Math 1050-006 Homework 1 Solutions

Kyle Gaffney
January 23, 2013

1 Book Problems

1.1 Sets and Numbers

1. True
2. False, $4 \notin\{14,44,43,24\}$
3. False, $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}, \frac{1}{3} \notin \mathbb{Z}$
4. False, $\mathbb{N}=\{1,2,3,4, \ldots\},-5 \notin \mathbb{N}$
5. True
6. True
7. False, $-2 \notin \mathbb{N}$, therefore $\{-2,3,0\} \nsubseteq \mathbb{N}$
8. True
9. True
10. False, $\sqrt{2} \notin \mathbb{Q}$, therefore $\{\sqrt{2}, 271\} \nsubseteq \mathbb{Q}$

1.2 Rules for Numbers

1. True
2. False, $3(x+y)=3 x+3 y \neq 3 x+y$
3. False, $2 \in[2,5]$, but $2 \notin(2,5]$
4. True
5. True
6. False, $-17 \in[-17, \infty)$, but $-17 \notin(-17, \infty)$, therefore $[-17, \infty) \nsubseteq(-17, \infty)$.
7. False, $10 \nsubseteq(2,8)$, therefore $\{3,10,7\} \nsubseteq(2,8)$
8. True

1.3 Functions

1. $f(5)=\frac{1}{5^{2}}=\frac{1}{25}$
2. $f(10)=\frac{1}{10^{2}}=\frac{1}{100}$
3. $g(1)=\frac{2(1)^{2}-(1)+1}{(1)^{2}+1}=\frac{2-1+1}{1+1}=1$
4. $g(-3)=\frac{2(-3)^{2}-(-3)+1}{(-3)^{2}+1}=\frac{18+3+1}{9+1}=\frac{22}{10}=2.2$
5. $h(0)=14$ (constant function $\mathrm{h}(\mathrm{x})=14$)
6. $h\left(\frac{\pi^{2}}{6}\right)=14($ constant fucntion $\mathrm{h}(\mathrm{x})=14)$
7. $i d(15)=15$ (identity function)
8. $i d(-4)=-4$ (identity function)

1.4 Sequences

1. Neither, difference between 2 and 7 is 5 , but the difference between 7 and 14 is 7 , therefore not an arithmetic sequence. Also we need to multiply 2 by $\frac{7}{2}$ to get 7 , but we need to multiply 7 by 2 to get 14 , so not a geometric sequence.
2. Arithmetic, add 4 to each term to get the next term.
3. Geometric, multiply each term by -1 to get the next term
4. $a_{1}=-1, d=5$
5. $a_{1}=2, d=-12$
6. $a_{1}=-5, r=5$
7. $a_{1}=4, r=-2$
8. $5,7,9,11, \ldots$ is an arithmetic sequence with $a_{1}=5, d=2$, using the prediction equation for arithmetic sequences $\left(a_{n}=a_{1}+(n-1) d\right)$ we get that
$a_{4223}=a_{1}+(4223-1)(d)=5+(4222)(2)=5+8444=8449$
9. $4,1,-2,-5, \ldots$ is an arithmetic sequence with $a_{1}=4, d=-3$ Therefore $a_{5224}=a_{1}+(5224-1) d=4+(5223)(-3)=4-15669=-15665$
10. $54,18,6,2, \ldots$ is a geometric sequence with $a_{1}=54, r=\frac{1}{3}$, using the prediction equation for geometric sequences ($a_{n}=r^{(n-1)} a_{1}$) we get that
$a_{7}=r^{7-1} a_{1}=\left(\frac{1}{3}\right)^{6}(54)=\frac{54}{3^{6}}=\frac{2 * 3^{3}}{3^{6}}=\frac{2}{3^{3}}=\frac{2}{27}$
11. $-11,22,-44,88, \ldots$ is a geometric sequence with $a_{1}=-11, r=-2$. Therefore $a_{6}=(r)^{(6-1)} a_{1}=(-2)^{5}(-11)=(-32)(-11)=352$
12. $c_{n}=(3-n)(n+2)$, therefore if we let $\mathrm{n}=8$ we get, $c_{8}=(3-8)(8+2)=(-5)(10)=-50$

1.5 Sums and Series

2. $3+3+3+\ldots+3+3(50$ times $)=3(50)=150$
3. $(-2)+(-2)+(-2)+(-2)+\ldots .+(-2)+(-2)(78$ times $)=(-2)(78)=-156$
4. $1+2+3+4+5+\ldots+38+39+40$ is the finite sum of the first 40 terms of an arithmetic sequence which has equation $\frac{n}{2}\left(a_{1}+a_{n}\right)$. Here
$a_{1}=1, n=40, a_{n}=40$. Therefore
$\frac{n}{2}\left(a_{1}+a_{n}\right)=\frac{40}{2}(1+40)=(20)(41)=820$
5. $(2(1)-1)+(2(2)-1)+(2(3)-1)+(2(4)-1)+(2(5)-1)=1+3+5+7+9=25$
6. Sum of the first 80 terms of the sequence $53,54,55,56,57, \ldots$. . First note that this sequence is an arithmetic sequence with $a_{1}=53, d=1$. We can therefore use the arithmetic sequence sum equation $\left(\frac{n}{2}\left(a_{1}+a_{n}\right)\right)$. However first we need to solve for a_{n} which we can do using the arithmetic sequence prediction equation $\left(a_{n}=a_{1}+(n-1) d\right)$. As $\mathrm{n}=80$, we have $a_{80}=a_{1}+(80-1) d=53+(79) 1=132$ Therefore $\frac{n}{2}\left(a_{1}+a_{n}\right)=\frac{80}{2}(53+132)=(40)(185)=7400$
7. Sum all of the terms in the geometric sequence $7, \frac{14}{3}, \frac{28}{9}, \frac{56}{27}, \ldots$. This is a geometric sequence with $a_{1}=7, r=\frac{2}{3}$, Therefore we can use the sum of a geometric sequence formula, $\left(\frac{a_{1}}{(1-r)}\right)$ Which for this sequence we get: $\frac{7}{1-\frac{2}{3}}=\frac{7}{\frac{1}{3}}=(7)(3)=21$
8. Sum all of the terms in the geometric sequence $25,15,9, \frac{27}{5}, \ldots$. This is a geometric sequence with $a_{1}=25, r=\frac{3}{5}$.
Therefore $\frac{a_{1}}{(1-r)}=\frac{25}{1-\frac{3}{5}}=\frac{25}{\frac{2}{5}}=(25)\left(\frac{5}{2}\right)=\frac{125}{2}$

2 Other Problems

1. The difference between an infinite set and a sequence is that order matters in a sequence, but not in an infinite set.
2. $\mathrm{g}(\mathrm{x})=\mathrm{x}$ is not an identity function. To be an identity function the Domain and the Target need to be the same, but for $\mathrm{g}(\mathrm{x})$, the Domain $=\mathbb{N}$ and the Target $=\mathbb{R}$. As $\mathbb{N} \neq \mathbb{R}$ we have that $g(x)$ is not an identity function.
3. A sequence can be both an arithmetic and a geometric sequence, for example consider the sequence $1,1,1,1,1,1, \ldots$ which is an arithmetic sequence with $a_{1}=1, d=0$ and a geometric sequence with $a_{1}=1, r=1$
4. The fibonacci sequence $1,1,2,3,5,8,13,21, \ldots$ is neither an arithmetic sequence nor a geometric sequence. Notice that the difference subsequent terms in the sequence is $0,1,1,2,3,5,8, \ldots$ is not constant, therefore not arithmetic. Furthermore we would have to multiply 1 by 2 to get 2 , but multiply 2 by $\frac{3}{2}$ to get, so r is not constant and therefore the fibonacci sequence is also not geometric.
