Constant \& Linear Polynomials

Constant polynomials

A constant polynomial is the same thing as a constant function. That is, a constant polynomial is a function of the form

$$
p(x)=c
$$

for some number c. For example, $p(x)=-\frac{5}{3}$ or $q(x)=-7$.
The output of a constant polynomial does not depend on the input (notice that there is no x on the right side of the equation $p(x)=c)$. Constant polynomials are also called degree 0 polynomials.

The graph of a constant polynomial is a horizontal line. A constant polynomial does not have any roots unless it is the polynomial $p(x)=0$.

Linear polynomials

A linear polynomial is any polynomial defined by an equation of the form

$$
p(x)=a x+b
$$

where a and b are real numbers and $a \neq 0$. For example, $p(x)=3 x-7$ and $q(x)=\frac{-13}{4} x+\frac{5}{3}$ are linear polynomials. A linear polynomial is the same thing as a degree 1 polynomial.

Roots of linear polynomials

Every linear polynomial has exactly one root. Finding the root is just a matter of basic algebra.

Problem: Find the root of $p(x)=3 x-7$.
Solution: The root of $p(x)$ is the number α such that $p(\alpha)=0$. In this problem that means that $3 \alpha-7=0$. Hence $3 \alpha=7$, so $\alpha=\frac{7}{3}$. Thus, $\frac{7}{3}$ is the root of $3 x-7$.

Slope

The slope of a line is the ratio of the change in the second coordinate to the change in the first coordinate. In different words, if a line contains the two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, then the slope is the change in the y-coordinate - which equals $y_{2}-y_{1}$ - divided by the change in the x-coordinate - which equals $x_{2}-x_{1}$.

Slope of line containing $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$:

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Example: The slope of the line containing the two points $(-1,4)$ and $(2,5)$ equals

$$
\frac{5-4}{2-(-1)}=\frac{1}{3}
$$

Graphing linear polynomials

Let $p(x)=a x$ where a is a number that does not equal 0 . This polynomial is an example of a linear polynomial.

The graph of $p(x)=a x$ is a straight line that passes through $(0,0) \in \mathbb{R}^{2}$ and has slope equal to a. We can check this by graphing it. The point $(0, a 0)=(0,0)$ is in the graph, as are the points $(1, a),(2,2 a),(3,3 a), \ldots$ and $(-1,-a),(-2,-2 a),(-3,-3 a), \ldots$

Because the graph of $a x+b$ is the graph of $a x$ shifted up or down by b - depending on whether b is positive or negative - the graph of $a x+b$ is a straight line that passes through $(0, b) \in \mathbb{R}^{2}$ and has slope equal to a.

Problem: Graph $p(x)=-2 x+4$.
Solution: The graph of $-2 x+4$ is the graph of $-2 x$ "shifted up" by 4 . Draw $-2 x$, which is the line of slope -2 that passes through (0,0), and then shift it up to the line that passes through $(0,4)$ and is parallel to $-2 x$.

Another solution: To graph a linear polynomial, find two points in the graph, and then draw the straight line that passes through them.

Since $p(x)=-2 x+4$ has 2 as a root, it has an x-intercept at 2 . The y intercept is the point in the graph whose first coordinate equals 0 , and that's the point $(0, p(0))=(0,4)$. To graph $-2 x+4$, draw the line passing through the x - and y-intercepts.

Behind the name. Degree 1 polynomials are called linear polynomials because their graphs are straight lines.

Exercises

1.) Graph $p(x)=3$.
2.) Graph $q(x)=-\frac{3}{2}$.
3.) Find the root of $p(x)=-\frac{4}{3} x+\frac{6}{7}$.
4.) Find the root of $q(x)=\frac{2}{9} x-\frac{8}{5}$.
5.) Plot the x - and y-intercepts of $p(x)=4 x-3$, and then graph $p(x)$.
6.) Plot the x - and y-intercepts of $q(x)=-2 x-3$, and then graph $q(x)$.
7.) Claudia owns a coconut collecting company. She has to pay $\$ 200$ for a coconut collecting license to conduct her company, and she earns $\$ 3$ for every coconut she collects. If x is the number of coconuts she collects, and $p(x)$ is the number of dollars her company earns, then find an equation for $p(x)$.
8.) Spencer is payed $\$ 400$ to collect coconuts no matter how many coconuts he collects. Because he is collecting coconuts for a flat fee, the local government does not require Spencer to purchase a coconut collecting license. If $q(x)$ is the number of dollars he earns for collecting x coconuts, what is the equation that defines $q(x)$?
9.) If Claudia and Spencer collect the same number of coconuts, then how many coconuts would Claudia have to collect for her company to earn at least as much money as Spencer?

