Sums \& Series

Suppose a_{1}, a_{2}, \ldots is a sequence.
Sometimes we'll want to sum the first k numbers (also known as terms) that appear in a sequence. A shorter way to write $a_{1}+a_{2}+a_{3}+\cdots+a_{k}$ is as

$$
\sum_{i=1}^{k} a_{i}
$$

There are four rules that are important to know when using \sum. They are listed below. In all of the rules, $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$ are sequences and $c \in \mathbb{R}$.

$$
\text { Rule 1. } c \sum_{i=1}^{k} a_{i}=\sum_{i=1}^{k} c a_{i}
$$

Rule \#1 is the distributive law. It's another way of writing the equation

$$
c\left(a_{1}+a_{2}+\cdots+a_{k}\right)=c a_{1}+c a_{2}+\cdots+c a_{k}
$$

$$
\text { Rule 2. } \sum_{i=1}^{k} a_{i}+\sum_{i=1}^{k} b_{i}=\sum_{i=1}^{k}\left(a_{i}+b_{i}\right)
$$

This rule is essentially another form of the commutative law for addition. It's another way of writing that

$$
a_{1}+a_{2}+\cdots+a_{k}+b_{1}+b_{2}+\cdots+b_{k}=a_{1}+b_{1}+a_{2}+b_{2}+\cdots+a_{k}+b_{k}
$$

Rule 3. $\sum_{i=1}^{k} a_{i}-\sum_{i=1}^{k} b_{i}=\sum_{i=1}^{k}\left(a_{i}-b_{i}\right)$

Rule \#3 is a combination of the first two rules. To see that, remember that $-b_{i}=(-1) b_{i}$, so we can use Rule $\# 1$ (with $c=-1$) followed by Rule \#2 to derive Rule \#3, as is shown below:

$$
\begin{aligned}
\sum_{i=1}^{k} a_{i}-\sum_{i=1}^{k} b_{i} & =\sum_{i=1}^{k} a_{i}+\sum_{i=1}^{k}-b_{i} \\
& =\sum_{i=1}^{k}\left(a_{i}+\left(-b_{i}\right)\right) \\
& =\sum_{i=1}^{k}\left(a_{i}-b_{i}\right)
\end{aligned}
$$

$$
\text { Rule 4. } \sum_{i=1}^{k} c=k c
$$

The fourth rule can be a little tricky. The number c does not depend on i - it's a constant - so $\sum_{i=1}^{k} c$ is taken to mean that you should add the first k terms in the sequence c, c, c, c, \ldots. That is to say that

$$
\sum_{i=1}^{k} c=c+c+\cdots+c=k c
$$

Sum of first k terms in an arithmetic sequence

If $a_{1}, a_{2}, a_{3}, \ldots$ is an arithmetic sequence, then $a_{n+1}=a_{n}+d$ for some $d \in \mathbb{R}$. We want to show that

$$
\sum_{i=1}^{k} a_{i}=\frac{k}{2}\left(a_{1}+a_{n}\right)
$$

To show this, let's write the sum in question in two different ways: front-toback, and back-to-front. That is,

$$
\sum_{i=1}^{k} a_{i}=a_{1} \quad+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\cdots+\left(a_{k}-2 d\right)+\left(a_{k}-d\right)+a_{k}
$$

and

$$
\sum_{i=1}^{k} a_{i}=a_{k} \quad+\left(a_{k}-d\right)+\left(a_{k}-2 d\right)+\cdots+\left(a_{1}+2 d\right)+\left(a_{1}+d\right)+a_{1}
$$

Add the two equations above "top-to-bottom" to get
$2 \sum_{i=1}^{k} a_{i}=\left[a_{1}+a_{k}\right]+\left[a_{1}+a_{k}\right]+\left[a_{1}+a_{k}\right]+\cdots+\left[a_{1}+a_{k}\right]+\left[a_{1}+a_{k}\right]+\left[a_{1}+a_{k}\right]$
Count and check that there are exactly k of the $\left[a_{1}+a_{k}\right]$ terms in the line above being added. Thus,

$$
2 \sum_{i=1}^{k} a_{i}=k\left[a_{1}+a_{k}\right]
$$

which is equivalent to what we were trying to show:

$$
\sum_{i=1}^{k} a_{i}=\frac{k}{2}\left(a_{1}+a_{k}\right)
$$

Example. What is the sum of the first 63 terms of the sequence $-1,2,5,8, \ldots$?
The sequence above is arithmetic, because each term in the sequence is 3 plus the term before it, so $d=3$. The first term of the sequence is -1 , so $a_{1}=-1$. Our formula $a_{n}=a_{1}+(n-1) d$ tells us that $a_{63}=-1+(62) 3=185$. Therefore,

$$
\sum_{i=1}^{63} a_{i}=\frac{63}{2}(-1+185)=\frac{63}{2}(184)=5,796
$$

Example. The sum of the first 201 terms of the sequence 10, 17, 24, 31, \ldots equals $\frac{201}{2}(10+1410)=\frac{201}{2}(1420)=142,710$.

Geometric series

It usually doesn't make any sense at all to talk about adding infinitely many numbers. But if $a_{1}, a_{2}, a_{3}, \ldots$ is a geometric sequence where $a_{n+1}=r a_{n}$ and $-1<r<1$, then we can make sense of adding all of the terms of the sequence together. (We'll see why later in the semester.)

We will use the symbols

$$
\sum_{i=1}^{\infty} a_{i}
$$

to represent adding all of the numbers in the sequence $a_{1}, a_{2}, a_{3}, \ldots$, and we call this infinite "sum" a series.

For the moment, let $S=a_{1}+a_{2}+a_{3}+a_{4}+\cdots$. Then

$$
S=a_{1}+r a_{1}+r^{2} a_{1}+r^{3} a_{1}+\cdots
$$

and using the distributive law we have

$$
r S=\quad r a_{1}+r^{2} a_{1}+r^{3} a_{1}+\cdots
$$

Thus, $S-r S=a_{1}$. Since the distributive law tells us that $S-r S=S(1-r)$, we have $S(1-r)=a_{1}$, or in other words, $S=\frac{a_{1}}{1-r}$. We have shown that

$$
\sum_{i=1}^{\infty} a_{i}=\frac{a_{1}}{1-r}
$$

Examples.

- The sum of the terms in the sequence $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ equals 2 . We know the sequence is geometric, follows the rule $a_{n+1}=\frac{1}{2} a_{n}$, and that the first term in the sequence equals 1 . Thus

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots=\frac{1}{1-\frac{1}{2}}=\frac{1}{\frac{1}{2}}=2
$$

- The sum of the terms in the sequence $5, \frac{5}{3}, \frac{5}{9}, \frac{5}{27}, \ldots$ equals

$$
\frac{5}{1-\frac{1}{3}}=\frac{5}{\frac{2}{3}}=\frac{15}{2}
$$

Caution. If $a_{1}, a_{2}, a_{3}, \ldots$ isn't geometric, or if it is but either $r \geq 1$ or $r \leq-1$, then

$$
\sum_{i=1}^{\infty} a_{i}
$$

probably doesn't make sense.

Exercises

1.) If the sum of the first 3976 terms of the sequence $a_{1}, a_{2}, a_{3}, \ldots$ equals 114 , then what is the sum of the first 3976 terms of the sequence $\frac{3}{2} a_{1}, \frac{3}{2} a_{2}, \frac{3}{2} a_{3}, \ldots$?

Determine what each of the following eight series equals.
2.) $\sum_{i=1}^{50} 3$
3.) $\sum_{i=1}^{100} 49$
4.) $\sum_{i=1}^{78}(-2)$
5.) $\sum_{i=1}^{40} i$
6.) $\sum_{i=1}^{100} i$
7.) $\sum_{i=1}^{900} i$
8.) $\sum_{i=1}^{5}(2 i-1)$
9.) $\sum_{i=1}^{4}\left(i^{2}-2\right)$
10.) What is the sum of the first 701 terms of the sequence $-5,-1,3,7, \ldots$?
11.) What is the sum of the first 53 terms of the sequence $140,137,134,131, \ldots$?
12.) What is the sum of the first 100 terms of the sequence $4,9,14,19, \ldots$?
13.) What is the sum of the first 80 terms of the sequence $53,54,55,56, \ldots$?
14.) Sum all of the terms of the geometric sequence $20,5, \frac{5}{4}, \frac{5}{16}, \ldots$.
15.) Sum all of the terms of the geometric sequence $120,90, \frac{135}{2}, \frac{405}{8}, \ldots$.
16.) Sum all of the terms of the geometric sequence $7, \frac{14}{3}, \frac{28}{9}, \frac{56}{27}, \ldots$.
17.) Sum all of the terms of the geometric sequence $25,15,9, \frac{27}{5}, \ldots$.
18.) Sum all of the terms of the geometric sequence $1,-\frac{1}{2}, \frac{1}{4},-\frac{1}{8}, \ldots$
19.) Suppose that you expect to pay $\$ 400$ for gas for your car next year, and that each year after that you plan your yearly gas expenditures will increase by $\$ 20$. How much will you spend on gas in the next 8 years?
20.) Suppose you are entertaining two different job offers. Job A has a starting salary of $\$ 20,000$ and assures you of a raise of $\$ 1,000$ per year. Job B offers you a starting salary of $\$ 23,000$, with a yearly raise of $\$ 725$. Which job will pay you more over the first ten years? How much more?
21.) An oil well currently produces 5 million gallons of oil per year, but the well is drying up, and each year it will produce 60% of what it did the year before. How much oil can be produced from the well before it is completely dry?

