Math 1050-006 Midterm 2 Practice Test Solutions

1.) Suppose $g(x)=x^{2}$, what is $-4 g(3 x-7)+2$
$-4(3 x-7)^{2}+2=-4\left(9 x^{2}-42 x+49\right)+2=-36 x^{2}+168 x-194$
2.) Given that $g(x)=x$ use graph transformations to graph $f(x)=g(x-3)$ and $h(x)=g(x)+2$

The graph of $h(x)$ is the graph of $g(x)$ shifted up 2 .
The graph of $f(x)$ is the graph of $g(x)$ shifted to the right 3 .
3.) Given that $f(x)=x^{2}$, $f:[0, \infty) \rightarrow[0, \infty)$, both find and graph $f^{-1}(x)$.
$\mathrm{f}^{-1}(\mathrm{x})=\sqrt{x}$ The graph of $\mathrm{f}^{-1}(\mathrm{x})$ is the right half of the graph of x^{2} flipped over the line $\mathrm{y}=\mathrm{x}$.
4.) Does $f(x)=x^{2}$, where $f: \mathbb{R} \rightarrow(-\infty, \infty)$ have an inverse? Justify why or why not using the ideas of onto and one-to-one.
$f(x)=x^{2}$ does not pass the horizontal line test so $f(x)$ is not one-to-one.
Additionally the range of $f(x)$ is $[0, \infty)$ and the target is \mathbb{R} so as range $\neq \operatorname{target} f(x)$ is not onto.
As $f(x)$ is neither one-to-one nor onto it is not invertible.
5.) Find the inverse function for $\mathrm{h}(\mathrm{x})=\frac{2 \mathrm{x}}{(5-3 \mathrm{x})}$. Assume the implied domain $\left(x \neq \frac{5}{3}\right)$
$h^{-1}(x)=\frac{5 x}{3 x+2}$
6.) If $g(x)=3 \sqrt[4]{x+5}$, find the implied domain of $g(x)$.

The implied domain of $\mathrm{g}(\mathrm{x})$ is $[-5, \infty)$
7.) Solve for when $\mathrm{g}(\mathrm{x})=3 \sqrt[4]{x+5}>9$. i.e solve $3 \sqrt[4]{x+5}>9$ for x .
$\sqrt[4]{x+5}>3 \quad \Rightarrow \quad x+5>3^{4}=81 \quad \Rightarrow \quad x>76$
8.) $f(x)=(x-7)-\left(x^{2}+4 \mathrm{x}+3\right), \quad g(x)=\left(x^{2}+3 \mathrm{x}^{3}-7 \mathrm{x}\right) \quad$ solve for $h(x)$, if $h(x)=f(x) * g(x)$. what is the degree and leading order term of $h(x)$?
$h(x)=-3 \mathrm{x}^{5}-10 \mathrm{x}^{4}-26 \mathrm{x}^{3}+11 \mathrm{x}^{2}+70 \mathrm{x}$
degree of $h(x)=5$, leading order term $=-3 x^{5}$
9.) Find the leading order term of $5(x-3)(x-5)(x-6)\left(x^{2}+1\right)\left(2 x+x^{2}-7\right)$

Leading order term is $5(x)(x)(x)\left(x^{2}\right)\left(x^{2}\right)=5 x^{7}$
10.) Solve $\frac{10 x^{4}-4 x^{3}+5 x-4}{x^{2}-3 x}$ properly express your solution with a remainder if you find one.
$10 x^{2}+26 x+78+\frac{239 x-4}{x^{2}-3 x}$
11.) Given that the number 1 is a root of the polynomial $p(x)=4 x^{4}-3 x^{3}+2 x-3$ rewrite $\mathrm{p}(\mathrm{x})$ as the product of a linear and a cubic polynomial
$(x-1)\left(4 \mathrm{x}^{3}+x^{2}+x+3\right)$
12.) Give an upper and lower bound on the number of roots that the polynomial $\mathrm{p}(\mathrm{x})=x^{4}-5 \mathrm{x}^{5}+3 \mathrm{x}^{3}-\pi$ has and justify your answer

The lower bound is $1, \mathrm{p}(\mathrm{x})$ is degree 5 , which is odd, and odd degree polynomials have at least 1 root The upper bound is 5 as polynomials have at most the degree number of roots
13.) How many roots can a constant polynomial have? What about a linear polynomial?

A constant polynomial can have either 0 roots, or infinitely many roots.
A linear polynomial has exactly 1 root
14.) Find the slope, x-intercept, and y-intercept of the linear polynomial $p(x)=3 x-4$

Slope $=3, x$-intercept $=\frac{4}{3}, y$-intercept $=-4$
15.) Graph the linear polynomial $p(x)=-4 x+3$

The graph of $p(x)$ is the line connecting the points $(0,3)$ and $\left(\frac{3}{4}, 0\right)$
16.) Rewrite the quadratic polynomial $p(x)=2 x^{2}-3 x-4$ in its completed square form using the completing the square formula: $\mathrm{p}(\mathrm{x})=a\left(x+\frac{b}{2 \mathrm{a}}\right)^{2}+c-\frac{b^{2}}{4 \mathrm{a}}$.
$2\left(x-\frac{3}{4}\right)^{2}-\frac{41}{8}$
17.) Using your result from problem 16 , graph $\mathrm{p}(\mathrm{x})$.

The graph of $\mathrm{p}(\mathrm{x})$ looks like the graph of $2 \mathrm{x}^{2}$ shifted to the right by $\frac{3}{4}$ and down by $\frac{41}{8}$.
18.) How many roots do we expect the quadratic polynomial $\mathrm{p}(\mathrm{x})=-\frac{1}{2} x^{2}+3 \mathrm{x}-4$

Solve for these roots using the quadratic formula (if there are any).
Discriminant $=b^{2}-4 \mathrm{ac}=9-8=1>0$ therefore we expect 2 roots.
The roots are 2, 4
19.) Completely factor $p(x)=2 x^{3}-3 x^{2}+4 x-3$ How many roots does this polynomial have?
$2(x-1)\left(x^{2}-\frac{1}{2} x+\frac{3}{2}\right)$ this polynomial has 2 roots
20.) Find the roots of $\mathrm{p}(\mathrm{x})=-x^{3}+6 \mathrm{x}^{2}+7 \mathrm{x}$ and then use this information to graph the shape of the function.
$p(x)=-x(x-7)(x+1)$ has roots $0,-1,7$
the graph of this function is positive to the left of -1 , negative between -1 and 0 , positive between 0 and 7 , and negative to the right of 7

