t0) = 1320 − 880 = 440 feet in
∆t = 6 − 4 = 2 second. Thus v = ∆x

∆t = 220 feet/second, or 150 miles per hour, and the
position of the train is given by the linear function x(t) = v t = 220 t.
⊕

For an object in uniform motion, the graph of its position x(t) is a straight line. The
velocity is the rate of change of x(t), or the slope of the line.

Now consider non−uniform motion in one dimension, such as an object falling in earth’s
gravitational field. After a pebble has been dropped, its downward velocity keeps increasing,
to a point, similar to the speedometer reading on a car when you press the accelerator and
hold it there. Data on the position x(t) of a falling pebble are shown in Figure 1.11 (a),
along with the function x(t) = −16t2 giving the position of the pebble for any time t. As in
the previous section, we see in Figure 1.11 (b)−(e) that the closer we zoom in on the graph
of x(t) around t0 = 1 second, the more linear it appears, like uniform motion in Figure 1.10.

⊕
Non−uniform motion looks almost uniform on sufficiently small time scales.

On small time scales, the trend of x(t) around t0 = 1 is captured closely by the tangent line
to its graph at t0 = 1, which is particularly apparent in Figure 1.11 (e).
⊕

The velocity v(t) of an object at any instant t = t0 is called the instantaneous
velocity, and is the slope of the line tangent to the graph of x(t) at t = t0.

Example 1.3.1. Find the instantaneous velocity v(t) of a falling pebble 1 second after
being dropped, and then for any time t.

Solution: To find the instantaneous velocity v(1), we must calculate the slope of the tangent
line to x(t) = −16t2 at t0 = 1, or the derivative of x(t) = −16t2 at t0 = 1. Fortunately, the
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Figure 1.11: (a) Data on the position of a falling pebble at time intervals of 0.25 seconds.
The function x(t) = −16t2 gives the position for any time t, neglecting air friction. (b)−(e)
Zooming in on the graph of x(t) around t = 1 shows that x(t) looks more and more linear
when viewed on smaller and smaller time scales, like uniform motion in Figure 1.10.

same procedure we developed in Equations (1.7) and (1.8) still works. The tangent line at
t0 = 1 can be approximated with a secant line whose slope is

msec =
∆x

∆t
=

x(1 + ∆t) − x(1)
∆t

, (1.28)

which measures the rate of change of the position x(t) over the time interval [1, 1 + ∆t].
The slope of the tangent line, or instantaneous velocity, is obtained in the limit as ∆t → 0,

v(1) =
dx

dt
(1) = lim

∆t→0

∆x

∆t
= lim

∆t→0

x(1 + ∆t) − x(1)
∆t

. (1.29)

With x(t) = −16t2, we have

v(1) = lim
∆t→0

−16(1 + ∆t)2 + 16
∆t

= lim
∆t→0

−32 − 16∆t = −32 f/s. (1.30)

Repeating the same calculation for any t yields

v(t) =
dx

dt
= lim

∆t→0

x(t + ∆t) − x(t)
∆t

= lim
∆t→0

−32t − 16∆t = −32t f/s. (1.31)

⊕
The instantaneous velocity v(t) is the derivative of the position x(t).

A useful tool for analyzing non−uniform motion is the average velocity. Suppose it
takes 5 hours including stops to drive from Washington, D.C. to New York City, about 250
miles. While the speedometer reading varies quite a bit, the average speed over the time
interval [0, 5] hours is 50 miles per hour since overall we go 250 miles in 5 hours. For the
falling pebble, its average velocity over the time interval [t, t + ∆t] is

vavg[t, t + ∆t] =
∆x

∆t
=

x(t + ∆t) − x(t)
∆t

. (1.32)
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Figure 1.12: The average velocity over each time interval is the slope of the secant line. As
the interval becomes smaller and smaller, the secant lines approach the red tangent line.

Comparing with Equation (1.31), we see that the instantaneous velocity v(t) is the limit of
the average velocity measured over smaller and smaller time intervals,

v(t) = lim
∆t→0

vavg[t, t + ∆t] = lim
∆t→0

x(t + ∆t) − x(t)
∆t

. (1.33)

In Table 1 we show the average velocity of the pebble over shorter and shorter time intervals
starting at t = 1. As ∆t → 0, vavg[1, 1 + ∆t] → −32, consistent with (1.30). In Figure 1.12,
vavg[1, 1 + ∆t] is the slope of the secant line containing t = 1 and t = 1 + ∆t.

time interval [1, 1 + ∆t] ∆t vavg[1, 1 + ∆t] relative error E
[1, 3] 2 −64 1

[1, 2] 1 −48 1/2

[1, 1.5] 1/2 −40 1/4

[1, 1.25] 1/4 −36 1/8

[1, 1.125] 1/8 −34 1/16

[1, 1.0625] 1/16 −33 1/32

[1, 1.03125] 1/32 −32.5 1/64

[1, 1.015625] 1/64 −32.25 1/128

[1, 1.0078125] 1/128 −32.125 1/256

[1, 1.00390625] 1/256 −32.0625 1/512

Table 1: Average velocities vavg[1, 1 + ∆t] of a falling pebble during smaller and smaller
time intervals [1, 1+∆t]. For each average velocity, the relative error E = (vavg[1, 1+∆t]−
(−32))/(−32) between vavg [1, 1 + ∆t] and the limit −32 is also shown.

⊕
The average velocity vavg over a time interval [t0, t0 + ∆t] is the slope of the secant
line to x(t) containing the points t = t0 and t = t0 + ∆t.

Example 1.3.2. Let the position of a falling particle after t seconds be given by x(t) =
−16t2 feet. Find the average velocity in feet/second of the particle over each of the following
time intervals: [0, 1], [1, 2], [2, 3].

Solution: For these intervals, we have vavg[0, 1] = x(1)−x(0)
1−0 = −16−0

1−0 = −16 f/s,

vavg[1, 2] = x(2)−x(1)
2−1 = −64−(−16)

1 = −48 f/s, and vavg[2, 3] = x(3)−x(2)
3−2 = −80 f/s.
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Figure 1.13: The instantaneous velocity of a ball thrown upward with an initial velocity of
16 f/s. The maximum height occurs at t = 1

2 when the velocity is 0.

Example 1.3.3. The position x(t) of a ball thrown upward from an initial height of 8 feet
with an initial velocity of 16 feet/second is given by x(t) = −16t2 + 16t + 8. (a) Find the
instantaneous velocity v(t) of the ball. (b) Determine when the ball is going up, when it’s
falling, its maximum height, when it hits the ground, and its speed |v(t)|.

Solution: (a) By Theorem 1.1, the instantaneous velocity is

v(t) =
dx

dt
=

d

dt
(−16t2 + 16t + 8) = −32t + 16, (1.34)

whose graph is shown in Figure 1.13. (b) The ball goes up when v > 0, which occurs for
t < 1

2 . The maximum height of the ball is reached at the instant when it stops ascending
(v > 0) and begins descending (v < 0), that is, when v = 0, which occurs at t = 1

2 . Then,
x(1

2) = 12 feet. The ball falls when v < 0 for t > 1
2 . It hits the ground when x(t) = 0,

occuring at t = 1
2 +

√
3

2 = 1.36..., by the quadratic formula. For t ≤ 1
2 , |v(t)| = v(t), but

when v is negative for t > 1
2 , |v(t)| = −v(t).

BRIEF SUMMARY: Describing and predicting motion is fundamental to science and
engineering. If x(t) represents the position of an object, then its instantaneous velocity v(t)
is the rate of change or derivative of the position, v(t) = dx/dt.

Exercises
1. Consider a car with the position data (0, 0), (0.25, 16.25), (0.50, 32.5), (0.75, 48.75), with

units of (hours, miles). Plot this data as in Figure 1.10. Find the velocity and speed
of the car and the equation of the line containing the data. Do the same for the data
(0, 50), (0.33, 33.33), (0.67, 16.67), (1, 0).

2. A plane flies 2462 miles (3961 km) directly from Los Angeles to New York, which takes 5
hours and 23 minutes including time for maneuvering after take-off and before landing. What
is the plane’s average speed over the whole trip?

3. Let the position of a particle after t seconds be given by x(t) = t3 centimeters. Find the
average velocity of the particle over each of the following time intervals: [0, 1], [1, 2], [2, 3]. Do
the same for the position functions y(t) = −16t2 + 24t feet and z(t) = t− t3/6 meters, with t
in seconds.

4. Consider a falling pebble with position function x(t) = −16t2. (a) Plot the graph of x(t). (b)
On your graph from (a), plot the secant lines containing the points with coordinates (1

2 , x(1
2 )

and 1
2

+ ∆t, x(1
2

+ ∆t)), with ∆t = 0.4, 0.2, 0.1,0.05,0.01. Find the slope of each secant line.
(c) Find the average velocities vavg[12 , 1

2
+ ∆t] of the falling pebble during the time intervals

[12 , 1
2 + ∆t] with ∆t = 0.4, 0.2, 0.1,0.05, and 0.01. (d) Find v(1

2 ), the instantaneous velocity of
a falling pebble at t = 1

2 seconds. (e) For each average velocity in (c), find the relative error
E =

(
vavg[12 , 1

2 + ∆t] − v(1
2 )

)
/v(1

2 ) . between vavg[12 , 1
2 + ∆t] and your result in (d).
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Figure 1.14: In (a), current vs. voltage data for a 100 foot copper wire exhibits Ohmic, or
linear behavior [7]. Reversing the potential difference between the ends of the wire reverses
the current direction. In (b) current vs. voltage data for a neuron is plotted.

5. For each of the following position functions, plot it on graph paper along with the tangent
line at each of the given points. Estimate the instantaneous velocity at each point by ap-
proximating the slope of each tangent line and compare your results with Theorem 1.1. (a)
x(t) = 1

3 t2 + 1 at t0 = 0, 1, 2, (b) x(t) = 1
4t3 at t0 = 0, 1/2, 1, 2, (c) x(t) = 2t(1 − t) at

x0 = 0, 1/4, 1/2, 3/4, 1.

6. For each of the following functions x(t), find the rate of change of x(t) over the interval [t0, t0+
∆t] for given t0 and ∆t. Sketch the graph of x(t) along with the secant line corresponding
to the interval. In each case compare your results with what you obtain for the derivative of
x(t) at t = t0 using Theorem 1.1. (a) x(t) = 1

2t2 with t0 = 3
2 and ∆t = 1, 1/2, 1/10, 1/100,

(b) x(t) = 1
4t3 + t − 1 with t0 = 2 and ∆t = 1, 1/2, 1/10, 1/100, (c) x(t) = t − t2 with t0 = 1

and ∆t = 1, 1/2, 1/10, 1/100.

7. Find the derivative for each x(t) by directly computing the limit
v(t) = dx

dt = lim∆t→0
x(t+∆t)−x(t)

∆t . In each case find the equation of the tangent line at t0 = 1.
(a) x(t) = 1

3t2 (b) x(t) = t3 + 4 (c) x(t) = 2t − 3 (d) x(t) = t2 − π (e) x(t) = t4

8. Let the position of a particle on a line be given by x(t) = 1
3 t3 − 2t2 + 5 feet, where t is in

seconds. (a) Find the instantaneous velocity v(t) of the particle, (b) Graph v(t) for t ≥ 0, as
well as its speed |v(t)|. (c) Find when the object’s velocity is 0.

9. For each x(t) find the velocity v(t) = dx
dt

. (a) x(t) = −16t2 + 32t + 6 f (b) x(t) = −16t4 +
64t2 + 128 f (c) x(t) = −32t f (d) x(t) = −5t2 + 20t m (e) x(t) = t − t3/6 m

10. Let x(t) = t3 − 3t2 be the position of an object. (a) Find v(t). (b) When is the object moving
to the right (v > 0)? (c) When is it moving to the left (v < 0)? (d) Sketch a diagram showing
the motion. Repeat the exercise for x(t) = −t2 + 6t.

11. The area of a circle of radius r is A = πr2. How fast is the area changing with respect to
radius when r = 1? How fast is the volume V = 4

3
πr3 of a spherical balloon changing with

respect to radius when r = 2?

12. If an electrical potential difference V is applied between the ends of a rod, then the resistance
R of the rod is the ratio of the applied voltage V to the induced current I, R = V/I. The
standard unit of resistance is the ohm (Ω), equal to 1 volt per ampere (1 Ω = 1 V/A).
Let us apply a variable potential difference V between the ends of a conductor, and make
measurements of the current I as V is varied. Data on the current I vs. voltage V for a
100 foot coil of #18 gauge copper wire is shown in Figure 1.14 (a). From this data find the
resistance R of the wire. Find the equation of the line in Figure 1.14 (a). What is dI/dV ?
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13. Every neuron has a thin cloud of positive and negative ions spread over the inner and outer
surfaces of the cell membrane, setting up a potential difference across the cell membrane,
called the membrane potential. Measuring input and output ionic current pulses through the
membrane yields data on the current I vs. the membrane potential V [9], as in Figure 1.14
(b). The slope of the line formed by the data is 1/R, where R is the resistance the neuron.
Find R from this data set. Find the equation of the line in Figure 1.14 (b). What is dI/dV ?

14. For each velocity function v(t), find a position function x(t) which is an antiderivative of v,
that is, dx/dt = v. (a) v(t) = 10t (b) v(t) = −32t (c) v(t) = 22 (d) v(t) = 3t2 (e) v(t) = t− t3

15. On Earth an object falls with its position given by x(t) = −4.9t2, with x in meters and
t in seconds. The corresponding equations on Mars and Jupiter are x(t) = −1.86t2 and
x(t) = −11.44t2. On Earth it takes about 1 second for a falling pebble to travel with a speed
of 10 m/s. Find how long it takes a pebble to fall with this speed on Mars and Jupiter.

16. An object thrown upward from the surface of the moon with initial velocity v0 m/s has position
x(t) = −0.8t2 + v0t. What must v0 be so that it goes a mile high?

1.4 The integral of a polynomial

The second fundamental problem of calculus concerns the area under the graph of a function
on an interval [a, b]. If we consider motion in one direction, and the area under a velocity
function v(t) ≥ 0 on [a, b], the idea for a solution becomes apparent. For reasons discussed
later, this area will be denoted by ∫ b

a
v(t)dt. (1.35)

We’ve already seen in Figure 1.4 that for uniform motion, the area under the graph of
the constant v(t) = 44 f/s over the time interval [0, 10], or

∫ 10
0 44 dt, is the distance traveled

during that interval. Via (1.1), this distance is 44 × 10 = 440 feet. On the other hand, the
distance traveled over [0, 10] is also just the change in position x(t) from t = 0 to t = 10,

∫ 10

0

v(t) dt = x(10)− x(0), (1.36)

with x(t) = 44t and x(10) − x(0) = 440 − 0 = 440 feet. Since the velocity v(t) is the
derivative of the position x(t),

v(t) =
dx

dt
, (1.37)

the position x(t) is an antiderivative of v(t), as discussed in Example 1.2.6. Thus (1.36)
suggests that the problem of finding the area under a given function v(t) on an interval
[a, b] can be solved by finding an antiderivative x(t) of v(t).

The next example shows why, even for non-uniform motion where v(t) is changing, the
distance traveled during a time interval [a, b] is the area under the graph of v(t) on [a, b].

Example 1.4.1. The velocity of a cheetah stalking and then suddenly charging an antelope
is v(t) = 10t meters/second during the first 2 seconds of the attack. How far does the cheetah
run during the time interval [0, 2]?

Solution: In the previous section we observed that non−uniform motion is approximately
uniform on small time scales. It is useful then to break up the time interval [0, 2] into many
short subintervals each of duration ∆t. In Figure 1.15 (a) the interval [0, 2] is broken up
into four subintervals [t0, t1], [t1, t2], [t2, t3], [t3, t4], with ∆t = 1

2 second, t0 = 0, t1 = 1
2 , t2 =
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Figure 1.15: To find how far a cheetah runs in 2 seconds, the interval [0, 2] is broken up into
subintervals of duration ∆t. In (a) the subintervals are [0, 1

2 ], [12, 1], [1, 3
2 ], [32, 2]. The motion

over a short subinterval is approximately uniform, so that the distance traveled over ∆t can
be estimated by the area of a rectangular box. As the number of boxes grows in (b) and
(c), the sum of their areas gets closer to the actual area under the graph of v(t) on [0, 2].

1, t3 = 3
2 , and t4 = 2. How far the cheetah runs during each subinterval is approximated

by the area Ak of the corresponding rectangle of height v(tk) and width ∆t,

Ak = v(tk)∆t, (1.38)

representing uniform motion with constant velocity v(tk) over that subinterval, with k =
1, 2, 3, 4 in (a). Then the total distance run over [0, 2] is approximated by the sum of the
areas of the rectangles,

A1 + A2 + A3 + A4 = v(t1)∆t + v(t2)∆t + v(t3)∆t + v(t4)∆t. (1.39)

With v(t1) = 5, v(t2) = 10, v(t3) = 15, v(t4) = 20, the estimated distance run is (5 + 10 +
15 + 20) · 1

2 = 25 meters. As the number of boxes grows in Figure 1.15, or as ∆t → 0,
the region covered by the boxes becomes indistinguishable from the triangular region under
v(t) on [0, 2]. With 10 boxes in (b), the estimated total distance run is (2+4+6+8+10+
12 + 14 + 16 + 18 + 20) · 1

5 = 22 meters. In the limit as the number of boxes approaches
∞, it is reasonable (and correct) to conclude that the total distance run by the cheetah is
equal to the area under the graph of v(t) on [0, 2]. Since this region is a right triangle with
base 2 and height 20, the distance run is 1

2 × base × height = 1
2 · 2 · 20 = 20 meters.

Remark. In (1.39), the distance run is approximated by a sum of areas of n rectangles
with heights v(tk) and widths ∆t, for n = 4. As n → ∞ or ∆t → 0,

v(t1)∆t + v(t2)∆t + ... + v(tn)∆t −→
∫ 2

0
v(t)dt, (1.40)

and the limiting sum of areas of infinitesimally thin “rectangles” of height v(t) and width dt
is called a definite integral. The elongated “S” in (1.35) and in (1.40) is called an integral
sign. It reminds us that the definite integral is a limit of a sum of areas of rectangles, leading
to the notation used in (1.35) and (1.40).

Let’s obtain the result of Example 1.4.1 using the idea suggested in (1.36). Given
v(t) = 10t m/s, we must find x(t) which is an antiderivative of v(t). As in Example 1.2.6,
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Figure 1.16: The area under the graph of the parabola f(x) = x2 over [0, 1] in (a) can be
found from the antiderivative F (x) = x3/3 + C of f(x). Later, we’ll look more closely at
how this method is related to summing the areas of the boxes in (b) and (c).

since d
dt(t

2) = 2t, we have d
dt(5t2) = 10t, so that x(t) = 5t2 is an antiderivative of v(t) = 10t.

Thus, via (1.36), the distance run during [0, 2] is the change in position from t = 0 to t = 2,
∫ 2

0
v(t)dt = x(2)− x(0) = 5 · 22 − 0 = 20 meters. (1.41)

⊕
The area under the graph of a velocity function v(t) ≥ 0 on an interval [a, b] is the
distance traveled during [a, b], or the difference in the final and initial positions,

∫ b

a

v(t)dt = x(b)− x(a) where
dx

dt
= v(t). (1.42)

Finding the area under the graph of v(t) on [a, b] reduces to finding an antiderivative
x(t) of v(t) with respect to t, written as

x(t) =
∫

v(t)dt ⇐⇒ dx

dt
= v(t). (1.43)

The expression for x(t) is called an indefinite integral, and denotes any function which is
an antiderivative of v(t). In (1.36) and (1.41) the definite integral involves a specific interval
such as [0, 10] or [0, 2], and results in a number. The indefinite integral is a function x(t).

Example 1.4.2. Let v(t) = t2 feet/second be the velocity of a particle which starts at the
point x = 2 at t = 0. (a) Find the position x(t). (b) Find how far the particle travels during
the time interval [1, 4].

Solution: (a) From (1.16), d
dt(t

3) = 3t2. Then the indefinite integral, or antiderivative, of
v(t) is

x(t) =
∫

v(t)dt =
∫

t2dt =
t3

3
+ C, (1.44)

where any constant C can be added to t3/3, and the result is still an antiderivative of
t2, since d

dt(
t3

3 + C) = t2 + 0 = t2. Since the particle starts at x = 2, we must have
x(0) = 0 + C = 2, or C = 2. Then x(t) = t3

3 + 2. (b) The distance traveled by the particle
is the area under v(t) = t2 over the interval [1, 4], or equivalently the change in position
from t = 1 to t = 4, ∫ 4

1
v(t)dt =

∫ 4

1
t2dt = x(4)− x(1). (1.45)
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Evaluating the difference in position yields the total distance as x(4) − x(1) =
(

64
3 + 2

)
−(

1
3 + 2

)
= 63

3 = 21 feet.

Our analysis of motion is particularly important because the method it yields to find
area works in general. Let’s find the area

∫ 1
0 x2dx of the shaded region under the parabola

f(x) = x2 over [0, 1] in Figure 1.16. This region is not a shape whose area is known from
elementary geometry. Any antiderivative F (x) of f(x) = x2 can be written as

F (x) =
∫

x2dx =
x3

3
+ C. (1.46)

As suggested by (1.45), we now find the change in F (x) from x = 0 to x = 1,
∫ 1

0
x2dx = F (1) − F (0) =

(
13

3
+ C

)
−

(
03

3
+ C

)
=

1
3

. (1.47)

Let’s collect our results for antiderivatives of powers of x. First, from (1.16) and (1.17),

d

dx
(x) = 1,

d

dx

(
x2

2

)
= x,

d

dx

(
x3

3

)
= x2, ...,

d

dx

(
xn+1

n + 1

)
= xn, ... . (1.48)

As indefinite integrals, these results can be written
∫

1 dx = x + C,

∫
x dx =

x2

2
+ C,

∫
x2 dx =

x3

3
+ C, ...,

∫
xn dx =

xn+1

n + 1
+ C, ... .

(1.49)
Integration, both definite and indefinite, obeys the properties of differentiation exhibited

in Equations (1.18), (1.19) and (1.20).
⊕

The integral of a constant times a function is the constant times the integral; the
integral of a sum or difference is the sum or difference of the integrals.

Example 1.4.3. (a) Find an indefinite integral, or antiderivative F (x), of f(x) = 4x3+x+2.
(b) Find the area under the graph of f(x) on the interval [1, 2].

Solution: (a) F (x) =
∫

(4x3 + x + 2) dx =
∫

4x3dx +
∫

xdx +
∫

2dx

= 4
∫

x3dx +
∫

xdx + 2
∫

1dx = x4 +
x2

2
+ 2x + C.

(b)
∫ 2

1

(4x3 + x + 2) dx = F (2) − F (1) = (16 + 2 + 4 + C) −
(

1 +
1
2

+ 2 + C

)
= 18

1
2

The next result will be proven later, but should be reasonable from the above.

Theorem 1.2 (Antiderivative of any polynomial).
∫

xndx =
xn+1

n + 1
+ C, n = 0, 1, 2, 3, ..., C ∈ R, (1.50)

and for any nth order polynomial p(x) = anxn + an−1x
n−1 + ... + a2x

2 + a1x + a0,
∫

p(x)dx =
an

n + 1
xn+1 +

an−1

n
xn + ... +

a1

2
x2 + a0x + C, C ∈ R. (1.51)
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Figure 1.17: In (a), the area of the dark grey region is the area b2

2 of the triangle with base
b and height b minus the area a2

2 of the triangle with base a and height a. In (b), the total
signed area is the sum of the negative light grey area and the positive dark grey area, with
a negative net result. In (c), the signed area of g(x) = x3 on [−1, 1] is 0, since the positive
area is exactly balanced by the negative area.

Analogous to (1.40), the area under the graph of a function f(x) on [a, b] can be ap-
proximated by a sum of n rectangular areas as in Figure 1.16,

∫ b

a
f(x)dx ≈ f(x1)∆x + f(x2)∆x + ... + f(xn)∆x, (1.52)

with the exact result obtained as ∆x → 0 or n → ∞. We’ll examine this procedure in
much more detail later, but based on our findings with velocity and the result in (1.47), the
following should be reasonable.

Theorem 1.3 (Definite integral of any polynomial). For any nth order polynomial
f(x) = anxn + an−1x

n−1 + ... + a2x
2 + a1x + a0,

∫ b

a
f(x)dx = F (b)− F (a),

dF

dx
= f(x), a, b ∈ R, a ≤ b. (1.53)

Theorem 1.3 is part of the Fundamental Theorem of Calculus, which will be proved
later. This result, and its generalizations, serve as pillars of calculus. Moreover, this theorem
shows that the two main problems of calculus are closely related.

Remark. So far we have restricted our discussions to positive functions. However, where
a function takes negative values, the contribution to the definite integral is negative. For
example, in Figure 1.17 (b), the definite integral over [−2, 0] is the negative of the area of
the light grey triangle. The definite integral over [0, 1], where the function is positive, is
just the area of the dark grey triangle. The definite integral over the whole interval [−2, 1]
is called the signed area, which equals the area of the dark grey region minus the area of
the light grey region. If the positive area equals the negative area, as in Figure 1.17 (c),
the definite integral, or signed area, is 0.

Example 1.4.4. Find (a)
∫ b

a

xdx (b)
∫ 1

−2

1
2
xdx (c)

∫ 1

−1

x3dx (d)
∫ 3

0

(x2 + 2x3)dx.
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Solution: (a)Any antiderivative of x can be written as x2/2 + C. Thus by Theorem 1.3,

∫ b

a
xdx =

b2

2
− a2

2
, (1.54)

which is verified geometrically in Figure 1.17 (a). (b) By Theorem 1.3,

∫ 1

−2

x

2
dx =

1
2

(
12

2
− (−2)2

2

)
= −3

4
.

(c) Since the positive area exactly balances the negative area, as shown in Figure 1.17 (c),
we expect

∫ 1
−1 x3dx = 0. Theorem 1.3 yields

∫ 1

−1
x3dx =

14

4
− (−1)4

4
= 0.

(d)
∫ 3

0
(x2 + 2x3) dx =

∫ 3

0
x2 dx + 2

∫ 3

0
x3 dx =

33

3
+ 2 · 34

4
=

99
2

.

BRIEF SUMMARY: The signed area enclosed by the graph of a function f(x) on an
interval [a, b] is found from the definite integral of f on the interval. By analyzing motion,
we found that the area can be obtained from an antiderivative of f(x), which links the two
fundamental problems of calculus.

Exercises

1. A train is speeding down a track, as in Figure 1.10, with a constant velocity of v = 220
feet/second. Find the total distance traveled by the train over a 5 second interval.

2. Let v(t) = 2t + 1. (a) Approximate the area under the graph of v(t) on the interval [0, 2] as
in Figure 1.15. Split the interval into n subintervals, each of length ∆t = 2/n, and perform
the sum in (1.40) with t0 = 0, t1 = ∆t, t2 = 2∆t, and tj = j∆t in general. Carry out the
approximation for the three cases n = 2, 4, 8. (b) Carry out the steps of (a) but use the left
endpoints of each subinterval to determine the height of each rectangle. That is, perform the
sum v(t0)∆t+v(t1)∆t+...+v(tn−1)∆t in each case. (c) Calculate the area under the graph by
finding the distance traveled,

∫ 2

0
v(t)dt = x(2) − x(0), and compare your results with (a) and

(b). (d) Find the area under the graph of v(t) on [0, 2] from elementary geometry, knowing
the area of rectangles and right triangles.

3. Carry out steps (a)-(c) of the previous exercise for each function and interval given. (a)
v(t) = 2 − t on [0, 2]. (b) v(t) = t2 on [0, 2]. (c) v(t) = −1

2 t + 3 on [−1, 1]. (d) v(t) = t2 + 2
on [−2, 0].

4. For each of the following velocity functions v(t) meters/second, find the distance traveled in
meters over the given time interval [a, b] in seconds.

(a) v(t) = 3t + 1 on [1,3] (b) v(t) = 4 + 1
4t2 on [0,6] (c) v(t) = 3t2 on [0,1]

(d) v(t) = −10t + 20 on [0,2] (e) v(t) = t6 + 3t3 + 3t + 1 on [0, 11
4
]

5. A steam catapult aboard an aircraft carrier can accelerate an F-18 Hornet so that its velocity
is given by v(t) = 104.85t feet/second. If the jet reaches its take-off velocity of 173 miles per
hour at the end of the runway, how long does it take for the jet to take off, and how long is
the runway?
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6. Find the general form for any antiderivative of each of the following functions.

(a) f(x) = x2 (b) g(x) = 5x2 (c) f(x) = 3x − 4 (d) u(x) = x3 + 2

(e) g(x) = x + π (f) f(x) = x5 − 2x3 + x (g) v(x) = a2 − x2, a ∈ R

7. (a) An object’s velocity is given by v(t) = 2 − 3t2/2. If its initial position is x(0) = 0, find
x(t). (b) An object’s velocity is given by v(t) = 5t3 − 2t2 + t + 1. If its initial position is
x(0) = 2, find x(t).

8. In each case find the antiderivative F (x) =
∫

f(x)dx which satisfies the given condition.
(a) f(x) = x − x3, F (0) = 1 (b) f(x) = 1 + 3x2, F (1) = −1
(c) f(x) = π − x20 + 54x12 − x7, F (0) = π (d) f(x) = x − x3/3!, F (0) = 1

9. Find the antiderivative of (x + 1)(3x − 2) that has the value 5 when x = 0.

10. In each case calculate a definite integral to find the area under the graph for the given function
on the interval [0, b]. (a) 1

2x + 1 (b) 3x2 (c) 3x3 + x (d) x2 + 5x4

11. Find the following definite integrals.

(a)
∫ b

a

(2x − 1) dx (b)
∫ 1

0

(x2 + 2x + 1) dx (c)
∫ 2

−1

1
2
x dx (d)

∫ 2

−2

1
3
x5 dx

(e)
∫ 5

1

(x4 − 3x2 + 14) dx (f)
∫ √

2

−
√

2

(
1
2
x2 + 1) dx (g)

∫ 1

0

(xn − xn+1) dx, n ≥ 1

12. Find the following definite integrals.

(a)
∫ b

a

(3t − c) dt (b)
∫ 1

0

(t3 + 2t − 3) dt (c)
∫ 1

−2

1
3
t2 dt (d)

∫ 2

−2

(
1
2
r3 − r2 + 5r

)
dr

(e)
∫ 1

0

t dx (f)
∫ b

a

x2 dt (g)
∫ √

2

−
√

2

(
1
2
u2 + 3u) du

13. Find the area of the region bouned by the graphs of y = x and y = x2 on the unit interval
[0, 1].

14. Use the formula for the area of a trapezoid to find the area of the shaded region in Figure
1.17 (a). Compare your result with (1.54).

15. Find the total signed area enclosed by the graph of f(x) = x5 and the interval [−100, 100].
Do the same for f(x) = x3 and f(x) = x2.

16. Find
∫ 1

−1

√
1 − x2 dx by considering the region whose area it represents.

17. Consider the interval [1, 2]. Find the signed area enclosed by the graph of f(x) = x + 1 and
the x−axis on this interval. Do the same for g(x) = x2 + x +

√
2 and u(x) = −2x3 + 1

3
x2 − x

on this interval.

CHAPTER SYNOPSIS: Calculus involves finding the rate of change, or derivative of
a function f(x) at a point x = x0, and finding the signed area, or definite integral of a
function on an interval [a, b]. These problems are addressed by analyzing the function on
increasingly small scales. Computing the signed area of the graph of a function f(x) involves
finding the antiderivative of the function f(x), providing a deep connection between the
two great problems of calculus. Scientific laws and concepts are usually formulated using
derivatives and integrals.
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