Substitution

In this chapter, we'll examine systems of two linear equations in two variables that have unique solutions. If a system has a unique solution, we can use a method called "substitution" to find the unique solution.

How to find the solution

Suppose you're given a system of two linear equations in two variables, and that the variables are named x and y. Name the equations "Equation- 1 " and "Equation-2" (the order doesn't matter).
Use algebra to transform Equation-1 into an equation that looks like

$$
x=\text { (something with } y \text { 's and numbers })
$$

Let's call this equation "New-equation-1".
Use New-equation-1 to substitute for x in Equation-2. You'll be left with a "New-equation-2" that only has y 's and numbers - there won't be any x 's.
Use New-equation-2 to solve for y. Once you have, substitute your solution for y into New-equation- 1 . That will tell you what x is.
(In the explanation above, the roles of x and y could have been switched.)
Problem 1. Find the solution of the system

$$
\begin{aligned}
x+4 y & =-2 \\
2 x+7 y & =-3
\end{aligned}
$$

Solution. Let's name $x+4 y=-2$ Equation-1, and solve for x. Then we'll get that

$$
x=-4 y-2
$$

This is New-equation-1.
Equation- 2 is $2 x+7 y=-3$. Using New-equation- 1 , we can replace x in Equation-2 with $-4 y-2$ to get

$$
2[-4 y-2]+7 y=-3
$$

This is New-equation-2, and we can use it to solve for y :

$$
-8 y-4+7 y=-3
$$

thus

$$
-y_{251}=1
$$

and hence

$$
y=-1
$$

Now that we know y, we return to New-equation-1, replace y with -1 , and we are left with

$$
x=-4(-1)-2=2
$$

Now we know that $x=2$ and $y=-1$ is the solution of the system of equations that we started with.

Problem 2. Find the solution of the system

$$
\begin{aligned}
-2 x+y & =-1 \\
5 x-2 y & =5
\end{aligned}
$$

Solution. Use the first equation to solve for x :

$$
x=\frac{y+1}{2}
$$

Substitute for x in the second equation:

$$
5\left[\frac{y+1}{2}\right]-2 y=5
$$

so

$$
\frac{5 y}{2}+\frac{5}{2}-2 y=5
$$

and then

$$
\frac{y}{2}+\frac{5}{2}=5
$$

Multiplying both sides of the equation by 2 gives

$$
y+5=10
$$

and therefore,

$$
y=5
$$

Now return to the equation

$$
x=\frac{y+1}{2}
$$

and substitute 5 for y to get

$$
x=\frac{5+1}{2}
$$

which means that

$$
x=3
$$

We have our solution of the system, it's $x=3$ and $y=5$.

Exercises

Each of the systems in \#1-4 has a unique solution. Find the solution.
1.)

$$
\begin{aligned}
8 x+4 y & =12 \\
x-7 y & =-21
\end{aligned}
$$

2.)

$$
\begin{aligned}
10 x-3 y & =52 \\
-3 x+y & =-16
\end{aligned}
$$

3.)

$$
\begin{aligned}
3 x & =5 \\
2 x-3 y & =12
\end{aligned}
$$

4.)

$$
\begin{aligned}
2 x+8 y & =-8 \\
-3 x+6 y & =12
\end{aligned}
$$

For \#5-7, solve the exponential equations for x.
5.) $e^{4 x-1}=7$
6.) $e^{x^{2}}=e^{x}$
7.) $e^{3 x-1}=4 e^{x}$

