Roots \& Factors

Roots of a polynomial

A root of a polynomial $p(x)$ is a number $\alpha \in \mathbb{R}$ such that $p(\alpha)=0$.

Examples.

- 3 is a root of the polynomial $p(x)=2 x-6$ because

$$
p(3)=2(3)-6=6-6=0
$$

- 1 is a root of the polynomial $q(x)=15 x^{2}-7 x-8$ since

$$
q(1)=15(1)^{2}-7(1)-8=15-7-8=0
$$

- $(\sqrt[2]{2})^{2}-2=0$, so $\sqrt[2]{2}$ is a root of $x^{2}-2$.

Be aware: What we call a root is what others call a "real root", to emphasize that it is both a root and a real number. Since the only numbers we will consider in this course are real numbers, clarifying that a root is a "real root" won't be necessary.

Factors

A polynomial $q(x)$ is a factor of the polynomial $p(x)$ if there is a third polynomial $g(x)$ such that $p(x)=q(x) g(x)$.

Example. $3 x^{3}-x^{2}+12 x-4=(3 x-1)\left(x^{2}+4\right)$, so $3 x-1$ is a factor of $3 x^{3}-x^{2}+12 x-4$. The polynomial $x^{2}+4$ is also a factor of $3 x^{3}-x^{2}+12 x-4$.

Factors and division

If you divide a polynomial $p(x)$ by another polynomial $q(x)$, and there is no remainder, then $q(x)$ is a factor of $p(x)$. That's because if there's no remainder, then $\frac{p(x)}{q(x)}$ is a polynomial, and $p(x)=q(x)\left(\frac{p(x)}{q(x)}\right)$. That's the definition of $q(x)$ being a factor of $p(x)$.

If $\frac{p(x)}{q(x)}$ has a remainder, then $q(x)$ is not a factor of $p(x)$.
Example. In the previous chapter we saw that

$$
\frac{6 x^{2}+5 x+1}{3 x+1_{132}}=2 x+1
$$

Multiplying the above equation by $3 x+1$ gives

$$
6 x^{2}+5 x+1=(3 x+1)(2 x+1)
$$

so $3 x+1$ is a factor of $6 x^{2}+5 x+1$.

Most important examples of roots

Notice that the number α is a root of the linear polynomial $x-\alpha$ since $\alpha-\alpha=0$.

You have to be able to recognize these types of roots when you see them.

polynomial	root
$x-2$	2
$x-3$	3
$x-(-2)$	-2
$x+2$	-2
$x+15$	-15
$x-\alpha$	α

Linear factors give roots

Suppose there is some number α such that $x-\alpha$ is a factor of the polynomial $p(x)$. We'll see that α must be a root of $p(x)$.

That $x-\alpha$ is a factor of $p(x)$ means there is a polynomial $g(x)$ such that

$$
p(x)=(x-\alpha) g(x)
$$

Then

$$
\begin{aligned}
p(\alpha) & =(\alpha-\alpha) g(\alpha) \\
& =0 \cdot g(\alpha) \\
& =0
\end{aligned}
$$

Notice that it didn't matter what polynomial $g(x)$ was, or what number $g(\alpha)$ was; α is a root of $p(x)$.

> If $x-\alpha$ is a factor of $p(x)$, then α is a root of $p(x)$.

Examples.

- 2 is a root of $p(x)=(x-2)\left(\pi^{7} x^{15}-27 x^{11}+\frac{3}{4} x^{5}-x^{3}\right)$ because

$$
\begin{aligned}
p(2) & =(2-2)\left(\pi^{7} 2^{15}-27(2)^{11}+\frac{3}{4} 2^{5}-2^{3}\right) \\
& =0 \cdot\left(\pi^{7} 2^{15}-27(2)^{11}+\frac{3}{4} 2^{5}-2^{3}\right) \\
& =0
\end{aligned}
$$

- 4 is a root of $q(x)=(x-4)\left(x^{101}-x^{57}-17 x^{3}+x\right)$
- $-2,1$, and 5 are roots of the polynomial $3(x+2)(x-1)(x-5)$.

Roots give linear factors

Suppose the number α is a root of the polynomial $p(x)$. That means that $p(\alpha)=0$. We'll see that $x-\alpha$ must be a factor of $p(x)$.
Let's start by dividing $p(x)$ by $(x-\alpha)$. Remember that when you divide a polynomial by a linear polynomial, the remainder is always a constant. So we'll get something that looks like

$$
\frac{p(x)}{(x-\alpha)}=g(x)+\frac{c}{(x-\alpha)}
$$

where $g(x)$ is a polynomial and $c \in \mathbb{R}$ is a constant.
Next we can multiply the previous equation by $(x-\alpha)$ to get

$$
\begin{aligned}
p(x) & =(x-\alpha)\left(g(x)+\frac{c}{(x-\alpha)}\right) \\
& =(x-\alpha) g(x)+(x-\alpha) \frac{c}{(x-\alpha)} \\
& =(x-\alpha) g(x)+c
\end{aligned}
$$

That means that

$$
\begin{aligned}
p(\alpha) & =(\alpha-\alpha) g(\alpha)+c \\
& =0 \cdot g(\alpha)+c \\
& =0+c \\
& =c
\end{aligned}
$$

Now remember that $p(\alpha)=0$. We haven't used that information in this problem yet, but we can now: because $p(\alpha)=0$ and $p(\alpha)=c$, it must be that $c=0$. Therefore,

$$
p(x)=(x-\alpha) g(x)+c=(x-\alpha) g(x)
$$

That means that $x-\alpha$ is a factor of $p(x)$, which is what we wanted to check.

> If α is a root of $p(x)$,
> then $x-\alpha$ is a factor of $p(x)$

Example. It's easy to see that 1 is a root of $p(x)=x^{3}-1$. Therefore, we know that $x-1$ is a factor of $p(x)$. That means that $p(x)=(x-1) g(x)$ for some polynomial $g(x)$.

To find $g(x)$, divide $p(x)$ by $x-1$:

$$
g(x)=\frac{p(x)}{x-1}=\frac{x^{3}-1}{x-1}=x^{2}+x+1
$$

Hence, $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$.
We were able to find two factors of $x^{3}-1$ because we spotted that the number 1 was a root of $x^{3}-1$.

Roots and graphs

If you put a root into a polynomial, 0 comes out. That means that if α is a root of $p(x)$, then $(\alpha, 0) \in \mathbb{R}^{2}$ is a point in the graph of $p(x)$. These points are exactly the x-intercepts of the graph of $p(x)$.

The roots of a polynomial are exactly the x-intercepts of its graph.

Examples.

- Below is the graph of a polynomial $p(x)$. The graph intersects the x-axis at 2 and 4 , so 2 and 4 must be roots of $p(x)$. That means that $(x-2)$ and $(x-4)$ are factors of $p(x)$.

- Below is the graph of a polynomial $q(x)$. The graph intersects the x-axis at $-3,2$, and 5 , so $-3,2$, and 5 are roots of $q(x)$, and $(x+3),(x-2)$, and $(x-5)$ are factors of $q(x)$.

Degree of a product is the sum of degrees of the factors

Let's take a look at some products of polynomials that we saw before in the chapter on "Basics of Polynomials":

The leading term of $\left(2 x^{2}-5 x\right)(-7 x+4)$ is $-14 x^{3}$. This is an example of a degree 2 and a degree 1 polynomial whose product equals 3 . Notice that $2+1=3$

The product $5(x-2)(x+3)\left(x^{2}+3 x-7\right)$ is a degree 4 polynomial because its leading term is $5 x^{4}$. The degrees of $5,(x-2),(x+3)$, and $\left(x^{2}+3 x-7\right)$ are $0,1,1$, and 2 , respectively. Notice that $0+1+1+2=4$.
The degrees of $\left(2 x^{3}-7\right),\left(x^{5}-3 x+5\right),(x-1)$, and $\left(5 x^{7}+6 x-9\right)$ are 3 , 5,1 , and 7 , respectively. The degree of their product,

$$
\left(2 x^{3}-7\right)\left(x^{5}-3 x+5\right)(x-1)\left(5 x^{7}+6 x-9\right),
$$

equals 16 since its leading term is $10 x^{16}$. Once again, we have that the sum of the degrees of the factors equals the degree of the product: $3+5+1+7=16$.

These three examples suggest a general pattern that always holds for factored polynomials (as long as the factored polynomial does not equal 0):

If a polynomial $p(x)$ is factored into a product of polynomials, then the degree of $p(x)$ equals the sum of the degrees of its factors.

Examples.

- The degree of $\left(4 x^{3}+27 x-3\right)\left(3 x^{6}-27 x^{3}+15\right)$ equals $3+6=9$.
- The degree of $-7(x+4)(x-1)(x-3)(x-3)\left(x^{2}+1\right)$ equals

$$
0+1+1+1+1+2=6
$$

Degree of a polynomial bounds the number of roots

Suppose $p(x)$ is a polynomial that has n roots, and that $p(x)$ is not the constant polynomial $p(x)=0$. Let's name the roots of $p(x)$ as $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.

Any root of $p(x)$ gives a linear factor of $p(x)$, so

$$
p(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right) q(x)
$$

for some polynomial $q(x)$.
Because the degree of a product is the sum of the degrees, the degree of $p(x)$ is at least n.

The degree of $p(x)$ (if $p(x) \neq 0$) is greater than or equal to the number of roots that $p(x)$ has.

Examples.

- $5 x^{4}-3 x^{3}+2 x-17$ has at most 4 roots.
- $4 x^{723}-15 x^{52}+37 x^{14}-7$ has at most 723 roots.
- Aside from the constant polynomial $p(x)=0$, if a function has a graph that has infinitely many x-intercepts, then the function cannot be a polynomial.
If it were a polynomial, its number of roots (or alternatively, its number of x-intercepts) would be bounded by the degree of the polynomial, and thus there would only be finitely many x-intercepts.

To illustrate, if you are familiar with the graphs of the functions $\sin (x)$ and $\cos (x)$, then you'll recall that they each have infinitely many x-intercepts. Thus, they cannot be polynomials. (If you are unfamiliar with $\sin (x)$ and $\cos (x)$, then you can ignore this paragraph.)

Exercises

1.) Name two roots of the polynomial $(x-1)(x-2)$.
2.) Name two roots of the polynomial $-(x+7)(x-3)\left(x^{4}+x^{3}+2 x^{2}+x+1\right)$.
3.) Name four roots of the polynomial $-\frac{2}{5}\left(x+\frac{7}{3}\right)\left(x+\frac{1}{2}\right)\left(x-\frac{4}{3}\right)\left(x-\frac{9}{2}\right)\left(x^{2}+1\right)$.

It will help with \#4-6 to know that each of the polynomials from those problems has a root that equals either $-1,0$, or 1 . Remember that if α is a root of $p(x)$, then $\frac{p(x)}{x-\alpha}$ is a polynomial and $p(x)=(x-\alpha) \frac{p(x)}{x-\alpha}$.
4.) Write $x^{3}+4 x-5$ as a product of a linear and a quadratic polynomial.
5.) Write $x^{3}+x$ as a product of a linear and a quadratic polynomial. (Hint: you could use the distributive law here.)
6.) Write $x^{5}+3 x^{4}+x^{3}-x^{2}-x-1$ as a product of a linear and a quartic polynomial.
7.) The graph of a polynomial $p(x)$ is drawn below. Identify as many roots and factors of $p(x)$ as you can.

8.) The graph of a polynomial $q(x)$ is drawn below. Identify as many roots and factors of $q(x)$ as you can.

For \#9-13, determine the degree of the given polynomial.
9.) $(x+3)(x-2)$
10.) $(3 x+5)\left(4 x^{2}+2 x-3\right)$
11.) $-17\left(3 x^{2}+20 x-4\right)$
12.) $4(x-1)(x-1)(x-1)(x-2)\left(x^{2}+7\right)\left(x^{2}+3 x-4\right)$
13.) $5(x-3)\left(x^{2}+1\right)$
14.) (True/False) $7 x^{5}+13 x^{4}-3 x^{3}-7 x^{2}+2 x-1$ has 8 roots.

For \#15-17, divide the polynomials. You can use synthetic division for \#17 if you'd like.
15.) $\frac{x^{6}-2 x^{5}+6 x^{4}-10 x^{3}+14 x^{2}-10 x+14}{x^{2}+3}$
16.) $\frac{-2 x^{3}+x^{2}+4 x-6}{2 x-1}$
17.) $\frac{-2 x^{3}+4 x-6}{x-2}$

