1170:Lab13

December 3rd, 2013

Goals For This Week

In this thirteenth lab we will explore autonomous differential equations, and interesting bifurcations which can arise as parameters change.

1 Autonomous Differential Equations

Suppose we have a differential equation:

$$
\begin{align*}
& \frac{d f}{d t}=g(f) \tag{1}\\
& f(a)=f_{a} \tag{2}
\end{align*}
$$

Notice that the right hand side of the equation depends on the function f, not on the variable t. We say that such an equation is a (time) autonomous differential equation.

2 Bifurcations

As parameter values in an equation change sometimes the number and stability of the equilibria will change as well. Such an occurrence is called a bifurcation, and their study is a central topic of differential equations.

Consider the equation:

$$
\begin{equation*}
\frac{d x}{d t}=c x-x^{2} \tag{3}
\end{equation*}
$$

We wish to study the dynamics of solutions to this differential equation as the parameter changes. Notice that this is not the same thing as c being a function of t.

First we wish to find the equilibria as a function of c . In other words:

$$
\begin{align*}
\frac{d x}{d t}=c x-x^{2} & =0 \tag{4}\\
c x-x^{2} & =0 \tag{5}\\
x(c-x) & =0 \tag{6}
\end{align*}
$$

Thus there are equilibria at $\mathrm{x}=0$, and $\mathrm{x}=\mathrm{c}$. As the value of the parameter c changes from -1 to 1 , the equilibrium at $\mathrm{x}=\mathrm{c}$ will move closer and closer to the equilibrium at $\mathrm{x}=0$, then it will disappear and there will just be the 1 equilibrium at $\mathrm{x}=0$ when $\mathrm{c}=0$, and finally it will reappear again and move further and further away. This type of bifurcation at $\mathrm{c}=0$ is called a transcritical bifurcation. What happens to the stability of the equilibria as c changes?

3 Exploring Bifurcations Numerically

Now lets plot solution curves for this equation with initial condition $x(0)=0, \mathrm{x}(0)=-2, \mathrm{x}(0)=2$ using Euler's method for 5 values of c changing from $\mathrm{c}=-1$ to $\mathrm{c}=1$. $(\mathrm{c}=-1, \mathrm{c}=-0.5, \mathrm{c}=0, \mathrm{c}=0.5, \mathrm{c}=1)$

```
c=-1
g<-function(x){c*x-x^2}
a<-0
b<-5
n<-1000
t<-seq(1,n+1)
f<-seq(1,n+1)
t[1]<-a
f[1]<- 2
delt<-(b-a)/n
for (i in 2:(n+1)) {t[i]<-t[i-1]+delt
f[i]<-g(f[i-1])*delt+f[i-1]}
plot(t,f,type='l')
```

What is happening, let us compare that to our bifurcation diagrams and our phase planes for this equation.

4 Assignment for this week

Consider this time the autonomous differential equation:

$$
\begin{equation*}
\frac{d x}{d t}=c-x^{2} \tag{7}
\end{equation*}
$$

Analyze what happens to the equilibria as c changes from -1 to 1 . Does the stability of the equilibria change?

1. Submit your picture of the bifurcation diagram, like we did in class, for this differential equation as c changes from -1 to 1 .
2. Given initial conditions $x(0)=-2, x(0)=0$, and $x(0)=2$ discuss what the solution curves will look like if $\mathrm{c}=-1, \mathrm{c}=0$, or $\mathrm{c}=1$. Note: there are 9 cases to consider.
3. Submit a couple of the more interesting plots of the solution curves using Euler's method in R.
