Vectors & Scalars

Vectors

 \mathbb{R}^2 is the set of all pairs of real numbers. In the context of drawing graphs, the objects in \mathbb{R}^2 are called points, and pairs are written left-to-right, so that (3,2) is the point in \mathbb{R}^2 whose x-coordinate equals 3 and whose y-coordinate equals 2.

In the context of linear algebra, the objects in \mathbb{R}^2 are called *vectors*, and instead of being written left-to-right, they are usually written top-to-bottom. Written in this way, the vector in \mathbb{R}^2 whose x-coordinate is 3 and whose y-coordinate is 2 is

 $\binom{3}{2}$

 \mathbb{R}^3 is the set of all "triples" of real numbers. An object in \mathbb{R}^3 – also called a vector – has an x-coordinate, a y-coordinate, and a z-coordinate. When writing vectors in \mathbb{R}^3 , the x-coordinate is on top, the y-coordinate is directly below, and the z-coordinate is on the bottom. Thus

$$\begin{pmatrix} 5 \\ 0 \\ -1 \end{pmatrix}$$

is the vector in \mathbb{R}^3 where x = 5, y = 0, and z = -1.

Vector addition

To add two vectors in \mathbb{R}^2 – or two vectors in \mathbb{R}^3 – add each of their coordinates.

Examples.

$$\begin{pmatrix} -5\\1 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix} = \begin{pmatrix} -5+4\\1+2 \end{pmatrix} = \begin{pmatrix} -1\\3 \end{pmatrix}$$

and

$$\begin{pmatrix} 4 \\ 2 \\ 6 \end{pmatrix} + \begin{pmatrix} 3 \\ -8 \\ 0 \end{pmatrix} = \begin{pmatrix} 4+3 \\ 2-8 \\ 6+0 \end{pmatrix} = \begin{pmatrix} 7 \\ -6 \\ 6 \end{pmatrix}$$

Scalar multiplication

In linear algebra, real numbers are often called *scalars*. You cannot multiply two vectors, but you can multiply a scalar and a vector. To do so, multiply every coordinate in the vector by the scalar.

Examples.

$$2\begin{pmatrix} 7\\ -3 \end{pmatrix} = \begin{pmatrix} 2(7)\\ 2(-3) \end{pmatrix} = \begin{pmatrix} 14\\ -6 \end{pmatrix}$$

and

$$5\begin{pmatrix} -1\\0\\4 \end{pmatrix} = \begin{pmatrix} 5(-1)\\5(0)\\5(4) \end{pmatrix} = \begin{pmatrix} -5\\0\\20 \end{pmatrix}$$

* * * * * * * * * * * *

Exercises

$$\begin{pmatrix} -5\\1 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 2 \\ 6 \end{pmatrix} + \begin{pmatrix} 3 \\ -8 \\ 0 \end{pmatrix}$$

$$2\begin{pmatrix}7\\-3\end{pmatrix}$$

$$5\begin{pmatrix} -1\\0\\4 \end{pmatrix}$$