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ABSTRACT

The author in this paper investigates the analytical three-dimensional stress field in the neighborhood of
the intersection of a crack and a free surface. Utilizing the form of a general three-dimensional solution,
which the author constructed in a previous paper, he recovers the explicit displacement and stress fields

in this neighborhood. The analysis shows the stresses to be proportional to p("l/ 2-2v)

The contents of this paper have recently been submitted for publication to the
International Journal of Fracture, Dec. 1, 2012, however it was not considered
for publication because of its submission form.



1. Introduction.

There exist in the literature a considerable number of papers which deal with the stress
distribution, across the thickness of a cracked plate, both from an analytical as well as a numerical
(FE) point of view. However, most of the existing analytical studies have focused on two
dimensional considerations. This is because analytical solutions to the full three dimensional linear
equations of elasticity are very difficult to obtain. On the other hand, three dimensional numerical
studies generally require large amounts of computer resources, especially in certain critical areas
where 3D cracks with corners may be present, in which areas they don’t always give us the right
answers. A relatively recent, but somewhat incomplete, historical discussion of the 3D Griffith
crack problem, is given by Kown and Sun (2000 ).

Be that as it may, the effect that a specimen thickness has on the mechanism of failure, so
far, is not very well understood. For example, the following questions may be raised

(i) can a plate be characterized by a plane strain core sandwiched between two thin
layers of plane stress at the surfaces ?

(i) do stress fields associated with long cracks have the same characteristics as those
associated with short cracks, particularly in the vicinity of a free surface ?

(iii) why is it that small cracks most often initiate at free surfaces, where they also
propagate faster ?

(iv) when is a plate classified as being thin or thick ?

(v) what is the actual shape of deformation of the crack front immediately after the
application of the load, and prior to the onset of fracture ?

(vi) what is the strength of the stress singularity at the corner where the crack front
intersects the free of stress surface of the plate ?

(vii) does the order of the stress singularity have an effect on the shear lip formation ?

(viii) and most importantly, what is the effect of the corner singularity on the fatigue
life span of a structure, in the presence of surface cracks ?

Complete answers to the above, as well as other questions, have so far defied researchers,
yet their answers are of great practical importance for the complete understanding of the
phenomenon of 3D fracture. For example, the author in a previous paper (Folias and Wang,
1990), studied the 3D stress field of a plate weakened by the presence of a, through the
thickness, hole, which he subsequently sharpened its numerical results even further by a more
refined numerical analysis (see Fig. 1, Folias 1999), that provided a definite answer to the
question (iv). More specifically, a plate with a hole is classified to be thin for ratios of radius to
half thickness, (a/h) greater than 10, while it is classified to be thick for ratios of radius to half
thickness (a/h) less than 1/10 . Moreover, he was able to show that most of the 3D effects are
noticeable primarily in the region between 0.1 < (a/h) < 10, where the stress concentration factor
(at the center of the plate) is higher than the usual value of 3, a result predicted by a 2D theory.
The result can be as high as 15-20 % larger, something that will have a substantial reduction on
the fatigue life span of a structure by as much as 40 % or more, particularly in cases of bolt
connections in bridges, airplane riveted connections or just plain holes. The practicing engineer,



therefore, must be cognizant of such 3D geometrical correction factors, if he is to guarantee the
safety of a structure.

Moreover, in order to get a better understanding of what really happens at such corners,
let us go back to the 2D problem of a circular hole, which is embedded into a plate and subjected
to a remote tensile load o, (see Fig. 2). The local stresses at points A and B are given
respectively by

goola =30, oelp= —0,

suggesting that the material at point A is in a state of tension, while at point B it is in a state of
compression. Next, let us consider the case where the radius of the hole becomes smaller and
smaller, which suggests that point A approaches point B, closer and closer, and thus in the limit, it
will form a jump in the stress profile | As long as the radius of the hole is sufficiently large, the
stresses induced by the remote load are all in the same plane of the applied load. However, if we
examine the same condition but, within the theory of 3D, linear elasticity, and within the region
where the hole meets the fiee surface of the plate, we see something totally different. Folias and
Wang have shown (1990) that the displacement w is negative at point A, while positive at point
B, thus creating locally a mode 11T stress profile (i.e. a tearing mode ). Some skeptics may well
suggest that this is the well known Poisson’s effect. If that was the case, it would most likely be
symmetric and not of a tearing mode type. This problem was studied by design in order to
substantiate the presence of this tearing mode. The reader may also like to see more details in the
paper ( Folias, 1987). The same tearing mode has also been observed, experimentally, by Botsis
and his students (2003 ? ) in the similar case ol a smail diameter fiber, or cylindrical inclusion,
meeting a free surface. The author was visiting the Lab at the time and was fortunate to be
present during the execution of the experimeni. For the case of a fiber, the reader may also like to
see additional details in the paper (Folias, 1989 ). Thus, it becomes clear that making comparisons
and extrapolations between 21D and 3D solutions based on physical intuition, at such
neighborhoods, is not only difficult but also not advisable because of the boundary layer presence.
Interestingly enough, based on some further numerical work carried out by the author for these
type of problems, he was able to conclude that the region of influence of this boundary layer is
restricted primarily to within approximately 10 % of the respective ratios of. hole radius to half
thickness, or fiber radius to half thickness, or half crack length to half thickness in the case of a
crack.

Returning back to our previous set of questions, in order for us to provide definite
answers to questions (ii), (iii) and particularly (viii), we must know apriori the order of the stress
singularity that prevails at such critical corners, where the crack front meets a free surface. It
becomes essential, therefore, that we must determine its value.

Tt is costing the world billions and billions of dollars as a result of these type of failures,
that almost always initiate at free surfaces and at such critical locations, needless to say the loss of
so many lives. [t is imperative, therefore, that a Fracture Community seeks an accurate and
reliable local surface fracture criterion, which practicing engineers can use to guaranty the safety
of a structure against catastrophic failures.



2. The general solution of a 3D Griffith crack.

Let us consider the equilibrium of a homogeneous, isotropic, and linear elastic, layer that
occupies the space |x| <o, [y| <o, |z| <h and which contains a finite, plane crack along its xz-
plane (see Fig 3). The crack faces, defined by |x| <c, y=+0, |z <h, as well as the plate faces
|z| = A, are assumed to be free of stress and constraint. The loading is assumed to be applied far
away from the crack and along the outer periphery of the layer, i.e. along the boundaries
pel, D > oo

In a previous paper (Folias, 1975 ), the author was able to derive a general 3D solution for
the displacement and stress fields of the 3D Griffith crack. The solution was expressed in terms
of Fourier Integrals and is valid throughout the region of the plate, including the corner points.
From this general solution, he was then able to derive an asymptotic expansion in powers of
n=r/(h-z), which is applicable in the “inner layers” of the plate and all along the neighborhood
of the crack front (see Folias 1975, eqs (90)-(98)). By expanding this asymptotic solution to also
include higher orders of 7 , one then has, what the author refers to, as the  inner layers
solution, which is valid for all z <h - & | where € is a very small quantity.

In the same paper, the author also ventured to derive an expression for the stress o, ,
which was to be applicable to the “outer layers” of the plate and very very close to the free
surface (see p. 670 of the above reference), by pushing the limit as z tends to h. Unfortunately, he
was only able to express this limit in terms of Fourier integrals, but not explicitly.

In the present paper we will construct, based on the general solution, an asymptotic
expansion which is to be valid within the region sector ¢ = (h—2z)/r < 1. While the inner
expansion on the other hand, reflects the region sector ¢ = (h—z)/r > 1. The two asymptotic
expansions are then to be matched on the cone surface defined by ¢ =(h—2z)/r =1. A cone

surface that has its apex located at the corner of the crack and which it opens in the interior
material of the plate.

What the author failed to recognize in 1975 was that this matching surface of the two
asymptotic expansions was actually “slanted “ rather than “ parallel “ to the free surface of the
plate, something that he did not realize until the year of 2000.

3. Construction of the outer expansion in the neighborhood of the corner point.

The primary objective of the present analysis is to construct an asymptotic expansion that
is to be valid within the immediate vicinity of the corner point and its adjacent free surface, i.e..

the sector region ¢ = &2 <L and all 6 . Particular emphasis is to be placed on the order of the
stress singularity that prevails at such corner regions. As it was previously noted, such information
will be of great practical importance for it will help us obtain good estimates for the fatigue life
span of a structure, in the presence of smail surface cracks.

In order to accomplish this, we will be guided (i) by the general 3D solution, for the
equilibrium of linear elastic layers, which the author constructed in a previous paper (Folias, 1975;



Folias, 1976) and which, he subsequently cast into a much more convenient form (Folias 1988a ),
and (ii) by the author’s paper on the solution of the stress field at the intersection of a hole and a
free surface (Folias, 1987 ). Thus, we may assume the homogeneous displacement field to be of
the form, where x,y,h—z, and r,h—z, 6 now reflect the local coordinates along the crack front :

(i) in rectangular cartesian coordinates :

= 7”_’—2% 2o f+®)+ @
v(h) _ 2 ay v f+0)- B @ (1a) - 32)
wh = 771_—25 (=2vo f+ D)
or
(#1) in cylindrical coordinates :
ul = ——26 @v af+d))+,——a%
v(oh) m2 1 60 (200 f+ @) — g (1b) - (3b)
Wi = m— 2 62 (2o /+ @)
where the functions f and g satisfy the 3D Laplace’s equation, and
Vo=1-v, m=+;, and f(r,(h-2),0), g(r,(h—2),0) €)
=—(h-2) % . ©

To this, one may also add, if and when it is subsequently needed, the corresponding
particular solution which, at this time for the sake of convenience, we chose to write in
rectangular cartesian coordinates. The reason being that later, or in the future , one may have to
use it in that form in order to deal with the boundary condition 7, , aty=0 :

p dlq 1,8

u®) = *{_ Vo T ma 2 6\2 (6)
4 o o, o
V) = ay{ m;"l] - P -) 6; - m+1 2’ axzq} (7)
1 6 1
W(P) = 5 m+1 ‘“2 axlq > (8)

where in the above we have also adopted the additional definitions

Vo=1-v ; v=_Poisson's ratio )



f=F cos(ab) (10)

g=G sin(al) (11)
a=n+%, n=0,1,2, ... (12)
F= -0 +(h—2)%)"4,{P2( 22y ¢ pre (i85 2y (13)

= L2+ (-2 B (Po( 452y + P52}, (14)

Moreover, the coefficients 4, and B, are constants which are to be determined from the
remaining boundary conditions and where P stands for the Lagendre’s function. Additionally, the
functions 7, , /, are 2D solutions to Laplace’s equation, i.e.

I =Ry r*1) cos((n+)0), n=0,1,2, .. (15)
I, = RRpy 1™ 1) cos((n+2)0), n=0,1,2, .. (16)

Perhaps it is appropriate at this point to emphasize that, the functions fand g, by virtue
of their construction, satisfy (i) Laplace’s 3D equation, and (ii) their corresponding
displacement functions satisfy also the 3D Navier’s equations, as well as (iii) the free of stress
boundary conditions on the plate face z = h. Thus, it remains for us to satisfy only the remaining
boundary conditions on the plane y = 0.

4. The boundary conditions on the plane y = 0.

Without going into the mathematical details, the boundary conditions 7,, and 7, , on the
plane y=0, orat ( = 0,7 , are automatically satisfied, provided the following two
combinations vanish respectively

2m 1 ob 0g

T m=2 TFO—J'__E??: (17)
2m 9 18 g g
Wy as ATl ~2 2=, (18)

The reader may notice that in writing equation (18) we have omitted the 7% term. This is
because these terms represent an expansion in ascending powers of /7 which are to be taken
care of by an alternate solution leading to a (- 14) order of stress singularity.

But, by virtue of'its construction, our solution also satisfies the above equations all along
that portion of the plane where 0 =0 and ¢ <1, due to the presence of the factor sin(a 6) .

Thus, one needs to satisfy equations (17)-(18) only along the remaining portion of the plane,
where O=m and &< 1.



Recalling next that a=n++, n=0, 1, 2, ..., it is clear that our solution up to this point
is valid for every value of » . Hence, by the principle of superposition, the sum of all of these
solutions, from n=0 to oo, is also a solution. This, therefore, provides us with two general
functions, each of which leads to an infinite series. The unknown constant coefficients 4, and
By, n=0,1,2.3,4,., are then to be determined, by satisfying the two conditions, i.e. eqs.
(17)-(18), all along the plane sector (/=rm and ¢ <1 ,interms of the first two coefficients
Ao, Bo . In general, the constant coefticients will be functions of the material properties as well
as of the external loading.

Next, each of the equations (17)-(18) may be written as an infinite series of the two
variables ¢ | and r ,where

E=(h-2)/r. (19)
S. Setting up the system.

Returning next to the functions f and g one has within the sector region (h-z) <r :

= 47+ (=2 £ AP L) 1 PRt (20)
_ 1.4 Ny, - 2v. s (B=2) wog (h=2) :
g= 7+ (=21 X B {PP(i =) +P}(~i—)} sin(al) . (21)

By direct substitution, the reader can easily show that the above asymptotic expansion satisfies
(1) all the governing equations, and ( ii) all the boundary conditions on the free surface z=h .

The above expansion should finally help to settle the question that was raised by Burton
and Sinclair in 1984, whereby they misinterpreted the author’s 1975 asymptotic expansion (Folias

1975 ) and erroneously concluded that his solution was not satisfying the boundary conditions on
the free surface |z |=

In order for us to get a better insight and feel as to what these functions look like in terms
of elementary functions, we will try next to simplify the first four terms of the above series
expansion. Such information would be very helpful in making physical interpretations in the future

= #(}"2 +(h—2)%)% {4y cos(2v, arctan(gli%zl)) cos(30) +A1(cos(2v, arctan(-(/l}z—)-)) 4

1 (h-z

+55 7 Qin(2vo 22)
h-z 6 v, h—z . h—
42 (1~ (4; ) : ,2) ) cos(2v, arotan( % )) (4v’ N ) sin(2v, arctan(* ,Z), 20)}
— 7)2 i
+A43 (83— 8v,—30v, & )cos(2v0 arctan(* +(24v2-9-15 i”.rj_)) s

(h:z)))) cos(ZO+..} ; (h-2)<r

sin(2v, arctan(



and

= #(r2 +(h—2)?)"{Bo cos(2v, arctan( U )) sin(36) +B1(cos(2v. arctan(@)) -

a3 ¢ sin(2v, arctan(%2))) sin(3 6) + (23)

-2)? h- o (-2 . h- .
+B, ((1- (4v§_1) (hrf ) ) cos(2v, arctan(( rz))) +7 46v%v_1) s sin(2v, arctan(( = ) sin(36) +

—Z —Z - z)?
+B3 ((8v3 — 8v, — 30v,52) cos(2v, arctan(%52) + (24v2 — 9 — 15820

2 sin(2v, arctan( %52 M) sin(GO+..} ; (h-2)<r

Utilizing spherical coordinates, it is interesting to see the alternate form of the function f
which becomes

1
2vc>—2

f= 3W cos(2vo@) {Aocos(70) +A1[1 + 75 tan(g) tan(2v,$)] cos(36) + 24)

+A,[1 - ﬁ tan%(¢) + 4:2”_] tan(¢) tan(2vog)] cos(%H) +..} b=v, ;0 <7/4,

where ¢ now represents the angle from the free surface (see Fig. 4).

Similarly, the function g attains the same form except that the A’s now are replaced by
B’s and the cos( ) terms are replaced by sin( ) terms. Naturally, transforming the expressions
(22)-(23) from cylindrical coordinates to spherical coordinates does not represent a nouveau
approach to this problem, but it simply provides us with some additional physical insight.

Returning next to the remajning boundary conditions, i.e.. eqs. (17)-(18), one finds upon
substituting the expressions (3«1?)—(?32) into the egs, the unknown coeflicients A[n], B[n] for

n=20.0 (see Appendix A, Maple print out). The first few coeflicients of which, for a Poisson’s
ratio value of v=0.3 , are

B[1] = 1.123736260 B[0], B[2] = 0.1354236058 B[0], B[3] = —0.004092208002 B[0], ...

A[1] = 0.6000000012 A[0] +2.283613918 E[0]

)

A[2] = 0.2000000004 A[0] +0.5789701630 B[0], (25)
A[3]1=-0.01000400162 A[0] — 0.02723692495 B[0], ...
The reader should notice that the magnitudes of these coefficients A,, B, decrease as n

increases, a result which indicates that our numerical solution converges. Moreover, one may
increase the number of coefficients, if a more accurate numerical result is desired, by taking into



account more powers of ¢ . Hence, both the shear stresses 7,, and 7, have also been shown
to be satisfied, all along the plane y=0 and £ <1, i.e. along the two sector planes

0=0 and O0=n and withinthe sectors 0 < <m /4, or 3n/d<d<m. (26)

The reader shou]d be cautioned for the above asymptotic expansion is valid only along the
cone sector ¢ = - < 1, and that the actual matching between the two inner and outer
asymptotic expansmns takes place on the cone surface ¢ = 1. The author, furthermore, believes

that this cone surface is very close, il not on, to the tangent line which joins the corner crack point
with the shear lip envelope point that lies on the plane y = 0.

Finally, the normal to the crack faces stress g, also vanishes along the plane 0 =1, in
view of the presence of the factor cos(a 0) . Thus, the above represents a candidate solution,
which solution, by direct substitution, can easily be shown to satisfy ( i) all the governing
equations, ( ii) all the boundary conditions on the plate face z = h, and (iii) all the required
boundary conditions on the plane y =0 and ¢ < 1. (For ¢> 1, the inner expansion (Folias
1975) was shown to satisfy the same boundary conditions for tha( region : see the following
section). Consequently, the above represents, locally, a candidate solution which other

researchers have missed . This suggests, therefore, that all other existing in the literature solutions
are basically incomplete .

It may be emphasized here that Kawai (Kawai et. al., 1975; Smelser, 1979), even though
he did not assume the exact and natural local form of the solution, he did also notice the
presence of this singularity, but as he was increasing the number of equations in his truncated
numerical system he began to experience severe convergence problems . Kawai, however, just like
the author, did recognize the importance that, in the neighborhood of the corner point and its free
surface, the exact and not the approximate satisfaciion of the boundary conditions at z = h was
essential. This represents an important and subtle point of departure between his and other
analyses presently available in the literatuce. Moreover, satistying an integrated boundary

condition is certainly not the same as satisfying the c,\act one, especially when it comes to such
critical locations.

6. The asymptotic expansion ia the inner layers .
On the other hand, along the remaining sector region, y=0 and £ > 1, the inner

expansion was given in reference (Folias 1975 ), whereby the boundary conditions (17)-(18) were
shown to be satisfied. Alternatively, one may also cast the inner expansion in the alternate form

f= %[r2 +(h—=2)21"°{[AA[0] cos(2v, arctan(g=5)) +BB[0] sin(2v, arctan( (hf =9)] cos(30)

3 (h-2) . 3
+AA[1] [- WCOQQV arctan(g;t 7)) + Tro@vo-Gvern r SIN2Vo arctan((hrz) )] cos(50)

+BB[1] [r((h(];)2‘+);2)1/2]|-(2\0 ((,,_,))2+ 1) cos((2v, — l)arctan((h ,))) + (27)

+H2vo = 1) sin((2v, — 1 arctan(g5))] cos(30) +..} ; < (h-z)



however, additional terms of a similar nature may also need to be included.

Similarly, the function g has the same form except again that the cos( ) terms are replaced
with sin( ) terms and the coefTicients are different.

7. Matching the two asymptotic expansions.

As it was previously noted, the inner and outer asymptotic expansions are then to be
matched on the cone surface {=1o0r (h—z)=r andall @ . This matching, requires the
continuity of both functions f and g, as well as their respective, normal to the cone surface,
derivatives. The conditions then define the relationships that exist between the AA[n] and the
A[n] coetlicients, etc.

8. Discussion.

On a separate note, the form of the above general but local to the surface, 3D, asymptotic
solution, i.e. (eqs (22)-(23)), may also be used to solve a whole class of problems involving
dissimilar materials with different material angles and their interfaces which arise in the area of
composite material systems, just like Williams ( 1952 ) so very well articulated in the 2D case of
wedges. Such information is very much desirable for practical applications. What made the
William’s approach so powerful, was the fact that in his basic assumption

(i) he had the complete and natural form of the solution that prevails at such, 2D, corner
points

(i) the solution, in that neighborhood, was separable in the simple coordinate system
which he considered

It is the essence of these two fundamental characteristics that the Williams’ solution embraces

that made his method so potentially attractive and functionally so powertul for the study of 2D
material wedges.

Historically, general solutions of this type serve in a field as superhighways, that enable
other researchers to use them and explore adjacent virgin areas of great practical interest and
importance, areas that may have otherwise been previously inaccessible. An example of this is the
well known general solution by Michell (see Timoshenko and Goodier, pp. 116-121). The
William’s (1952) asymptotic method of solution for the local stress field at the base of a material
wedge angle is another example. Still another example, is the author’s work for the method of
solution of a cracked spherical shell (Folias, 1965a), as well as a cracked cylindrical shell (Folias,
1967). The development of the mathematical details of these two problems, allowed Folias (Fung
ed. 1973) and his students to provide definite answers for the prediction of catastrophic failures in
pressurized vessels. Additionally, other rescarchers, e.g. Sih (1977) , Erdogan (see Sih 1977) and
their students, utilizing the same mathematical steps, were able to make their own contributions
and explore other related areas in pressurized vessels, as well as in, 2D, layered composite
material systems weakened by the presence of cracks. The above represent only a few such



examples of superhighways in the field of fracture mechanics, yet there are many more scattered
throughout the literature.

The potential benefits and impact that such superhighways have in the actual development
and advancement of a field are enormous, yet they remain in the literature virtually unnoticed as
insignificant contributions or as just simply being exercises in mathematics! This, the author
believes, reflects a somewhat shortsighted point of view . The reality of the matter, however, is
that mathematicians, in general, do not work on such topics. Only a different breed of engineers
develop such superhighways, e.g. Bool () in electrical engineering who conceived the first basic
steps of operational calculus. By attaching the stigma of simply being studies in mathematics, an
engineering research community, perhaps inadvertenly, may suppress and stifle progress in a field.
Rarely does a trial and error engineering approach leads to an optimal safe structural design.

A perfect example of that was the design against catastrophic failures in pressurized
vessels. Every time a researcher would change the value of one of the parameters in the problem
the experimental results would lead to a diflerent curve. Only an exact theory will take all these
curves and collapse them onto one (see Folias, Fung ed. 1973 ). Another example was the work
of Williams (1952), which provided us with definite answers for the prevention of wing type of
failures in fighter aircraft . The author considers his work to be one of the most important
contributions in design today. It is clear, therefore, that the use of appropriate and relevant
mathematics in the study of physical engineering phenomena, aimost always leads to much safer
structural designs with an added economic advantage. Such studies are not just exercises in
mathematics, but rather exercises in smart and economic engineering designs of a different level,
and as such they should be encouraged.

Finally, it may be noted that the construction of the above solution was only possible
because of the existence of the general 31 solution which the author previously developed
(Folias, 1975 and TFolias, 1988a ), lor the equilibrium of linear elastic layers. This general
solution was based on the application of the Fourier Integral Transforms, an approach which was
essential. More specifically, this general form of the solution revealed important and relevant
characteristics that ultimately allowed the construction of the natural form of the local solution,
at such corner seciors. This is precisely the reason why, in 1975, the author chose 1o use the FIT
method of solution. Why ? Because it makes no assumptions, whatsoever, of its behavior at such
critical locations.

9. Conclusions,

Perhaps it is appropriate here to make a few general remarks and point out some
important physical characteristics that our candidate solution possesses

* all stresses g, Ty, 7). do vanish on the plane z=h
* the derivative of the stress ., , with respect to z, also vanishes at z=h
%k

all stresses are shown to be proportional to p~1/22"



all displacements are shown to be proportional to p/2=2"

as the value of Poisson’s ratio v tends to zero, the square root stress singularity
is recovered, which represents an exact solution

the author’s observations on numerical results made in a previous paper (Folias
1988a, pp. 65-68 ) are substantiated

similar type of results, as those reported for the case of a hole, are also expected to
prevail here too (Folias 1988b)

the results of the analysis suggest that, at the corner, the material can not sustain
such high stresses and as a result the ninety degree corner must smooth out
by rounding off first, before any relaxation, due to fracture, takes place

once the corner has been allowed to relax, by rounding of, then the crack
will advance at the center of the plate thickness

the crack front resembles that of the cross sectional area of the heart of a
sliced apple in half, whereby the crack front ¢ buckles if you will > and tunnels its
way into the middle section of the plate

finally, as one moves from ¢ =0 70 ¢ =n /4, along the plane 6= 0 (see Fig. 4)
we see that for ratios of (h—z)>r the function

S~ VI (h=2)C") {1+ 55551 {4o ...) (28)

which expression leads to the same asymptotic expansions reported by the author
in his first paper (Folias 1975 , Folias 1976).

In conclusion, there is no stress relaxation, as far as the stress singularity is concerned, at
such corner sectors. While it is true that, as one moves along the crack front and a little to the
right, there is some stress relaxation in the functions of &, ¢ , as one approaches the free
surface, but this is due to the fact that the solution there must meet the free of stress boundary
conditions. It is very much a similar eflect as that of a concentrated line load acting on a half
space ( this problem was studied by Filon, see Timoshenko and Goodyear pp. 53-59), in which
case the stresses have been shown to be proportional to

oy~ () sin(g) , (29)

where ¢ now represents the clockwise angle from the free surface. The reader may easily examine
the various limits, example as r tends to zero or as ¢ tends to zero, a condition that reflects a
limit of the form o0 x 0. Clearly, the limit depends on the path of approach.



Similarly, in the vicinity of the corner point and close to the free surface, the shear stresses
Txz and Ty, must vanish at z = h in order to satisfy the boundary conditions. Thus their behavior
there is of the form

T~ pCT sin(p).... (30)

which attains different limits, as one approaches the corner point along different paths. (for more
details, see comments made by the author pp. 65-68 , Folias 1988a and its connection to Filon’s
problem Timmoshenko and Goodier 1987 ).

Finaly, along the free surface and along the crack prolongation =0, the normal to the
crack faces stress oy, , for a Poison’s ratio of 0.3 becomes :

gy =—{8.0176 A9 +35.4515Bo} 07" ; 0=0, ¢=0 (31)
where the coefficients 49 and B, are proportionally to (-a,) .

On a practical note, the author in a previous paper has shown ( Folias et. al. 1990) that in
the case of a plate with a hole and for ratios of (a/h)> 0.5 a crack is most likely to initiate in
the middle section of the plate, while for ratios of (a/h) < 0.5 a crack is most likely to initiate
close to the free surface. Such information is of great practical importance in the design of high
performance aircraft (rivets or connections ), or in rivets of aging aircraft or in structural
connections for bridges, etc. It is now possible and relatively easy to derive a reliable fatigue
growth criterion for the lifespan prediction of a structure, in the presence of small surface flaws.
Such type of failures have been shown to be even more pronounced when lateral vibrations, and
or high temperatures, are present (see Folias 1968 ; Do and Folias, 1971). For the novice in the
field of Fracture, such a criterion usually requires two type of ingredients ( i) the type of stress
analysis provided above ( which reflects a 95 % of the total effort ) and (i) an energy balance and
or a fatigue growth analysis (which reflects another 5 % of the total effort ).

In studying the later, the author would like to acknowledge the work of G. Sih ( Fracture
Vol. 1), who in a very clever way utilized Ciaperon’s theorem to show how the strain energy of a
cracked material system can be evaluated in a very simple and very effective way, by knowing
only the crack opening displacement. The author has long considered this to be one of the most
important and major contributions in the field of Fracture. Perhaps the reader may also like to
retlect on the fact that, iit was not for the existence of the work of Inglis (1913 ), the Griffith
Fracture criterion perhaps may not exist | YVei, very few researchers are even aware of Inglis’s
work |

It is costing the world billions and billions of dollars, as a result of these type of failures,
that almost always initiate at free surfaces and at such critical locations, needless to say the loss of
so many lives. It is imperative, therefore, that the world Fracture Community develops a reliable
and accurate fracture criterion for the prediction of the fatigue growth of surface cracks, that
practicing engineers may use to guaranty the safety of a structure, against catastrophic failures.



Although this has been the author’s primary objective in his big picture, as he embarked in his 3D
work, the political games played, however, have been horrendous | But, can we afford not to
pursue every angle that may lead us to safer engineering designs ?

Finally, the question of infinite displacements has been addressed by Wilcox (1979), at the
request of the author. The mere fact that for certain Poisson’s ratios, v> 1/4 | the displacements
are singular at such corner points this does not imply that one may not be able to extract useful
and practical information from the solution. The 2D solution is a perfect example of that.
Although the stress field in 2D is singular at the crack tip , the well known 2D fracture criterion
provides us with very good results for the safety of engineering structures, as long as there are no
small surface cracks present. At such critical locations, the fatigue growth characteristics of small
cracks are very much different and as such engineering designers must include an appropriate
local geometrical correction fuctor to account for that.

10. Construction of a second solution in the neighborhood of the corner point :

In a similar manner, one has for a second solution within the sector ¢ < 1, the following

FF= (2 +(h=2)%) " AAA {02 72 + O3 (1 %5} (36)
GG = 2 (r* +(h-2)*)"BBB,{ 0% (i *52) + Q:"" (-1 é&gﬁ ) } - (37)

The above, therefore, represents another candidate solution which, in the event that it is
not linearly independent from the previous one, then requires the presence of a logarithmic term.

Insuch a case, the reader is referred to Wyllie (1975), for the standard procedure in recovering
the solution.

Additionally, the (- 2) order of stress singularity is also another candidate solution which

can be obtained by a similar type of analysis. TTowever, only the highest order is relevant and of
any practical value.

Finally, a remark is in order regarding the special case when Poisson’s ratio reaches the
special value of v = 1/4 , in which case the stresses are proportional

ap~pT (38)

a result which suggests that the displacements now are proportionally to In(p) . In such case, one
must differentiate the solution with respect to the parameter v, and then take the limit as v —» 1/4
(see Wyllie 1975 pp. 388-393 ), which then recovers the desired logarithmic term.
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> # APPENDIX A #
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=>
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i b:=vo (1)
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:> # THE FIRST FEW COEFFICIENTS #
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0

== factor( (B, (256 vo® — 1280 vo® + 4192 vo* — 9344 vo® + 11353 vo?
—7979 vo+2802) ) / (256 vo® — 1280 vo® + 4192 vo* — 10112 vo® + 12889 vo’
—9659 vo+6018) );

By (vo—1) (vo—2) (256 vo" — 512 vo® + 2144 vo® — 1888 vo + 1401)

" 256 v0° —1280 vo® +4192 vot — 10112 vo® + 12889 vo? — 9659 vo + 6018

4)

- factor(% ((256 vo® — 1280 vo® + 4192 vo* — 9856 vo® + 12377 vo?

—9099 vo+4690) By) / (256 vo® — 1280 vo® + 4192 vo* — 10112 vo*
+ 12889 vo® — 9659 vo + 6018) );

(5)
((256 vo® — 1280 vo® + 4192 vo* — 9856 vo® + 12377 vo? — 9099 vo



+4690) By) [ (256 vo® — 1280 vo© +4192 vo* — 10112 vo® + 12889 v’
— 9659 vo+6018)

| >
| >

oo (1024 mva® 4) — 5888 mvo’ A, +20608 m vo® A, — 3072 mvo® B,

— 53024 mvo® Ay + 9216 mvo® By + 6144 vo® B, + 81892 mvd* A,

— 21120 mvo"® By — 18432 vo® By — 77303 mvo® A, + 36096 m vo® B,
+42240 vo® By + 53049 m vo® A, — 25164 mvo® B, — 72192 vo® B,

— 18054 mvo A, + 8076 mvo By + 50328 vo© By, —4608 m B, —16152 vo B,
+9216 By) / (mvo? (256 vo® — 1280 vo® + 4192 vo* — 10112 vo® + 12889 vo?
— 9659 vo+6018) (4 vo—3) (vo® —1))

Ay = 1 1024 mvo® A, — 5888 mvo’ A, + 20608 mvo® A, — 3072 mvo® B (6)
37 280 O

— 53024 mvo’ Ay+ 9216 mvo® By + 6144 vo® B, + 81892 mvo® A,

— 21120 mvo" By — 18432 vo® By — 77303 mvo® A, + 36096 m vo® B,
+42240 vo® By + 53049 mvo® Ay — 25164 mvo® B, — 72192 vo® B,

— 18054 mvo Ay + 8076 mvo B, + 50328 vo® B, — 4608 m B, — 16152 vo B,
+9216 B,) /(mvo2 (256 vo® — 1280 vo® +4192 vo* — 10112 vo® + 12889 vo?

—9659 vo+6018) (4vo—3) (vo*—1))

= < (1024 m Vo A, — 5888 mvo’ A +20608 mve® 4, — 1536 mvo® B,

— 53024 mvo® A+ 4608 m vo® By + 3072 vo® B, + 81892 mvo® A,

— 10560 mvo® B, — 9216 vo® By — 77303 mvo® A, + 22656 mvo® B,
+21120 vo* By + 53049 m vo® Ay — 17190 mvo® B, — 45312 vo® B,

— 18054 mvo A, + 6054 mvo B, + 34380 vo© B, —4608 mB,—12108 vo B,
+9216 By) / (4 vo—3) (256 vo® — 1280 vo® + 4192 va* — 10112 vo?

+ 12889 vo® — 9659 vo + 6018) vom);

Ayi= % (1024 mvd® Ay — 5888 mvo’ A+ 20608 mvo® A, — 1536 mvd® B, )

oo

>A3

>A2

— 53024 mvo® Ay + 4608 mvo® By + 3072 vo® B, + 81892 mvo® A,
—10560 mvo"* By — 9216 vo® B, — 77303 mvo® A, + 22656 mvo® B,
+21120 vo® By + 53049 mvo® Ay — 17190 mvo® B, — 45312 vo® B,

— 18054 mvo A, + 6054 mvo B, + 34380 vo© B,—4608 m B, — 12108 vo B,
+9216 By) / ((4 vo—3) (256 vo® — 1280 vo® + 4192 vo* — 10112 vo’




+12889 vo® — 9659 vo+ 6018) vom)

> A= % (1024 mvo® Ay — 5888 mvo” Ay + 20608 mvo® Ay — 512 mvd® B,

— 53024 mvo® Ay + 1536 mvo® By + 1024 vo® By + 81892 mvo* A,

—3520 mvo® By— 3072 vo® By — 77303 mvo® Ay + 8576 mva® B, + 7040 vo' B,
+53049 mvo® Ay — 6754 mvo® By— 17152 vo® By — 18054 mvo A,

+ 2466 mvo B, + 13508 vo© B, —4608 m By — 4932 vo B + 9216 B) / ((4vo

—3) (256 vo® — 1280 vo® + 4192 vo* — 10112 vo° + 12889 vo® — 9659 vo

+6018) vom);

A= % (1024 mvo® Ay — 5888 mvo’ Ay +20608 mve® Ay —512 mvd® B, (8)

— 53024 mvo® Ay+ 1536 mvo® B, + 1024 vo® B, + 81892 mvo® A,
—3520 mvo* By — 3072 vo°® By — 77303 mva® A, + 8576 mvo® B,
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-arctan(xi)) + b -x1-sm(2-b-arctan(x1))) -cos(—z— -theta) +A[2]- ( (1

. (A[O]-cos(Z-b-arctan(xi) ) -cos( % 'theta) +A[1]- (cos(Z-b

TP -Xi-sin(2-b-arctan(xi))
-cos(%-theta) +A[3]-((-30-b-6° —8-b +8-1°) -cos(2-b-arctan(xi) ) + (-15

& 241 —9)-xi-sin(Z-b-arctan(xi)))-cos(%-theta)) :

> EQ:= simplify[diff(ﬁ v, r)+ lr-diff(f, r) +

z)):
(¥’ + (h—2)?)
> g =
(2)

r2

1.

2 diff(f, theta, theta) + diff(f, z,

b

. (B[O]-cos(2~b-arctan(xi) ) -sin(%-theta) +B[1]- (cos(z-b
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-arctan(xi)) + %'Xi-sin(Z-b-arctan()d))) -sin[%-theta) + B[2]- ( (1

2-b
3 2 . 6-b
— -E” |-cos(2-b-arctan(xi)) +
4-b° —1 g] ( (x1)) 4-0* —1

-sin(%-theta) +B[3]-((-30-b-8 —8-b +8-13) -cos(2-b-arctan(xi)) + (-15-&

*Xi-sin(2-b-arctan(xi))

+24-b — 9) -Xi-sin(2-b-arctan(xi)) ) -sin( % -theta) ) :

ft = diff(f, theta) :

ftp := eval(subs(theta = Pi, ft)) :
gp = eval(subs(theta="Pij, g)) :
PHItp := - (h— z) - diff (ftp, z) :

# THE BOUNDARY CONDITIONS ALONG THE SECTOR y=0 AND xi<1 #

.___2m PHItp . .
EQI: — R + diff(gp, r) :

subs( (h;z) =X, %) :
subs((h—2z)=rx, %):
subs((-2-h+2-z) =-2-rx, %) :
factor (%) :

~~

3
o 4r2 m=2)-(1+xX)vo-(2vo—1)-(2-vo+1)-%
Q1 := simplify
[[ (P (1+2))"

> QQI = series(Ql, x, 10) :

> eval(subs(x=0, QQ1));

! 0 9
>

> simplify( coeff(QQ1, ) );

i 0 (10)
>

> simplify( coeff(QQ1, x*)):

] 0 (11)
> #ETC #

L__>

=>

=>

EQz:= £ aiff (12, r) ~ diff(gp. v, v) ~ diff(ap, 2. 2)
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SLIbS( =X %) :

subs((h—2z)=rx, %) :
subs((-2-h+2-z) =-2-rx, %) :

(h—2z)
r

factor(%) :
5
— L irpli 32 %r2.(vo—1)- (4
Q2 := oot ) —1) [SImpllfy[ (142" %-r--(vo—1)-(vo+1)-(4-vo

—~5)-(m—2)-(4-vo—9)-(2-vo—1)-(2-vo+1)-vo- (1 +x2)-(v02—1)]-1] :

QQ2 := series(Q2, x, 10) :
subs(x =0, QQ2);

0 (12)
simplify( coeff(QQ2, %) );

0 (13)
simplify/( coeff(QQ2, x*));

0 (14)

# ETC #

# EXAMPLE : THE NUMERICAL VALUE OF THE COEFFICIENTS FOR POISSON"S
RATIO OF 0.3 IS GIVEN BELOW #

07— L.
vo:= 0.7, m 03’
vo:=0.7
m:=3.333333333 (15)
evalf (B[1]);
1.123736260 B, (16)
evalf (B[2]);
0.1354236058 BO (17)
evalf (B[3]);
-0.004092208002 B, (18)
# ETC #
evalf (A[1]);

(19)



0.6000000012 Ay +2.283613918 B, (19)

> evalf(A[2]);
0.2000000004 A, +0.5789701630 B, (20)
> evalf(A[3]);
-0.01000400162 A, — 0.02723692495 B, (21)
> # ETC #

| >

> # CONCLUSION : THE VALUE OF THE COEFFICIENTS A[n] AND B[n] DO
| DECREASE AS n INCREASES, SUGGESTING CONVERGENCE #

| >
> # REMARK : IN THE EVENT THAT ONE IS INTERESTED IN EXTENDING THE
SERIES TO SAY UP TO COEFFS A[10] AND B[10] , THEN THE SHEAR

STRESSES WILL BE SATISFIED UP TO ORDER (x?)'°
RESPECTIVELY AND SOON.... #
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APPENDIX B

A POINT OF CLARIFICATION :

The main goal of the above paper was to show only what the prevailing strength of the
stress singularity is, at such corners. As a result, eqs. (20)-(21) reflect only the first term of many
others of a similar nature. The reader, however, should realize that up to this point of the analysis
the parameter b= v, is still largely arbitrary. Consequently, the general form of the function

fis:

fo b B F Ay 12+ (- 92100 (PB4 PIT E52)) cos(al) |
which for k=0 reduces to eq. (20). But, for purposes of showing what the order of the stress
singularity is, one really needs to consider only the first term.

Similarly, the general form of the inner expansion of the solution may be written in the
form :

0 r 1 r
f=F T Al (h-2*(GE5)™ oFy ((b+ 5§+ 3a,-b+ i +1a1+a,—555) cos(ad).
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Fig. 1 Maximum stress concentration factor versus radius to half thickness ratio.
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Fig. 2 Infinite plate with a circular hole.
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Fig. 3 Infinite plate with a crack.
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Fig. 4 Local geometry at the corner point.



