Vectors \& Scalars

Vectors

\mathbb{R}^{2} is the set of all pairs of real numbers. In the context of drawing graphs, the objects in \mathbb{R}^{2} are called points, and pairs are written left-to-right, so that $(3,2)$ is the point in \mathbb{R}^{2} whose x-coordinate equals 3 and whose y-coordinate equals 2 .

In the context of linear algebra, the objects in \mathbb{R}^{2} are called vectors, and instead of being written left-to-right, they are usually written top-to-bottom. Written in this way, the vector in \mathbb{R}^{2} whose x-coordinate is 3 and whose y-coordinate is 2 is

$$
\binom{3}{2}
$$

\mathbb{R}^{3} is the set of all "triples" of real numbers. An object in \mathbb{R}^{3} - also called a vector - has an x-coordinate, a y-coordinate, and a z-coordinate. When writing vectors in \mathbb{R}^{3}, the x-coordinate is on top, the y-coordinate is directly below, and the z-coordinate is on the bottom. Thus

$$
\left(\begin{array}{r}
5 \\
0 \\
-1
\end{array}\right)
$$

is the vector in \mathbb{R}^{3} where $x=5, y=0$, and $z=-1$.

Vector addition

To add two vectors in \mathbb{R}^{2} - or two vectors in \mathbb{R}^{3} - add each of their coordinates.

Examples.

$$
\binom{-5}{1}+\binom{4}{2}=\binom{-5+4}{1+2}=\binom{-1}{3}
$$

and

$$
\left(\begin{array}{l}
4 \\
2 \\
6
\end{array}\right)+\left(\begin{array}{r}
3 \\
-8 \\
0
\end{array}\right)=\underset{267}{\left(\begin{array}{l}
4+3 \\
2-8 \\
6+0
\end{array}\right)}=\left(\begin{array}{r}
7 \\
-6 \\
6
\end{array}\right)
$$

Scalar multiplication

In linear algebra, real numbers are often called scalars. You cannot multiply two vectors, but you can multiply a scalar and a vector. To do so, multiply every coordinate in the vector by the scalar.

Examples.

$$
2\binom{7}{-3}=\binom{2(7)}{2(-3)}=\binom{14}{-6}
$$

and

$$
\begin{aligned}
& 5\left(\begin{array}{r}
-1 \\
0 \\
4
\end{array}\right)=\left(\begin{array}{c}
5(-1) \\
5(0) \\
5(4)
\end{array}\right)=\left(\begin{array}{c}
-5 \\
0 \\
20
\end{array}\right) \\
& * * * * * * * * * *
\end{aligned}
$$

Exercises

For \#1-8, perform the vector arithmetic indicated.
1.) $\binom{-5}{1}+\binom{4}{2}$
2.) $\left(\begin{array}{l}4 \\ 2 \\ 6\end{array}\right)+\left(\begin{array}{r}3 \\ -8 \\ 0\end{array}\right)$
3.) $\binom{2}{8}+\binom{-3}{1}$
4.) $\left(\begin{array}{r}3 \\ 5 \\ -3\end{array}\right)+\left(\begin{array}{c}-2 \\ -1 \\ 3\end{array}\right)$
5.) $2\binom{7}{-3}$
6.) $5\left(\begin{array}{r}-1 \\ 0 \\ 4\end{array}\right)$
$\begin{array}{ll}\text { 7.) } & -1\binom{2}{4} \\ \text { 8.) } 3\left(\begin{array}{r}2 \\ 3 \\ -1\end{array}\right)\end{array}$

Completely factor the cubic polynomials below.
9.) $-3 x^{3}+9 x^{2}-12$
10.) $2 x^{3}-4 x^{2}-4 x-6$

