
Constant & Linear Polynomials

Constant polynomials
A constant polynomial is the same thing as a constant function. That is, a

constant polynomial is a function of the form

p(x) = c

for some number c. For example, p(x) = −5
3 or q(x) = −7.

The output of a constant polynomial does not depend on the input (notice

that there is no x on the right side of the equation p(x) = c). Constant

polynomials are also called degree 0 polynomials.

The graph of a constant polynomial is a horizontal line. A constant poly-

nomial does not have any roots unless it is the polynomial p(x) = 0.

* * * * * * * * * * * * *

Linear polynomials
A linear polynomial is any polynomial defined by an equation of the form

p(x) = ax+ b

where a and b are real numbers and a �= 0. For example, p(x) = 3x− 7 and

q(x) = −13
4 x+ 5

3 are linear polynomials. A linear polynomial is the same thing

as a degree 1 polynomial.

Roots of linear polynomials
Every linear polynomial has exactly one root. Finding the root is just a

matter of basic algebra.

Problem: Find the root of p(x) = 3x− 7.

Solution: The root of p(x) is the number α such that p(α) = 0. In this

problem that means that 3α − 7 = 0. Hence 3α = 7, so α =
7
3 . Thus,

7
3 is

the root of 3x− 7.

* * * * * * * * * * * * *
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Slope
The slope of a line is the ratio of the change in the second coordinate to the

change in the first coordinate. In different words, if a line contains the two
points (x1, y1) and (x2, y2), then the slope is the change in the y-coordinate
– which equals y2 − y1 – divided by the change in the x-coordinate – which
equals x2 − x1.

Slope of line containing (x1, y1) and (x2, y2):

y2 − y1
x2 − x1

Example: The slope of the line containing the two points (−1, 4) and (2, 5)
equals

5− 4

2− (−1)
=

1

3
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Graphing linear polynomials
Let p(x) = ax where a is a number that does not equal 0. This polynomial

is an example of a linear polynomial.
The graph of p(x) = ax is a straight line that passes through (0, 0) ∈ R2

and has slope equal to a. We can check this by graphing it. The point
(0, a0) = (0, 0) is in the graph, as are the points (1, a), (2, 2a), (3, 3a),... and
(−1,−a), (−2,−2a), (−3,−3a),...

Because the graph of ax + b is the graph of ax shifted up or down by b
– depending on whether b is positive or negative – the graph of ax + b is a
straight line that passes through (0, b) ∈ R2 and has slope equal to a.

Problem: Graph p(x) = −2x+ 4.

Solution: The graph of −2x+4 is the graph of −2x “shifted up” by 4. Draw
−2x, which is the line of slope −2 that passes through (0, 0), and then shift
it up to the line that passes through (0, 4) and is parallel to −2x.
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.

Another solution: To graph a linear polynomial, find two points in the
graph, and then draw the straight line that passes through them.
Since p(x) = −2x + 4 has 2 as a root, it has an x-intercept at 2. The y-

intercept is the point in the graph whose first coordinate equals 0, and that’s
the point (0, p(0)) = (0, 4). To graph −2x+4, draw the line passing through
the x- and y-intercepts.

Behind the name. Degree 1 polynomials are called linear polynomials
because their graphs are straight lines.

* * * * * * * * * * * * *
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Exercises
1.) Graph p(x) = 3.

2.) Graph q(x) = −3
2 .

3.) Find the root of p(x) = −4
3x+ 6

7 .

4.) Find the root of q(x) = 2
9x− 8

5 .

5.) Plot the x- and y-intercepts of p(x) = 4x− 3, and then graph p(x).

6.) Plot the x- and y-intercepts of q(x) = −2x− 3, and then graph q(x).

7.) Claudia owns a coconut collecting company. She has to pay $200 for a
coconut collecting license to conduct her company, and she earns $3 for every
coconut she collects. If x is the number of coconuts she collects, and p(x) is
the number of dollars her company earns, then find an equation for p(x).

8.) Spencer is payed $400 to collect coconuts no matter how many coconuts
he collects. Because he is collecting coconuts for a flat fee, the local govern-
ment does not require Spencer to purchase a coconut collecting license. If
q(x) is the number of dollars he earns for collecting x coconuts, what is the
equation that defines q(x)?

9.) If Claudia and Spencer collect the same number of coconuts, then how
many coconuts would Claudia have to collect for her company to earn at least
as much money as Spencer?
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