Vectors & Scalars

Vectors

 \mathbb{R}^2 is the set of all pairs of real numbers. In the context of drawing graphs, the objects in \mathbb{R}^2 are called points, and pairs are written left-to-right, so that (3, 2) is the point in \mathbb{R}^2 whose x-coordinate equals 3 and whose y-coordinate equals 2.

In the context of linear algebra, the objects in \mathbb{R}^2 are called *vectors*, and instead of being written left-to-right, they are usually written top-to-bottom. Written in this way, the vector in \mathbb{R}^2 whose *x*-coordinate is 3 and whose *y*-coordinate is 2 is

 $\begin{pmatrix} 3\\2 \end{pmatrix}$

 \mathbb{R}^3 is the set of all "triples" of real numbers. An object in \mathbb{R}^3 – also called a vector – has an *x*-coordinate, a *y*-coordinate, and a *z*-coordinate. When writing vectors in \mathbb{R}^3 , the *x*-coordinate is on top, the *y*-coordinate is directly below, and the *z*-coordinate is on the bottom. Thus

$$\begin{pmatrix} 5\\0\\-1 \end{pmatrix}$$

is the vector in \mathbb{R}^3 where x = 5, y = 0, and z = -1.

Vector addition

To add two vectors in \mathbb{R}^2 – or two vectors in \mathbb{R}^3 – add each of their coordinates.

Examples.

$$\begin{pmatrix} -5\\1 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix} = \begin{pmatrix} -5+4\\1+2 \end{pmatrix} = \begin{pmatrix} -1\\3 \end{pmatrix}$$

and

$$\begin{pmatrix} 4\\2\\6 \end{pmatrix} + \begin{pmatrix} 3\\-8\\0 \end{pmatrix} = \begin{pmatrix} 4+3\\2-8\\6+0 \end{pmatrix} = \begin{pmatrix} 7\\-6\\6 \end{pmatrix}$$

Scalar multiplication

In linear algebra, real numbers are often called *scalars*. You cannot multiply two vectors, but you can multiply a scalar and a vector. To do so, multiply every coordinate in the vector by the scalar.

Examples.

$$2\begin{pmatrix}7\\-3\end{pmatrix} = \begin{pmatrix}2(7)\\2(-3)\end{pmatrix} = \begin{pmatrix}14\\-6\end{pmatrix}$$

and

Exercises

For #1-8, perform the vector arithmetic indicated.

1.)
$$\begin{pmatrix} -5 \\ 1 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
 2.) $\begin{pmatrix} 4 \\ 2 \\ 6 \end{pmatrix} + \begin{pmatrix} 3 \\ -8 \\ 0 \end{pmatrix}$ 3.) $\begin{pmatrix} 2 \\ 8 \end{pmatrix} + \begin{pmatrix} -3 \\ 1 \end{pmatrix}$
4.) $\begin{pmatrix} 3 \\ 5 \\ -3 \end{pmatrix} + \begin{pmatrix} -2 \\ -1 \\ 3 \end{pmatrix}$ 5.) $2 \begin{pmatrix} 7 \\ -3 \end{pmatrix}$ 6.) $5 \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$

$$7.) - 1\begin{pmatrix} 2\\4 \end{pmatrix} \qquad 8.) \quad 3\begin{pmatrix} 2\\3\\-1 \end{pmatrix}$$

Completely factor the cubic polynomials below.

9.)
$$-3x^3 + 9x^2 - 12$$

10.) $2x^3 - 4x^2 - 4x - 6$