Midterm 2 Practice Midterm

1 True/False

For each of the following questions respond true if the statement is true and false if the statement is false. If your response is false give a counter example or explain why.

1. Max/Min values of a function occur at critical points of the function.
2. Max/Min values occur at inflection points of a function.
3. The First Derivative test can be used for any type of internal critical point.
4. The First/Second Derivative test are used to find global max/min values of a function.
5. The initial guess for Newton's method doesn't need to be close to the root it is trying to find.
6. The derivative of the antiderivative of $f(x)$ is equal to $f(x)$.

2 Free response

1. Find the linear approximation of the function $f(x)=\sin (4 x)+2 x^{2}$ at the point $x=\frac{\pi}{2}$
2. Find the global maximum and minimum values of the function $g(x)=$ $2 x^{3}+3 x^{2}-4 x+4$ on the interval $I=(-1,2]$
3. Find the regions of increasing/decreasing for the function $h(x)=\frac{x-1}{x}$
4. Find the inflection points and regions of concave up/down for the function $f(x)=x^{4}+8 x^{3}-2$

For problems 5,6 use an appropriate derivative test:
5. Identify all critical points and determine the local mins/maxs for the function $g(x)=\frac{1}{2} x+\sin (x)$ on the interval $I=(0,2 \pi)$
6. Identify all critical points and determine the local mins/maxs for the function $h(x)=\frac{x}{x^{2}+4}$
7. Suppose that a farmer has 9 meters of fencing and wants to make 4 identical animal pens by starting with a rectangular pen and subdividing it into equal quarters. What is the maximum volume of the 4 pens if the farmer uses up all 90 meters of fencing.
8. A different farmer wants to enclose a single rectangular pen of 400 square meters of area. Due to the winds the east-west sides of the fence have to be built with heavy fencing costing 5 dollars per meter, while the north-south sides can be built of light fencing costing only 2 dollars per meter. What dimensions should the farmer use to minimize the cost of the fence. In other words if we call the east-west fence length w and the north-south fence length l then what are w and l that minimize the cost.

9a. For the function $f(x)=\frac{3 x^{5}-20 x^{3}}{32}$ find the x, y-intercepts

9b. Find all critical points of $f(x)$ and where the function is increasing/decreasing

9c. Find any local minima/maxima

9d. Find any inflection points of $f(x)$ and where f is concave up/down

9e. Using this information graph $\mathrm{f}(\mathrm{x})$
10. Find the antiderivative of $g(x)=4 x^{2}+3 x+2$
11. Find the antiderivative of $h(x)=\sin (x)-\cos (x)+\sec (x) \tan (x)$

