
Factoring Polynomials

Any natural number that is greater than 1 can be factored into a product
of prime numbers. For example 20 = (2)(2)(5) and 30 = (2)(3)(5).

In this chapter we’ll learn an analogous way to factor polynomials.

Fundamental Theorem of Algebra
A monic polynomial is a polynomial whose leading coe�cient equals 1. So

x

4 � 2x3 + 5x� 7 is monic, and x� 2 is monic, but 3x2 � 4 is not monic.

The following result tells us how to factor polynomials. It essentially tells
us what the “prime polynomials” are:

Any polynomial is the product of a real number,
and a collection of monic quadratic polynomials that
do not have roots, and of monic linear polynomials.

This result is called the Fundamental Theorem of Algebra. It is one of
the most important results in all of mathematics, though from the form
it’s written in above, it’s probably di�cult to immediately understand its
importance.
The explanation for why this theorem is true is somewhat di�cult, and it

is beyond the scope of this course. We’ll have to accept it on faith.

Examples.

• 4x2 � 12x+ 8 can be factored into a product of a number, 4, and
two monic linear polynomials, x� 1 and x� 2. That is,
4x2 � 12x+ 8 = 4(x� 1)(x� 2).
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• �x

5 + 2x4 � 7x3 + 14x2 � 10x+ 20 can be factored into a product
of a number, �1, a monic linear polynomial, x� 2, and two monic
quadratic polynomials that don’t have roots, x2+2 and x

2+5. That
is �x

5 + 2x4 � 7x3 + 14x2 � 10x+ 20 = �(x� 2)(x2 + 2)(x2 + 5).
(We can check the discriminants of x2 + 2 and x

2 + 5 to see that
these two quadratics don’t have roots.)

• 2x4 � 2x3 + 14x2 � 6x+ 24 = 2(x2 + 3)(x2 � x+ 4). Again, x2 + 3
and x

2 � x+ 4 do not have roots.

Notice that in each of the above examples, the real number that appears
in the product of polynomials – 4 in the first example, �1 in the second,
and 2 in the third – is the same as the leading coe�cient for the original
polynomial. This always happens, so the Fundamental Theorem of Algebra
can be more precisely stated as follows:

If p(x) = a

n

x

n + a

n�1

x

n�1 + · · ·+ a

0

,
then p(x) is the product of the real number a

n

,
and a collection of monic quadratic polynomials that
do not have roots, and of monic linear polynomials.

Completely factored
A polynomial is completely factored if it is written as a product of a real

number (which will be the same number as the leading coe�cient of the
polynomial), and a collection of monic quadratic polynomials that do not
have roots, and of monic linear polynomials.
Looking at the examples above, 4(x�1)(x�2) and �(x�2)(x2+2)(x2+5)

and 2(x2 + 3)(x2 � x+ 4) are completely factored.

One reason it’s nice to completely factor a polynomial is because if you do,
then it’s easy to read o↵ what the roots of the polynomial are.

Example. Suppose p(x) = �2x5 + 10x4 + 2x3 � 38x2 + 4x � 48. Written
in this form, its di�cult to see what the roots of p(x) are. But after being
completely factored, p(x) = �2(x + 2)(x � 3)(x � 4)(x2 + 1). The roots of
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this polynomial can be read from the monic linear factors. They are �2, 3,
and 4.
(Notice that p(x) = �2(x+ 2)(x� 3)(x� 4)(x2 + 1) is completely factored

because x

2 + 1 has no roots.)

* * * * * * * * * * * * *

Factoring linears
To completely factor a linear polynomial, just factor out its leading coe�-

cient:

ax+ b = a

⇣
x+

b

a

⌘

For example, to completely factor 2x+ 6, write it as the product 2(x+ 3).

Factoring quadratics
What a completely factored quadratic polynomial looks like will depend on

how many roots it has.

0 Roots. If the quadratic polynomial ax2 + bx + c has 0 roots, then it can
be completely factored by factoring out the leading coe�cient:

ax

2 + bx+ c = a

⇣
x

2 +
b

a

x+
c

a

⌘

(The graphs of ax2+bx+c and x

2+ b

a

x+ c

a

di↵er by a vertical stretch or shrink
that depends on a. A vertical stretch or shrink of a graph won’t change the
number of x-intercepts, so x

2+ b

a

x+ c

a

won’t have any roots since ax2+ bx+ c

doesn’t have any roots. Thus, x2 + b

a

x+ c

a

is completely factored.)

Example. The discriminant of 4x2�2x+2 equals (�2)2�4(4)(2) = 4�32 =
�28, a negative number. Therefore, 4x2 � 2x + 2 has no roots, and it is
completely factored as 4(x2 � 1

2

x+ 1

2

).

2 Roots. If the quadratic polynomial ax2 + bx + c has 2 roots, we can
name them ↵

1

and ↵

2

. Roots give linear factors, so we know that (x � ↵

1

)
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and (x � ↵

2

) are factors of ax2 + bx + c. That means that there is some
polynomial q(x) such that

ax

2 + bx+ c = q(x)(x� ↵

1

)(x� ↵

2

)

The degree of ax2 + bx+ c equals 2. Because the sum of the degrees of the
factors equals the degree of the product, we know that the degree of q(x) plus
the degree of (x � ↵

1

) plus the degree of (x � ↵

2

) equals 2. In other words,
the degree of q(x) plus 1 plus 1 equals 2.
Zero is the only number that you can add to 1 + 1 to get 2, so q(x) must

have degree 0, which means that q(x) is just a constant number.
Because the leading term of ax2 + bx+ c – namely ax

2 – is the product of
the leading terms of q(x), (x� ↵

1

), and (x� ↵

2

) – namely the number q(x),
x, and x – it must be that q(x) = a. Therefore,

ax

2 + bx+ c = a(x� ↵

1

)(x� ↵

2

)

Example. The discriminant of 2x2+4x�2 equals 42�4(2)(�2) = 16+16 =
32, a positive number, so there are two roots.
We can use the quadratic formula to find the two roots, but before we do,

it’s best to simplify the square root of the discriminant:
p
32 =

p
(4)(4)(2) =

4
p
2.
Now we use the quadratic formula to find that the roots are

�4 + 4
p
2

2(2)
=

�4 + 4
p
2

4
= �1 +

p
2

and
�4� 4

p
2

2(2)
=

�4� 4
p
2

4
= �1�

p
2

Therefore, 2x2 + 4x� 2 is completely factored as

2
⇣
x� (�1 +

p
2)
⌘⇣

x� (�1�
p
2)
⌘
= 2(x+ 1�

p
2)(x+ 1 +

p
2)

1 Root. If ax2 + bx + c has exactly 1 root (let’s call it ↵
1

) then (x� ↵

1

) is
a factor of ax2 + bx+ c. Hence,

ax

2 + bx+ c = g(x)(x� ↵

1

)

for some polynomial g(x).
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Because the degree of a product is the sum of the degrees of the factors,
g(x) must be a degree 1 polynomial, and it can be completely factored into
something of the form �(x� �) where �, � 2 R. Therefore,

ax

2 + bx+ c = �(x� �)(x� ↵

1

)

Notice that � is a root of �(x � �)(x � ↵

1

), so � is a root of ax2 + bx + c

since they are the same polynomial. But we know that ax2 + bx+ c has only
one root, namely ↵

1

, so � must equal ↵
1

. That means that

ax

2 + bx+ c = �(x� ↵

1

)(x� ↵

1

)

The leading term of ax2+bx+c is ax2. The leading term of �(x�↵

1

)(x�↵

1

)
is �x2. Since ax2+ bx+ c equals �(x�↵

1

)(x�↵

1

), they must have the same
leading term. Therefore, ax2 = �x

2. Hence, a = �.
Replace � with a in the equation above, and we are left with

ax

2 + bx+ c = a(x� ↵

1

)(x� ↵

1

)

Example. The discriminant of 3x2�6x+3 equals (�6)2�4(3)(3) = 36�36 =
0, so there is exactly one root. We find the root using the quadratic formula:

�(�6) +
p
0

2(3)
=

6

6
= 1

Therefore, 3x2 � 6x+ 3 is completely factored as 3(x� 1)(x� 1).

Summary. The following chart summarizes the discussion above.

roots of ax2 + bx+ c completely factored form of ax2 + bx+ c

no roots a(x2 + b

a

x+ c

a

)

2 roots: ↵
1

and ↵

2

a(x� ↵

1

)(x� ↵

2

)

1 root: ↵
1

a(x� ↵

1

)(x� ↵

1

)
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* * * * * * * * * * * * *

Factors in Z
Recall that the factors of an integer n are all of the integers k such that

n = mk for some third integer m.

Examples.

• 12 = 3 · 4, so 4 is a factor of 12.

• �30 = �2 · 15, so 15 is a factor of �30.

• 1, �1, n and �n are all factors of an integer n. That’s because
n = n · 1 and n = (�n)(�1).

Important special case. If ↵
1

,↵

2

, . . .↵

n

2 Z, then each of these numbers
are factors of the product ↵

1

↵

2

· · ·↵
n

. For example, 2, 10, and 7 are each
factors of 2 · 10 · 7 = 140.

Check factors of degree 0 coe�cient when searching for
roots
If k, ↵

1

, and ↵

2

are all integers, then the polynomial

q(x) = k(x� ↵

1

)(x� ↵

2

) = kx

2 � k(↵
1

+ ↵

2

)x+ k↵

1

↵

2

has ↵

1

and ↵

2

as roots, and each of these roots are factors of the degree 0
coe�cient of q(x). (The degree 0 coe�cient is k↵

1

↵

2

.)

More generally, if k,↵
1

,↵

2

, . . . ,↵

n

2 Z, then the degree 0 coe�cient of the
polynomial

g(x) = k(x� ↵

1

)(x� ↵

2

) · · · (x� ↵

n

)

equals k↵

1

↵

2

· · ·↵
n

. That means that each of the roots of g(x) – which are
the ↵

i

– are factors of the degree 0 coe�cient of g(x).
Now it’s not true that every polynomial has integer roots, but many of the

polynomials you will come across do, so the two paragraphs above o↵er a
powerful hint as to what the roots of a polynomial might be.
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When searching for roots of a polynomial
whose coe�cients are all integers,

check the factors of the degree 0 coe�cient.

Example. 3 and �7 are both roots of 2(x� 3)(x+ 7).
Notice that 2(x � 3)(x + 7) = 2x2 + 8x � 42, and that 3 and �7 are both

factors of �42.

Example. Suppose p(x) = 3x4 + 3x3 � 3x2 + 3x � 6. This is a degree 4
polynomial, so it will have at most 4 roots. There isn’t a really easy way to
find the roots of a degree 4 polynomial, so to find the roots of p(x), we have
to start by guessing.
The degree 0 coe�cient of p(x) is �6, so a good place to check for roots is

in the factors of �6.
The factors of �6 are 1, �1, 2, �2, 3, �3, 6, and �6, so we have eight

quick candidates for what the roots of p(x) might be. A quick check shows
that of these eight candidates, exactly two are roots of p(x) – namely 1 and
�2. That is to say, p(1) = 0 and p(�2) = 0.

* * * * * * * * * * * * *

Factoring cubics
It follows from the Fundamental Theorem of Algebra that a cubic poly-

nomial is either the product of a constant and three linear polynomials, or
else it is the product of a constant, one linear polynomial, and one quadratic
polynomial that has no roots.
In either case, any cubic polynomial is guaranteed to have a linear factor,

and thus is guaranteed to have a root. You’re going to have to guess what
that root is by looking at the factors of the degree 0 coe�cient. (There is
a “cubic formula” that like the quadratic formula will tell you the roots of
a cubic, but the formula is di�cult to remember, and you’d need to know
about complex numbers to be able to use it.)
Once you’ve found a root, factor out the linear factor that the root gives

you. You will now be able to write the cubic as a product of a monic linear
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polynomial and a quadratic polynomial. Completely factor the quadratic and
then you will have completely factored the cubic.

Problem. Completely factor 2x3 � 3x2 + 4x� 3.

Solution. Start by guessing a root. The degree 0 coe�cient is �3, and the
factors of �3 are 1, �1, 3, and �3. Check these factors to see if any of them
are roots.
After checking, you’ll see that 1 is a root. That means that x�1 is a factor

of 2x3 � 3x2 + 4x� 3. Therefore, we can divide 2x3 � 3x2 + 4x� 3 by x� 1
to get another polynomial

2x3 � 3x2 + 4x� 3

x� 1
= 2x2 � x+ 3

Thus,
2x3 � 3x2 + 4x� 3 = (x� 1)(2x2 � x+ 3)

The discriminant of 2x2 � x + 3 equals (�1)2 � 4(2)(3) = 1 � 24 = �23,
a negative number. Therefore, 2x2 � x + 3 has no roots, so to completely
factor 2x2�x+3 we just have to factor out the leading coe�cient as follows:
2x2 � x+ 3 = 2

�
x

2 � 1

2

x+ 3

2

�
.

The final answer is

2(x� 1)
⇣
x

2 � 1

2
x+

3

2

⌘
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polynomial and a quadratic polynomial. Completely factor the quadratic and
then you will have completely factored the cubic.

Problem. Completely factor 2x3 — 3~2 + 4x — 3.

Solution. Start by guessing a root. The degree 0 coefficient is —3, and the
factors of —3 are 1, —1, 3, and —3. Check these factors to see if any of them
are roots.
After checking, you’ll see that 1 is a root. That means that x —1 is a factor

of 2x3 — 3x2 + 4x — 3. Therefore, we can divide 2x3 — 3x2 + 4x — 3 by x — 1
to get another polynomial

2x3—3x2+4x—3 2=2x —x+3

Thus,
2x3—3x2+4x—3=(x—1)(2x2—x+3)

The discriminant of 2x2 — x + 3 equals (_1)2 — 4(2)(3) = 1 — 24 = —23,
a negative number. Therefore, 2x2 — x + 3 has no roots, so to completely
factor 2x2 — x +3 we just have to factor out the leading coefficient as follows:
2x2—x-1-3=2(x2— ~x+~).

2x3-3x1 ~~+z-3
/\

(x-l) (zx2_x+3’)
/N

a

The final answer is
2(x_1)(x2_ ~+~)
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Problem. Completely factor 3x3 � 3x2 � 15x+ 6.

Solution. The factors of 6 are {1,�1, 2,�2, 3,�3, 6,�6}. Check to see that
�2 is a root. Then divide by x+ 2 to find that

3x3 � 3x2 � 15x+ 6

x+ 2
= 3x2 � 9x+ 3

so

3x3 � 3x2 � 15x+ 6 = (x+ 2)(3x2 � 9x+ 3)

The discriminant of 3x2 � 9x + 3 equals 45, a positive number, and thus
3x2 � 9x+ 3 has two roots and can be factored further.
The leading coe�cient of 3x2 � 9x + 3 is 3, and we can use the quadratic

formula to check that the roots of 3x2�9x+3 are 3+

p
5

2

and 3�
p
5

2

. From what
we learned above about factoring quadratics, we know that 3x2 � 9x + 3 =
3(x� 3+

p
5

2

)(x� 3�
p
5

2

).

To summarize,

3x3 � 3x2 � 15x+ 6 = (x+ 2)(3x2 � 9x+ 3)

= (x+ 2)3
⇣
x� 3 +

p
5

2

⌘⇣
x� 3�

p
5

2

⌘

= 3(x+ 2)
⇣
x� 3 +

p
5

2

⌘⇣
x� 3�

p
5

2

⌘
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Problem. Completely factor 3w3 — 3w2 — 15w + 6.

Solution. The factors of 6 are {1, —1,2, —2,3, —3,6, —6}. Check to see that
—2 is a root. Then divide by x +2 to find that

3w3 — 3x2 — 15w + 6
= 3w2—9x+3x+2

so
3x3—3x2—15x-I-6 = (x+2)(3x2—9x+3)

The discriminant of 3w2 — 9w +3 equals 45, and thus 3w2 — 9w +3 has two
roots and can be factored further.
The leading coefficient of 3w2 — 9w + 3 is 3, and we can use the quadratic

formula to check that the roots of 3w2 —9w+ 3 are ~ and ~ From what
we learned above about factoring quadratics, we know that 3w2 — 9w + 3 —

3(w—~~”~)(x—~ V’s)

3x3-3x2-15i ÷≤
/\

(x+2~ (3x2_cbc.

/
/ 3+S\ /3 c~—2 ,~i

To summarize,
3w3 — 3w2 — 15w + 6 = (w + 2)(3w2 — 9w + 3)

I 3+~/~~i 3—Vg=(w-i-2)3~çw— 2 )çw— 2

/ 3+v’g’~,i 3—’~./~=3(w+2)~w— 2 )k~X— 2
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Factoring quartics
Degree 4 polynomials are tricky. As with cubic polynomials, you should

begin by checking whether the factors of the degree 0 coe�cient are roots. If
one of them is a root, then you can use the same basic steps that we used
with cubic polynomials to completely factor the polynomial.
The problem with degree 4 polynomials is that there’s no reason that a

degree 4 polynomial has to have any roots – take (x2+1)(x2+1) for example.
Because a degree 4 polynomial might not have any roots, it might not have

any linear factors, and it’s very hard to guess which quadratic polynomials
it might have as factors.

* * * * * * * * * * * * *
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Exercises
Completely factor the polynomials given in #1-8

1.) 10x+ 20

2.) �2x+ 5

3.) �2x2 � 12x� 18

4.) 10x2 + 3

5.) 3x2 � 10x+ 5

6.) 3x2 � 4x+ 5

7.) �2x2 + 6x� 3

8.) 5x2 + 3x� 2

9.) Find a root of x3 � 5x2 + 10x� 8.

10.) Find a root of 15x3 + 35x2 + 30x+ 10.

11.) Find a root of x3 � 2x2 � 2x� 3.

Completely factor the polynomials in #12-16.

12.) �x

3 � x

2 + x+ 1

13.) 5x3 � 9x2 + 8x� 20

14.) �2x3 + 17x� 3

15.) 4x3 � 20x2 + 25x� 3

16.) x

4 � 5x2 + 4

17.) How can the Fundamental Theorem of Algebra be used to show that
any polynomial of odd degree has at least one root?
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