Mathematics 1210

PRACTICE EXAM III

Fall 2018
ANSWER KEY
1. Calculate the following integrals:
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Solution: Notice that
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Or subtract cos 2z = cos? z — sin? = from 1 = cos? x + sin? = to get
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sin?x = = — = cos 2z
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and integrate to get
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which may be about as involved as showing
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Solution: Use u = 2% + 7 so du = 2zdz to get
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Solution: Notice that the integral of any odd function over an interval which is sym-
metric about the origin is zero. In this problem, we see that 23 is odd function and the
interval (—3,3) is symmetric about the origin. Hence,
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2. Find the general solutions to the following differential equations.
Y
dx Y
Solution: Separating variables,
y1/3dy = 2'/3dx
and integrating
/y1/3dy = /xl/?’dx
y4/3 _ (1‘4/3 + C)
y = (334/3 + C)S/4 i
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Solution: Recall from the previous practice exam that if z(t) = Asin(wt — ¢), then

7'(t) = Acos(wt — ¢)w = wA cos(wt — @)
2"(t) = —w?Asin(wt — ¢) = —w?x(t)

Hence, we can conclude that the solution of this differential equations is

’x(t) = Asin(wt — ¢) ‘

Alternatively, we can observe that x1(t) = sinwt and x5(t) = coswt are both solutions,
and that any linear combination of the form z(t) = Ax1(t) + Bxa(t), for real numbers
A and B is also a solution, written in its most general form. ]
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Solution: Integrating once gives
dx

— = _gt
7 gt + C,

and calling %‘tzo = vp. Integrating again,

o(t) = —th + vt + 0

where zg = x(0). "

3. Consider the function

(a) Find the average slope of this function on the interval (1,4)
Solution: The average slope of this function on the interval (1,4) is given by
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(b) By the Mean Value Theorem, we know there exists a ¢ in the open interval (1,4) such

that f’(c) is equal to this mean slope. What is the value of ¢ in the interval which works.
Solution: Notice that

1
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4. A population of rabbits in a forest is found to grow at a rate proportional to the cube root
of the population size. The initial population P is 1000 rabbits, and 5 years later there are
1728 of them.

(a) Write the differential equation for the rabbit population P(t) with the two corresponding
conditions.

Solution:

dP
— =kP
dt ’

where k is the proportionality constant, P(0) = 1000 and P(5) = 1728. "
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(b) Solve this differential equation, that is, find the particular solution which incorporates
both conditions.

Solution: Using the differential equation from part (a),

/P—édp — /kdt,

Pi =kt +C,
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where C' is the integration constant. Using the initial condition P(0) = 1000, we see
C = 3(1000)%/3 = 150. Then, the second condition P(5) = 1728 tells us

3
5(1728)2/3 = 5k + 150.

So, we solve for k to find k = 8. Therefore, %PQ/?’ = %t + 150, so the final solution is

5

(c) How long does it take for the rabbit population to quadruple (reach 4000) from its initial
value of 10007

Solution: When P = 4000, it follows that

(4000)%/3 = %t + 150,
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5. Calculate / (32 — 2) dx from the definition of the integral, that is, using Riemann sums.Hint:
1

Using z; = 1 + % and Az = %) Check your result using the Fundamental Theorem of Cal-
culus.

Solution: Recall that




Using z; =1+

L and Ax = L , we have
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From the Fundamental Theorem of Calculus, we have

2
/393 —2de=a" -2z =(8—-4) - (1-2)=[5]
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6. Newton’s second law for the position z(t) of an object in Earth’s gravitational field. is

F =m%Z where F = —mg, m is the object’s mass and g = 32ft/s? is the acceleration due

dt2 >
to the earth gravity..

(a) Find z(t) that satisfies the initial conditions z(0) = zo feet and v(0) = v ft/s. (Hints:

First solve @

Solution: Slnce le? =

= —g, where v(0) = vg and v = %

where z(0) =g . )

—g, we can integrate

[ao= [ gar

v(t) = —gt + C.

Using the initial condition v(0) = vy, which gives ¢ = vg. Hence, we hace

v(t)

= —32t 4 v we integrate

Then, using %

= =32t + vy.

/dx—/ —32t + vodt

—32— + vot + C.

Using initial condition z(0) = xg, we get ¢ = xo. Hence, the z(t) that satisfies the given

initial condition is

x(t)

= —16t> + vot + xg |.




(a) An object is thrown down from a height 64 ft with with velocity vp = —10 ft/s. How
long does it take for the object to hit the ground? (Hint: Use your result from part (a)).

Solution: Using results from part (a),
z(t) = —16t% + vot + x¢

An object throw down from height 64 ft with vg = —10 ft/s, it implies that xzy = 64 ft.
Hence, we get
z(t) = —16t> — 10t + 64.

The object hit the when z(t) = 0, it implies that we want to find ¢ such that
0= —16t* — 10t + 64.

which gives t = —2.34,1.71. Hence, the object will hit the ground at |t = 1.71|s. ]

PR / (1 —cost) dt
7. Find the following: (a) dar/ tan 6 df (b)  lim 22
0

x—0 1’3

Solution: (a) Use the Fundamental Theorem and the chain rule. You may want to substitute
u = 22 then compute

(o | tan6dd) (o) = (tan ) (20) =22 tana?].
0
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(b) , Use L’Hopital’s rule and the Fundamental Theorem. "
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8. Calculate the following;:

10

(a) Z(Qk _ 2k+1)
k=1
Solution:

10
d b2y =2l - 22422 24
k=1

100

(b) Y (2k* +1)
k=1
Solution:

100 100 100

210 _oll ol

(100 + 1)(200 + 1)

Z(2k2+1):22k2+21:2100

6

21t — 30

+ 100 :.



