Piecewise Defined Functions

Most of the functions that we've looked at this semester can be expressed as a single equation. For example, $f(x)=3 x^{2}-5 x+2$, or $g(x)=\sqrt{x-1}$, or $h(x)=e^{3 x}-1$.
Sometimes an equation can't be described by a single equation, and instead we have to describe it using a combination of equations. Such functions are called piecewise defined functions, and probably the easiest way to describe them is to look at a couple of examples.

First example. The function $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
g(x)= \begin{cases}x^{2}-1 & \text { if } x \in(-\infty, 0] \\ x-1 & \text { if } x \in[0,4] ; \\ 3 & \text { if } x \in[4, \infty)\end{cases}
$$

The function g is a piecewise defined function. It is defined using three functions that we're more comfortable with: $x^{2}-1, x-1$, and the constant function 3. Each of these three functions is paired with an interval that appears on the right side of the same line as the function: $(-\infty, 0]$, and $[0,4]$, and $[4, \infty)$ respectively.

If you want to find $g(x)$ for a specific number x, first locate which of the three intervals that particular number x is in. Once you've decided on the correct interval, use the function that interval is paired with to determine $g(x)$.

If you want to find $g(2)$, first check that $2 \in[0,4]$. Therefore, we should use the equation $g(x)=x-1$, because $x-1$ is the function that the interval $[0,4]$ is paired with. That means that $g(2)=2-1=1$.
To find $g(5)$, notice that $5 \in[4, \infty)$. That means we should be looking at the third interval used in the definition of $g(x)$, and the function paired with that interval is the constant function 3. Therefore, $g(5)=3$.

Let's look at one more number. Let's find $g(0)$. First we have to decide which of the three intervals used in the definition of $g(x)$ contains the number 0 . Notice that there's some ambiguity here because 0 is contained in both the interval $(-\infty, 0]$ and in the interval $[0,4]$. Whenever there's ambiguity, choose either of the intervals that are options. Either of the functions that these intervals are paired with will give you the same result. That is, $0^{2}-1=-1$ is the same number as $0-1=-1$, so $g(0)=-1$.

To graph $g(x)$, graph each of the pieces of g. That is, graph $g:(-\infty, 0] \rightarrow \mathbb{R}$ where $g(x)=x^{2}-1$, and graph $g:[0,4] \rightarrow \mathbb{R}$ where $g(x)=x-1$, and graph $g:[4, \infty) \rightarrow \mathbb{R}$ where $g(x)=3$. Together, these three pieces make up the graph of $g(x)$.

Graph of $g:(-\infty, 0] \rightarrow \mathbb{R}$ where $g(x)=x^{2}-1$.

Graph of $g:[0,4] \rightarrow \mathbb{R}$ where $g(x)=x-1$.

Graph of $g:[4, \infty) \rightarrow \mathbb{R}$ where $g(x)=3$.

To graph $g(x)$, draw the graphs of all three of its pieces.

Second example. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
f(x)= \begin{cases}(x-3)^{2}+2 & \text { if } x \neq 3 \\ 4 & \text { if } x=3\end{cases}
$$

This function is made up of two pieces. Either $x \neq 3$, in which case $f(x)=(x-3)^{2}+2$. Or $x=3$, and then $f(3)=4$.

Graph of the first piece of $f(x)$: the graph of x^{2} shifted right 3 and up 2 with the point of the graph whose x-coordinate equals 3 removed. (Remember that a little circle means that point is not a point of the graph.)

Graph of the second piece of $f(x)$: a single giant dot whose x-coordinate equals 3.

Graph of both pieces, and hence the entire graph, of $f(x)$.

Absolute value

The most important piecewise defined function in calculus is the absolute value function that is defined by

$$
|x|= \begin{cases}-x & \text { if } x \in(-\infty, 0] \\ x & \text { if } x \in[0, \infty)\end{cases}
$$

The domain of the absolute value function is \mathbb{R}. The range of the absolute value function is the set of non-negative numbers. The number $|x|$ is called the absolute value of x.

For examples of how this function works, notice that $|4|=4,|0|=0$, and $|-3|=-(-3)=3$. If x is positive or 0 , then the absolute value of x is x itself. If x is negative, then $|x|$ is the positive number that you'd get from "erasing" the negative sign: $|-10|=10$ and $\left|-\frac{1}{2}\right|=\frac{1}{2}$.

Graph of the absolute value function.

Another interpretation of the absolute value function, and the one that's most important for calculus, is that the absolute value of a number is the same as its distance from 0 . That is, the distance between 0 and 5 is $|5|=5$, the distance between 0 and -7 is $|-7|=7$, and the distance between 0 and 0 is $|0|=0$.

Let's look at the graph of say $|x-3|$. It's the graph of $|x|$ shifted right by 3.

You might guess from the graph of $|x-3|$, that $|x-3|$ is the function that measures the distance between x and 3 , and that's true. Similarly, $|x-6|$ is the distance between x and $6,|x+2|$ is the distance between x and -2 , and more generally, $|x-y|$ is the distance between x and y.

Solving inequalities involving absolute values

The inequality $|x|<5$ means that the distance between x and 0 is less than 5. Therefore, x is between -5 and 5 . Another way to write the previous sentence is $-5<x<5$.

Notice in the above paragraph that the precise number 5 wasn't really important for the problem. We could have replaced 5 with any positive number c to obtain the following translation.

$$
|x|<c \text { means }-c<x<c
$$

For example, writing $|x|<2$ means the same thing as writing $-2<x<2$, and $|2 x-3|<\frac{1}{3}$ means the same as $-\frac{1}{3}<2 x-3<\frac{1}{3}$.

We can use the above rule to help us solve some inequalities that involve absolute values.

Problem. Solve for x if $|-3 x+4|<2$.
Solution. We know from the explanation above that $-2<-3 x+4<2$.

Subtracting 4 from all three of the quantities in the previous inequality yields $-2-4<-3 x<2-4$, and that can be simplified as $-6<-3 x<-2$.

Next divide by -3 , keeping in mind that dividing an inequality by a negative number "flips" the inequalities. The result will be $\frac{-6}{-3}>x>\frac{-2}{-3}$, which can be simplified as $2>x>\frac{2}{3}$. That's the answer.

The inequality $2>x>\frac{2}{3}$ could also be written as $\frac{2}{3}<x<2$, or as $x \in\left(\frac{2}{3}, 2\right)$.

Problem. Solve for x if $|2 x-1|<3$.
Solution. Write the inequality from the problem as $-3<2 x-1<3$.

Add 1 to get $-2<2 x<4$, and divide by 2 to get $-1<x<2$.

If c is a positive number, $|x|>c$ means that the distance between x and 0 is greater than c. There are two ways that the distance between x and 0 can be greater than c. Either $x<-c$ or $x>c$.

$$
|x|>c
$$

$|x|>c$ means either $x<-c$ or $x>c$

Problem. Solve for x if $|2 x+1|>5$.

Solution. $|2 x+1|>4$ means that either $2 x+1<-5$ or $2 x+1>5$. This leaves us with two different inequalities to solve. Let's start with the inequality $2 x+1<-5$. Subtract 1 , and divide by 2 to find that $x<-3$. That's one half of our answer.
For the second half of the answer, solve the second inequality: $2 x+1>5$. Subtract 1, and divide by 2 to find that $x>2$. That's the second half of our answer.
To summarize, if $|2 x+1|>4$, then either $x<-3$ or $x>2$.

Two important rules for absolute values

For the two rules below, $a, b, c \in \mathbb{R}$. Each rule is important for calculus. They'll be explained in class.

1. $|a b|=|a||b|$
2. $|a-c| \leq|a-b|+|b-c| \quad$ (triangle inequality)

Exercises

1.) Suppose $f(x)$ is the piecewise defined function given by

$$
f(x)= \begin{cases}x+1 & \text { if } x \in(-\infty, 2) \\ x+3 & \text { if } x \in[2, \infty)\end{cases}
$$

What is $f(0)$? What is $f(10)$? What is $f(2)$?
2.) Suppose $g(x)$ is the piecewise defined function given by

$$
g(x)= \begin{cases}3 & \text { if } x \in[1,5] \\ 1 & \text { if } x \in(5, \infty)\end{cases}
$$

What is $g(1)$? What is $g(100)$? What is $g(5)$?
3.) Suppose $h(x)$ is the piecewise defined function given by

$$
h(x)= \begin{cases}5 & \text { if } x \in(1,3] \\ x+2 & \text { if } x \in[3,8)\end{cases}
$$

What is $h(2)$? What is $h(7)$? What is $h(3)$?
4.) Suppose $f(x)$ is the piecewise defined function given by

$$
f(x)= \begin{cases}2 & \text { if } x \in[-3,0) \\ e^{x} & \text { if } x \in[0,2] \\ 3 x-2 & \text { if } x \in(2, \infty)\end{cases}
$$

What is $f(-2)$? What is $f(0)$? What is $f(2)$? What is $f(15)$?
5.) Suppose $g(x)$ is the piecewise defined function given by

$$
g(x)= \begin{cases}(x-1)^{2} & \text { if } x \in(-\infty, 1] \\ \log _{e}(x) & \text { if } x \in[1,5] \\ \log _{e}(5) & \text { if } x \in[5, \infty)\end{cases}
$$

What is $g(0)$? What is $g(1)$? What is $g(5)$? What is $g(20)$?
6.) Suppose $h(x)$ is the piecewise defined function given by

$$
h(x)= \begin{cases}e^{x} & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{cases}
$$

What is $h(0)$? What is $h(2)$? What is $h\left(\log _{e}(17)\right)$?
7.) Write the following numbers as integers: $|8-5|,|-10-5|$, and $|5-5|$. The function $|x-5|$ measures the distance between x and which number?
8.) Write the following numbers as integers: $|1-2|,|3-2|$, and $|2-2|$. The function $|x-2|$ measures the distance between x and which number?
9.) Write the following numbers as integers: $|3+4|,|-1+4|,|-4+4|$. The function $|x+4|$ measures the distance between x and which number?
10.) The function $|x-y|$ measures the distance between x and which number?
11.) Solve for x if $|5 x-2|<7$.
12.) Solve for x if $|3 x+4|<1$.
13.) Solve for x if $|-2 x+3|<5$.
14.) Solve for x if $|x+3|>2$.
15.) Solve for x if $|4 x|>12$.
16.) Solve for x if $|2 x+4|>8$.

Match the functions with their graphs.
17.) $f(x)=2 x+1$
18.) $g(x)=1$
A.)

B.)

C.)

D.)

Match the functions with their graphs.

$$
\text { 21.) } f(x)=e^{x}
$$

22.) $g(x)=-2$
A.)

C.)

B.)

D.)

Match the functions with their graphs.
25.) $f(x)=\sqrt{x}+2$
26.) $g(x)=2$
27.) $p(x)= \begin{cases}2 & \text { if } x \in(-\infty, 0) \text {; } \\ \sqrt{x}+2 & \text { if } x \in[0, \infty) .\end{cases}$
28.) $q(x)= \begin{cases}2 & \text { if } x \in(-\infty, 1) \text {; } \\ \sqrt{x}+2 & \text { if } x \in[1, \infty) .\end{cases}$
A.)

C.)

B.)

D.)

Simplify the expressions in \#29-34.
29.) 3^{4}
30.) $\left(\frac{1}{4}\right)^{-2}$
31.) $\left(\frac{1}{e^{-2}}\right)^{4}$
32.) $8^{\frac{2}{3}}$
33.) $27^{-\frac{2}{3}}$
34.) $16^{\frac{3}{2}}$

Each of the numbers in \#35-40 is an integer. Which integers are they?
35.) $\log _{e}\left(e^{6}\right)$
36.) $\log _{e}\left(\frac{1}{e^{3}}\right)$
37.) $\log _{2}(8)$
38.) $\log _{2}(32)$
39.) $\log _{2}\left(\frac{1}{4}\right)$
40.) $\log _{3}(81)$

