Sets \& Numbers

Sets

A set is a collection of objects. For example, the set of days of the week is a set that contains 7 objects: Mon., Tue., Wed., Thur., Fri., Sat., and Sun..

Set notation. Writing $\{2,3,5\}$ is a shorthand for the set that contains the numbers 2,3 , and 5 , and no objects other than 2,3 , and 5 .

The order in which the objects of a set are written doesn't matter. For example, $\{5,2,3\}$ and $\{2,3,5\}$ are the same set. Alternatively, the previous sentence could be written as "For example, $\{5,2,3\}=\{2,3,5\}$."

If B is a set, and x is an object contained in B, we write $x \in B$. If x is not contained in B then we write $x \notin B$.

Examples.

- $5 \in\{2,3,5\}$
- $1 \notin\{2,3,5\}$

Subsets. One set is a subset of another set if every object in the first set is an object of the second set as well. The set of weekdays is a subset of the set of days of the week, since every weekday is a day of the week.

A more succinct way to express the concept of a subset is as follows:
The set B is a subset of the set C if every $b \in B$ is also contained in C.

Writing $B \subseteq C$ is a shorthand for writing " B is a subset of C ". Writing $B \nsubseteq C$ is a shorthand for writing " B is not a subset of C ".

Examples.

- $\{2,3\} \subseteq\{2,3,5\}$
- $\{2,3,5\} \nsubseteq\{3,5,7\}$

Set minus. If A and B are sets, we can create a new set named $A-B$ (spoken as " A minus B ") by starting with the set A and removing all of the objects from A that are also contained in the set B.

Examples.

- $\{1,7,8\}-\{7\}=\{1,8\}$
- $\{1,2,3,4,5,6,7,8,9,10\}-\{2,4,6,8,10\}=\{1,3,5,7,9\}$

$$
\begin{array}{ccccccccccccc}
* & * & * & * & * & * & * & * & * & * & * & * & *
\end{array}
$$

Numbers

Among the most common sets appearing in math are sets of numbers. There are many different kinds of numbers. Below is a list of those that are most important for this course.

Natural numbers. $\mathbb{N}=\{1,2,3,4, \ldots\}$
Integers. $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,3, \ldots\}$
Rational numbers. \mathbb{Q} is the set of fractions of integers. That is, the numbers contained in \mathbb{Q} are exactly those of the form $\frac{n}{m}$ where n and m are integers and $m \neq 0$.

For example, $\frac{1}{3} \in \mathbb{Q}$ and $\frac{-7}{12} \in \mathbb{Q}$.
Real numbers. \mathbb{R} is the set of numbers that can be used to measure a distance, or the negative of a number used to measure a distance. The set of real numbers can be drawn as a line called "the number line".
$\sqrt{2}$ and π are two of very many real numbers that are not rational numbers.
(Aside: the definition of \mathbb{R} above isn't very precise, and thus isn't a very good definition. The set of real numbers has a better definition, but it's outside the scope of this course. For this semester we'll make due with this intuitive notion of what a real number is.)

Numbers as subsets. $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$

Exercises

Decide whether the following statements are true or false.

1) $3 \in\{7,4,-10,17,3,9,67\}$
2) $4 \in\{14,44,43,24\}$
3) $\frac{1}{3} \in \mathbb{Z}$
4) $-5 \in \mathbb{N}$
5) $\frac{-271}{113} \in \mathbb{Q}$
6) $-37 \in \mathbb{Z}$
7) $5 \in \mathbb{R}-\{4,6\}$
8) $\{2,4,7\} \subseteq\{-3,2,5,4,7\}$
9) $\{2,3,5\} \subseteq\{2,5\}$
10) $\{2,5,9\} \subseteq\{2,4,9\}$
11) $\left\{-15, \frac{3}{4}, \pi\right\} \subseteq \mathbb{R}$
12) $\left\{-15, \frac{3}{4}, \pi\right\} \subseteq \mathbb{Q}$
13) $\{-2,3,0\} \subseteq \mathbb{N}$
14) $\{-2,3,0\} \subseteq \mathbb{Z}$
15) $\{\sqrt{2}, 271\} \subseteq \mathbb{R}$
16) $\{\sqrt{2}, 271\} \subseteq \mathbb{Q}$
