Logarithms

If $a>1$ or $0<a<1$, then the exponential function $f: \mathbb{R} \rightarrow(0, \infty)$ defined as $f(x)=a^{x}$ is one-to-one and onto. That means it has an inverse function. If either $a>1$ or $0<a<1$, then the inverse of the function a^{x} is

$$
\log _{a}:(0, \infty) \rightarrow \mathbb{R}
$$

and it's called a logarithm of base a.
That a^{x} and $\log _{a}(x)$ are inverse functions means that

$$
a^{\log _{a}(x)}=x
$$

and

$$
\log _{a}\left(a^{x}\right)=x
$$

Problem. Find x if $2^{x}=15$.
Solution. The inverse of an exponential function with base 2 is $\log _{2}$. That means that we can erase the exponential base 2 from the left side of $2^{x}=15$ as long as we apply $\log _{2}$ to the right side of the equation. That would leave us with $x=\log _{2}(15)$.

The final answer is $x=\log _{2}(15)$. You stop there. $\log _{2}(15)$ is a number. It is a perfectly good number, just like $5,-7$, or $\sqrt[2]{15}$ are. With some more experience, you will become comfortable with the fact that $\log _{2}(15)$ cannot be simplified anymore than it already is, just like $\sqrt[2]{15}$ cannot be simplified anymore than it already is. But they are both perfectly good numbers.

Problem. Solve for x where $\log _{4}(x)=3$.
Solution. We can erase $\log _{4}$ from the left side of the equation by applying its inverse, exponential base 4, to the right side of the equation. That would give us $x=4^{3}$. Now 4^{3} can be simplified; it's 64 . So the final answer is $x=64$.

Problem. Write $\log _{3}(81)$ as an integer in standard form.
Solution. The trick to solving a problem like this is to rewrite the number being put into the logarithm - in this problem, 81 - as an exponential whose base is the same as the base of the logarithm - in this problem, the base is 3 .

Being able to write 81 as an exponential in base 3 will either come from your comfort with exponentials, or from guess-and-check methods. Whether it's immediately obvious to you or not, you can check that $81=3^{4}$. (Notice that 3^{4} is an exponential of base 3.) Therefore, $\log _{3}(81)=\log _{3}\left(3^{4}\right)$.

Now we use that exponential base 3 and logarithm base 3 are inverse functions to see that $\log _{3}\left(3^{4}\right)=4$.

To summarize this process in one line,

$$
\log _{3}(81)=\log _{3}\left(3^{4}\right)=4
$$

Problem. Write $\log _{4}(16)$ as an integer in standard form.
Solution. This is a logarithm of base 4 , so we write 16 as an exponential of base 4: $16=4^{2}$. Then,

$$
\log _{4}(16)=\log _{4}\left(4^{2}\right)=2
$$

Graphing logarithms

Recall that if you know the graph of a function, you can find the graph of its inverse function by flipping the graph over the line $x=y$.

Below is the graph of a logarithm of base $a>1$. Notice that the graph grows taller, but very slowly, as it moves to the right.

Below is the graph of a logarithm when the base is between 0 and 1 .

Two base examples

If $a^{x}=y$, then $x=\log _{a}(y)$. Below are some examples in base 10 .

10^{x}	$\log _{10}(x)$
$10^{-3}=\frac{1}{1,000}$	$-3=\log _{10}\left(\frac{1}{1,000}\right)$
$10^{-2}=\frac{1}{100}$	$-2=\log _{10}\left(\frac{1}{100}\right)$
$10^{-1}=\frac{1}{10}$	$-1=\log _{10}\left(\frac{1}{10}\right)$
$10^{0}=1$	$0=\log _{10}(1)$
$10^{1}=10$	$1=\log _{10}(10)$
$10^{2}=100$	$2=\log _{10}(100)$
$10^{3}=1,000$	$3=\log _{10}(1,000)$
$10^{4}=10,000$	$4=\log _{10}(10,000)$
$10^{5}=100,000$	$5=\log _{10}(100,000)$

Below are the graphs of the functions 10^{x} and $\log _{10}(x)$. The graphs are another way to display the information from the previous chart.

This chart contains examples of exponentials and logarithms in base 2.

2^{x}	$\log _{2}(x)$
$2^{-4}=\frac{1}{16}$	$-4=\log _{2}\left(\frac{1}{16}\right)$
$2^{-3}=\frac{1}{8}$	$-3=\log _{2}\left(\frac{1}{8}\right)$
$2^{-2}=\frac{1}{4}$	$-2=\log _{2}\left(\frac{1}{4}\right)$
$2^{-1}=\frac{1}{2}$	$-1=\log _{2}\left(\frac{1}{2}\right)$
$2^{0}=1$	$0=\log _{2}(1)$
$2^{1}=2$	$1=\log _{2}(2)$
$2^{2}=4$	$2=\log _{2}(4)$
$2^{3}=8$	$3=\log _{2}(8)$
$2^{4}=16$	$4=\log _{2}(16)$
$2^{5}=32$	$5=\log _{2}(32)$
$2^{6}=64$	$6=\log _{2}(64)$

The information from the previous page is used to draw the graphs of 2^{x} and $\log _{2}(x)$.

Rules for logarithms

The most important rule for exponential functions is $a^{x} a^{y}=a^{x+y}$. Because $\log _{a}(x)$ is the inverse of a^{x}, it satisfies the "opposite" of this rule:

$$
\log _{a}(z)+\log _{a}(w)=\log _{a}(z w)
$$

Here's why the above equation is true:

$$
\begin{aligned}
\log _{a}(z)+\log _{a}(w) & =\log _{a}\left(a^{\log _{a}(z)+\log _{a}(w)}\right) \\
& =\log _{a}\left(a^{\log _{a}(z)} a^{\log _{a}(w)}\right) \\
& =\log _{a}(z w)
\end{aligned}
$$

The next two rules are different versions of the rule above:

$$
\log _{a}(z)-\log _{a}(w)=\log _{a}\left(\frac{z}{w}\right)
$$

\qquad

$$
\log _{a}\left(z^{w}\right)=w \log _{a}(z)
$$

Because $a^{0}=1$, it's also true that

$$
\log _{a}(1)=0
$$

Change of base formula

Let's say that you wanted to know a decimal number that is close to $\log _{3}(7)$, and you have a calculator that can only compute logarithms in base 10. Your calculator can still help you with $\log _{3}(7)$ because the change of base formula tells us how to use logarithms in one base to compute logarithms in another base.

The change of base formula is:

$$
\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)}
$$

In our example, you could use your calculator to find that 0.845 is a decimal number that is close to $\log _{10}(7)$, and that 0.477 is a decimal number that is close to $\log _{10}(3)$. Then according to the change of base formula

$$
\log _{3}(7)=\frac{\log _{10}(7)}{\log _{10}(3)}
$$

is close to the decimal number

$$
\frac{0.845}{0.477}
$$

which itself is close to 1.771 .
We can see why the change of base formula is true. First notice that

$$
\log _{a}(x) \log _{b}(a)=\log _{b}\left(a^{\log _{a}(x)}\right)=\log _{b}(x)
$$

The first equal sign above uses the third rule from the section on rules for logarithms. The second equal sign uses that a^{x} and $\log _{a}(x)$ are inverse functions.

Now divide the equation above by $\log _{b}(a)$, and we're left with the change of base formula.

Base confusion

To a mathematician, $\log (x)$ means $\log _{e}(x)$. Most calculators use $\log (x)$ to mean $\log _{10}(x)$. Sometimes in computer science, $\log (x)$ means $\log _{2}(x)$. A lot of people use $\ln (x)$ to mean $\log _{e}(x) .(\ln (x)$ is called the "natural logarithm".)
In this class, we'll never write the expression $\log (x)$ or $\ln (x)$. We'll always be explicit with our bases and write logarithms of base 10 as $\log _{10}(x)$, logarithms of base 2 as $\log _{2}(x)$, and logarithms of base e as $\log _{e}(x)$. To be safe, when
doing math in the future, always ask what base a logarithm is if it's not clear to you.

* $* \quad * \quad *$

Exercises

For \#1-8, match each of the numbered functions on the left with the lettered function on the right that is its inverse.
1.) $x+7$
A.) x^{7}
2.) $3 x$
B.) $\frac{x}{3}$
3.) $\sqrt[7]{x}$
C.) 3^{x}
4.) 7^{x}
D.) $\sqrt[3]{x}$
5.) $\frac{x}{7}$
E.) $x-7$
6.) $\log _{3}(x)$
F.) $x+3$
7.) $x-3$
G.) $7 x$
8.) x^{3}
H.) $\log _{7}(x)$

Graph the functions in \#9-12.
9.) $\log _{10}(x-3)$
10.) $\log _{2}(x+5)$
11.) $\log _{\frac{1}{3}}(x)+4$
12.) $-3 \log _{e}(x)$

For \#13-21, write the given number as a rational number in standard form, for example, $2,-3, \frac{3}{4}$, and $\frac{-1}{5}$ are rational numbers in standard form. These are the exact same questions, in the same order, as those from \#16-24 in the chapter on Exponential Functions. They're just written in the language of logarithms instead.
13.) $\log _{4}(16)$
14.) $\log _{2}(8)$
15.) $\log _{10}(10,000)$
16.) $\log _{3}(9)$
17.) $\log _{5}(125)$
18.) $\log _{\frac{1}{2}}(16)$
19.) $\log _{\frac{1}{4}}(64)$
20.) $\log _{8}\left(\frac{1}{4}\right)$
21.) $\log _{27}\left(\frac{1}{9}\right)$

For \#22-29, decide which is the greatest integer that is less than the given number. For example, if you're given the number $\log _{2}(9)$ then the answer would be 3 . You can see that this is the answer by marking 9 on the x-axis of the graph of $\log _{2}(x)$ that's drawn earlier in this chapter. You can use the graph and the point you marked to see that $\log _{2}(9)$ is between 3 and 4 , so 3 is the greatest of all of the integers that are less than (or below) $\log _{2}(9)$.
22.) $\log _{10}(15)$
23.) $\log _{10}(950)$
24.) $\log _{2}(50)$
25.) $\log _{2}(3)$
26.) $\log _{3}(18)$
27.) $\log _{10}\left(\frac{1}{19}\right)$
28.) $\log _{2}\left(\frac{1}{10}\right)$
29.) $\log _{3}\left(\frac{1}{10}\right)$

In the remaining exercises, use that $\log _{a}(x)$ and a^{x} are inverse functions to solve for x.
30.) $\log _{4}(x)=-2$
31.) $\log _{6}(x)=2$
32.) $\log _{3}(x)=-3$
33.) $\log _{\frac{1}{10}}(x)=-5$
34.) $e^{x}=17$
35.) $e^{x}=53$
36.) $\log _{e}(x)=5$
37.) $\log _{e}(x)=-\frac{1}{3}$

