
Geometric Series
In the previous chapter we saw that if a > 1, then the exponential function

with base a, the function f(x) = a

x, has a graph that looks like this:

On the other hand, if 0 < r < 1, then the exponential function of base r,
the function g(x) = r

x, has a graph that looks like this:

Notice that larger inputs for the function r

x result in smaller outputs.
Geometrically, this is represented in the graph of rx getting closer and closer
to the x-axis as we move to the right in the graph.
For example, the number 1

2

is between 0 and 1. If we look at the exponential
function of base 1

2

, then as the number x becomes larger, the number
�
1

2

�
x

becomes closer and closer to 0. Notice that
�
1

2

�
2

= 1

4

,
�
1

2

�
6

= 1

64

,
�
1

2

�
10

= 1

1024

,

and
�
1

2

�
25

= 1

33,554,432

. As the exponent becomes larger (2, 6, 10, 25), the
output grows smaller, closer and closer to 0.
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This discussion can be summarized by saying that if 0 < r < 1, then as x
grows larger and larger, the number rx becomes closer and closer to 0.
In the above sentence, x is just a variable, and we can use any letter as a

variable, so we’ll rewrite the above sentence using the variable n rather than
the variable x:

If 0 < r < 1,
then as n grows larger and larger,
r

n becomes closer and closer to 0.

* * * * * * * * * * * * *

Suppose that r is a positive number that is less than 1. That is, 0 < r < 1.
If a is a number, then a, ra, r

2

a, r

3

a, r

4

a, . . . is a geometric sequence. Each
term in the sequence is found by multiplying the previous term by the number
r.
Earlier in this text we saw that if 0 < r < 1, then the sum of all of the

infinitely many terms of the geometric sequence a, ra, r2a, r3a, r4a, . . . equals
a

1�r

. That is,

a+ ra+ r

2

a+ r

3

a+ r

4

a+ · · · = a

1� r

Example. The geometric series
1X

i=1

4

3i

is the infinite sum 4

3

+ 4

9

+ 4

27

+ 4

81

+ · · · In the equation from the line just
before this example, a is the first term of the sum, so here a = 4

3

. The number
r, what each term is multiplied by to obtain the following term, is 1

3

. Thus,
using our formula from above,

1X

i=1

4

3i
=

4

3

1� 1

3

=
4

3

2

3

= 2
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The goal of this chapter is to use what we know about exponential functions
of base r to give a better reason for why it makes sense to add the infinitely
many terms of a geometric sequence if 0 < r < 1.

* * * * * * * * * * * * *

Suppose that 0 < r < 1 and let S
n

be the sum of the first n terms of the
geometric sequence a, ra, r

2

a, r

3

a, r

4

a, . . .. That is,

S

n

= a+ ra+ r

2

a+ r

3

a+ · · ·+ r

n�1

a

Using the distributive law, we see that

rS

n

= ra+ r

2

a+ r

3

a+ · · ·+ r

n�1

a+ r

n

a

Now we subtract rS
n

from S

n

. Notice that the terms ra, r2a, r3a, . . . , rn�1

a

in each of the sums cancel, and we are left with

S

n

� rS

n

= a� r

n

a

Factoring out the S

n

on the left side of the equality, and factoring out the a

from the right side of the equality, we have

S

n

(1� r) = a(1� r

n)

which we can rewrite as

S

n

=
a(1� r

n)

(1� r)
Remember that 0 < r < 1. As discussed previously in this chapter, if n is

a really large number, then r

n is extremely close to 0. The larger n becomes,
the closer rn gets to 0. The number n in this problem is the number of terms
from the sequence a, ra, r2a, r3a, r4a, . . . that we are summing. So as we sum
more and more terms of the sequence — as n gets larger — r

n is e↵ectively
0, and thus the sum is e↵ectively equal to a(1�0)

(1�r)

= a

1�r

. This is what is meant
by saying that we can add all of the infinitely many terms of the sequence
a, ra, r

2

a, r

3

a, r

4

a, . . ., and that the result will be a

1�r

.

The ideas in this chapter are good examples of concepts that are the basis
of calculus. Precisely, the reasoning from the previous paragraph is called
“taking a limit”. In a calculus course you’ll use this sort of reasoning often,
and you’ll be more comfortable with it every time you do.
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As an aside, the discussion above could also apply to values of r with
�1 < r < 1. We just used our assumption that 0 < r < 1 to simplify some
of our discussion here.
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Exercises

1.) Suppose 0 < r < 1. As n becomes larger and larger, which number
does rn get closer and closer to?

2.) Suppose 0 < r < 1. As n becomes larger and larger, which number
does a(1�r

n

)

(1�r)

get closer and closer to?

For #3-5, determine whether the given sequences are arithmetic, geometric,
or neither.

3.) 1, 1, 2, 3, 5, 8, . . .

4.) 13, 15, 17, 19, . . .

5.) 3, 6, 12, 24, . . .

The sequences in #6-8 are geometric sequences. For each sequence, answer
the following two questions: What is the first term of the sequence? What is
the number that each term of the sequence is multiplied by to find the next
term in the sequence?

6.) 2

5

,

2

25

,

2

125

,

2

625

, . . .

7.) 2, 1, 1
2

,

1

4

, . . .

8.) 7

3

,

7

9

,

7

27

,

7

81

, . . .

For #9-11, find the given geometric series. Use your answers from #6-8.

9.)
1X

i=1

2

5i
10.)

1X

i=1

4

2i
11.)

1X

i=1

7

3i
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For each of the quadratic polynomials in problems #12-15:

• Complete the square.

That means rewrite ax

2 + bx+ c as a
⇣
x+ b

2a

⌘
2

+ c� b

2

4a

.

• What’s the vertex of the corresponding parabola?

The vertex of the parabola for a(x+ c)2 + d is the point (�c, d).

• Is its parabola opening up, or opening down?

The parabola opens up if the leading coe�cient of the quadratic
polynomial is positive. The parabola opens down if the leading
coe�cient is negative.

• What’s its discriminant?

The discriminant of ax2 + bx+ c is b2 � 4ac.

• How many roots does it have?

There are two roots if the discriminant is positive, one root if the
discriminant equals 0, and zero roots if the discriminant is negative.

• What are its roots (if it has any)?

If ax2 + bx+ c has roots, they are �b+

p
b

2�4ac

2a

and �b�
p
b

2�4ac

2a

.

• Completely factor the polynomial.

If ax2 + bx+ c has two roots, ↵
1

and ↵

2

, then the completely factored
form of ax2 + bx+ c is a(x� ↵

1

)(x� ↵

2

). If there is exactly one root,
↵

1

, then the completely factored form is a(x� ↵

1

)(x� ↵

1

). If there
are no roots, then the completely factored form is a(x2 + b

a

x+ c

a

).

• Match its graph with one of the lettered graphs on the next page.

12.) �3x2 � x+ 1

13.) 9x2 � 6x+ 1

14.) 2x2 � 3x+ 2

15.) �x

2 + 5x� 1
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A.) B.)

C.) D.)
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