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t\bstrrct --An eigenfunction expansion is developed for the determmution of the three-dimensional 
stress tield in fhe neighborhood of the intersection of the free edge of a hole and an interface in a 

laminated composite plate. For transversely isotropic laminae. the swss field is shown to possess a 
weak singularity whose strength depends on the material constants. the fiber orientations of the two 
adjacent laminac as well as the polar angle 0. Results for [0 *YO ]. [O ,70 1. [0 !4S 1. and [O ;20 ] are 
presented and the best and worst fiber orientations are identified. 

Finally, the interlaminar stresses are computed and the variation as a function of the angle 0 
is identified. The circumferential stress u,*, is shown to possess a small jump xross the interface. 
Results for its behavior in the intcriar of cxh layer arc alsc) given. 

I. I STRODI JCTION 

I)cspitc c~rcful design. practically cvcry structure contains stress conccntrntions due to 

holes. Bolt holes and rivet holes arc ncccssary components for structural joints. It is not 

surprising. thcrcliwu. that the majority of scrvicc cracks nuclcatc in the vicinity of II hole. 

While the subject of stress concentrations is cert;iinly famili;~r to cnginccrs, the situation is 

signilicantly more complex in the c;Isc of high-pcrli)rninlicc I;lminatcd composite materials. 

The prcscncc of ;I hole in the laminate introduces signilicant stress contributions in the third 

dimension which croatc ;I very complicated three-dimcnsion;d (3-D) stress lield in the 

vicinity of the hole. Morcovcr, this complex state of stress may dcpcnd on the stacking 

scquencc of the lamim~tc, the libcr orientation of each lamina as wrll as the material 

propcrtics of the fiber ;lnd of the matrix. Ultim;ltcly, these stress concentrations form a 

primary source of damage initiation and property degradation, particularly in the presence 

ofcyclic loadings. Recent rxpcrimcntal invcrtigations carried out by Bakis and Stinchcomb 

(19X6) on graphite epoxy laminates which have been wcakrncd by ;I circular hole give us 

;I bcttcr insight of this damage growth dcvelopmcnt under the action of cyclic loadings. In 

gcncral. the progression of this damagrd process may bc characterized 3s (i) debonding 

along tibcr-matrix intcrlaccs. (ii) matrix cracking parallel to the fibers. (iii) matrix cracking 

bctwccn fibers. (iv) delamination along the intcrfucc of two adjacent laminac with diffcrcnt 

fiber orientations. and (v) fiber brc:tkilgc. 

Thus, if rational designs using fiber-rcinforccd-rain matrix composite Iaminntes are 

to bc made. their performance under static, dpornic. fat&c and cnvironmcntal loiids riced 

to bc prcdictablc. The first step towards this goal is the rcaliziltion that the ultimate failure, 

as well as many other itspccts of the composite behavior. is the result of the growth and 

accumulation of microdamagc to the tibcrs. matrix ilnd their intcrfaccs. Thus, it appears 

that any gcncrally successful model of performance and failure must incorporate the etTects 

of this damage in some way. This certainly represents a challenge. In this paper, we will 

address only one form of such damage, that of delamination. 

Delamination has long been recognized as one of the most important failure modes in 

laminated composite structures. The growth of a dclaminntion may result in a substantial 

reduction of strength and stiffness of the laminate. The identification, therefore, of such 

locations in ;1 composite structure is of great interest to the designer. Experimental studies 

by Pipes CI nl. (1973) have shown that the delamination mode of failure is most likely to 
initiate iIt the free edges. One conjccturcs. therefore. that the stresses at the intersection 
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bctwccn ;I frcu cdgc anil an intcrfacc may well bc singul;ir. Intlccd, rcccnl analytic;il invcs- 

ligalions (Wang and Choi. 19X2: Zwicrs CI (11.. IOX?) on straight free cdgcs show that ;I 

slrcss singularity exists lhcrc for certain lypcs of Ianiinatcs. 

Altcrmltivcly. :I curvcrl free cdgc is inhorcntly ;I 3-D problem which prcscnts grcatcr 

mathcnialical tiiliicullics. I:or this rcascln, past analysts have been based primarily on finite 

clcmcnl niclhods with sl;indard linilc clcmenls (Raiju and Grcws, 1982). as well as clcnicnls 

which incorporate the stress singularity in the formulation (Ryhicki and Schmucscr, 197X; 

Ericson 1’1 crl., 198-I). While such methods can provide us with stress trends in the boundary 

layer region, it is rather dillicult to extract from them with certainty the order of the 

prevailing stress singularity which is present at the material interface. Moreover. cxpcri- 

mental invcstigationscarrieci out on straight edges by Pagano (1974) show that the laminate 

stacking sequence can c!Tcct the static strength of the laminates. Similar experimental 

observations were also made by Daniel or (11. (197-I) on plates with circular holes. The 

subject, therefore. does warrant further investigation. 

Recently, Folias (1988) investigated analytically the intcrlaminar strcssrs at the bound- 

ary layer of a hole free-edge. but for two isotropic materials of diliizrcnt material constants. 

The analysis showed that the stress field thcrc posscsscs a wcakt singularity. which singularity 

dcpcnds only on the matcriai proportics. In this paper, the author extends this analysis to 

include also transversely isotropic laminuc with i1 [0 ‘/90 ‘1. [0”/45 ‘1 as well as other stacking 

scqucnccs. 

Consider the equilibrium of ;l laminated composite plate which occupies the space 

1.~1 < X. 1~1 < x and I:( < 31 and contains a cylindrical hole of radius N whose gcncrutors 

arc pcrpsndicular to the bounding planes. namely : = &- 211. The plate consists of laminac 

mudc of transvcrscly isotropic material with ;1 0 ‘190 ‘/O stacking sequcncc. Let the plate bc 

subjcctcd to ;1 uniform tcnsilc load CJ,, along the >*-iIxis and parallel to the bounding planes 

(see Fig. 1). 
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In the absence of body forces, the coupled differential equations governing the dis- 

placement functions 11. I’ and N are 

where the C,, terms are the material constants defining a layer which has its fibers running 

parallel to the .r-axis. For the next layer. the fibers will be running parallel to the Ja?tis and 

the governing equations will be obtained from the above by simply interchanging the 

appropriate coordinates. 

The stress~displncement relations for the layer arc given by the constitutivc relations 

(J) 

As to boundary conditions, WC rcquirc that: 

at : = 3_ 2: tllc SUrfilCC strcsscs must vanish (5) 

at : = +/I: the displacements ilnd surface strcsscs must match (‘5) 

a t r = II: the surfilcc strcsscs must vanish. (7) 

Finally, in order to complctc the formulation of the problem, the loading conditions far 

away from the hole must bc siitisfrcd. 

3. ASYMPTOTIC SOLUTION AT TtIE INTEI<FACI: 

The main objcctivc of this an:~lysis is to derive an asymptotic solution for the 3-D 

stress ficld in the immcdinte vicinity of the region whcrc the intcrfxc bctwccn two laminae 

meets the lice-of-stress surface of the hole. Thus. guided by iI gcncral i~nitlytic:ll solution 

for the equilibrium of it linear elastic isotropic I;Lycr which Foliiis and Kcutcr (I9YO) 

itnd Folias and Wang (1990) have rcccntly constructed. WC assume the complcmcntary 

displaccmcnt licld to bc of the form? 

(i) for lamina [O j 

(8) 

t Tho angle /I is defined in Fig. I 
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where 

III = -(C,,+C5,)[C,,sin’8+C,,c0s’II]+(C,,+C,,)(C~~+C,,)c0s’CI (11) 

I,: = -(c,J+c,?)c,, (12) 

I:, = (C,!+C,,)(Cz, +C66)sin’ U-(C2J+C,,)(C,I sin’U+C,,cos’U) (13) 

122 = - (C:3 f CdC,, (14 

I!, = (C,,sin~U+C,,cos~6)(C~,sin~U+C~~cos~U)-~(C,~+C,,)~sin~(2t)) (15) 

I,, = c,,c,,. (17) 

In writing (hc ahovc ctisplaccmcnts, wc uscti a cylindrical coordinate syslcm (see t:ig. I) 

antt, t’urthcrmorc, assumcJ that (r-u) << (1. In view ol‘thc ahovc, one. by tlircct substitution. 

can show? (h;lL the governing equations (I) (3) arc indccci satislictl prc)victctt the unknown 

function II satistics the ditYcrontial relation 

whcrc Lhc c ,, ( 2 and 1 J arc functions or C,, and U, and reprcscnt the roots of the cubic 

cctuation 

(I’)) 

with 

T, = (C,, sin’ 0+Cb6c0s2 U)(Cbosin’U+Cz2cos’ U)(C5,sin’ U+C4,cosz U) 

- :(C,2+Chci)‘(CSisin’O+C,,cos’U)sin’(ZU) (20) 

Tz = (C,, sin’ U+ C,, co? U)[CI,(C,, sin’ O+ Czz cos’ I?) 

+C44(C5Jsin2 U+C,,cos’I))-(C~2,+C~,)‘cos’O] 

+(C,1+Chb)[2(C~3+CJ,)(CJ,+CSJ)sin’U-(C~,+C,,)CIIsin~U]cos~U 

-(CI,+C55)2(C6(1sinzU+C22co~‘U)sinZU 

+ CS5(C,, sin’ U+ Cz2 co? U)(C,5 sin’ U+ Cd4 co? U) (71) 

t Write first the governing equations in cylindrical coordinates and then use the assumption. See 

Appendin A. 
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J-3 = CSJ[C33(C66 sin’O+C,, co? O)+C,,(C,, sin’O+C,, co? 0) 

-(C~,+C~4)~~~~2e]-(C,,+C,,)~C,,sin~e+[c,,sinZe+c,,c0s~e]c~,c,, (22) 

(ii) for lamina [90”] 

T, = C,sCuCss. (23) 

t$*) = c0se T,, I a* _ a* I a97 
a(r-a) ? +'**a+42 a(r-u)a(j_z)* 

w(2) = I T 
a4 a4 a4 aA 

- 
31 a(r-a)4 +r;* 

a(r-t2)*a(h-z)* 
+L I d(h-=)4 a(h-+ 

(24) 

(25) 

(26) 

&, = - (C1, + C,,)[C,, sin’ e+ c, , CO? e] + (c,? + c,,)(c, 3 +cSs) COS? e (27) 

I;* = -w2,+c4xss (28) 

L = ((C?J+CJJ)(C?I+Chh)sin’II-(C,~+Cs.c)(C~~~i~l?O+Cn,cos?il)) (29) 

L = -(C13+cJJ)c4p (30) 

[,, = (CL1 sin* U+ Cbr cos* U)(C,c sin’O+ C,, co? 0) -(C,? +C6h)‘sin’ 0 co? 0 (31) 

i,2 = CJj(Czz sin’ U+ C,, co? 0) + C,,(C,, sin’ U+ C, , co? U) (32) 

I;, = c4xJs. (33) 

and the function A(r-a. h -2) is of the same form as the H of layer [O’]. except that c ,, c2, 
c, are now replaced by the appropriate c,. il. 5, of layer [90“]. It remains, therefore, for us 
to construct a solution to eqn (18). To accomplish this, we introduce the local, to the corner, 
stretched coordinate system (see Fig. 2). i.e. 

r-u=pcosrp (34) 

(h-4 
- = p sin f$. 
J;; 

(35) 

Fig. 2. Definition of local coordinates at the interface. 
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Omitting the long and tedious mathematical details. the solution to equation ( 18). in terms 
of the local coordinates. is found to bet 

where 

I/I,(~) = ,-f,cos[(r-2)tan ’ (4:)] + B2 sin [(z-z) tan ’ (4:)] 

I 
+ ci-2, 

-~,(2’)sin[(r-l)(cb~-S)]dS (37) 

(35) 

(J(j) 

and 2. A, and H, (i = I, 2, 3) arc constants to bc dctcrmincd I’rom lhc boundary conditions. 
Substituting the previously constructed displaccmcnt field into the boundary con- 

ditions : 

at c/J = 0 : 

II 
,I) = I,ILI (4’) 

1‘ ,I1 = ,.(?I (43) 
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s$’ = 0 (49) 

$11 - 0 1: - (50) 

at 4 = rr/‘. _. 

g(2) = 0 
,, (51) 

TrH - 
12) _ 0 

(53 

r’i’ = 0 
1. (53) 

we arrive at a system of 12 algebraic equations. the determinant of which must vanish. This 

latter condition leads to the determination of the characteristic values 6. In general. the 

values of z depend on the material constants C,,, as well as on the angle 19. 

4. TllE ISOTROPIC CASE 

As a limit check. we let the laminae be homogeneous and isotropic but of different 

material constants. Without going into the mathematical details, the material constants of 

lamina I become: 

in view of which the displacements reduce to : 

(4 ” = cos I) --- 8 l?’ d’H 
_T + __~_~~ 
d(r-u)- q/t - z) - d(hL=)? 

,(,I 1) _ G - I 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

Notice that the O-dependence has totally been eliminated and that the function H now 

attains the very simple form 

Similarly. the fl collapses to the same expression except that the constants A, and B, are 

replaced by 2, and f?,, respectively. The numerical results for this case lead to the same 
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Fip. 3. Singularity strrngth for isotropic hminx. 

results as those rccontly rcportcd by i:oIi;ts (19x8). f-igurc 3, for cxamplc, depicts typical 
val11es or r. 

Returning rw.1 lo lltc algchraic syslcni (42) (53). if one considers the c;~~c of ;I 

graphilc/cpoxy luycr. with cocllicicnls C,, (Knighl. I9S2) : 

‘0.0325 I .03x I I .03x I 0.0000 0.0000 o.otM~- 

then the rcquircmcnt of the dctcrminant of the system to vanish Icads to a transccndcntal 
cquation for tho roots SL. The only roots of practical intcrcst arc those which lit in thy 
interval 5 < tic r < 6. The numerical results for the I2 x I2 system wcrc carried out in 
double precision. Omitting the long and tedious numerical details. the values of the charnc- 

tcristic 1 for [O i90 1. [0 170 1, [O ‘/45 ‘1 and [O ‘/30 ] intcrfaccsj’ arc shown in Fig. 4. Two 
important characteristics arc worth mentioning. First. the stress singularity is a function of 

the material constants C,,, the angle of sweep II and the fiber orientation of the rcspcctivc 
laminac. Second. the singularity strength for anisotropic materials appears to bc much 
weaker than that of isotropic materials. The latter may have severe conscqucnccs to the 
damage process and to the reduction of the overall strength in the plate. As a practical 

matter, if one plots the max (z- 6) as a function of the fiber angle orientation 0 for a fO’ifiq] 

interface one can identify the most and least desirable fiber orientations. This is depicted 

in Fig. 5. 
Similar stress singularity profiles (see Fig. 4) have also been obtained by Wang and 

Choi (1982) in their pioneering work on straight edges using a different method of solution. 
The present analysis complcmcnts this and shows that. for suRcienlly large holes, the results 
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Fig. 5. Usst and worst fiber orisnlalions. 

for curved edges will be the same as those obtained near a straight free edge provided layer 

orientations in the second problem are properly chosen to renect thecircumferential position 

of a point on the hole boundary and the interface. While this result was to be expected, it 

could not be taken for granted. This is because the latter method represents a discrete, 

rather than a continuous, approach and the outcome of the limiting process had to be 

established. Moreover, the present method of solution shows how a 3-D analysis can indeed 

be developed to include also this continuous dependence on the angle 0 and thus provide 

us with further insight on the construction of such 3-D solutions to transversely isotropic 

plates with more complicntcd flaw geometries. 

It may further be noted that the macromechanical approach actually underestimates 

the value of the stresses at such regions. For example, if we examine the local geometry 

from a micromechanical point of view. e.g. at U = 0” and for a [0“/90”] interface, one notices 

that the adjacent iibcr of layer [90’] intersects the free surface of the hole boundary 

perpendicularly. The explicit 3-D solution for the stress field in such regions is also known. 

In particular, for a glass fiber embcddcd into an epoxy matrix the stress singularity is found 

to be 0.2489 (Folias. 1989. 1990) while for a carbon fiber embedded into an epoxy matrix 

is found to bc 0.307 (Folias and Li. 1991). The former analysis assumes the fiber to be of 

an isotropic material while the latter assumes the fiber to be of a transversely isotropic 

material. Comparing these results with those of Fig. 4 it is clear that the stress singularity 

predicted by the macromechanical theory is indeed underestimated. Such information 

becomes essential for the proper estimation of the local damaged zone. This matter will be 
discussed further later on. 
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Fig. 6. Singularity strength for transversely isotropic Ianinac [O YO ] had on Ericson t’r trl. (IYXJ) 

data. 

In the cast of a [0 /LX) ] interface. the protilc of the characteristic value z versus fl is 

symmetric with respect to the lint 0 = 45’. The same behavior was also obtained by Ericson 

ct trl. (1984) by using finite clcmonts. The present results, however. exhibit a stronger 

singularity than that found in the above rcfcrcncc. The author attributes this to two factors. 

First the material constants wcrc ditfcrcnt and second it is rather diflicult to obtain accurate 

results for the singularity strength based on finite clomcnt analysts. On the other hand, it 

is imprcssivc indccd that Ericson (‘I trl. (I9H4) as well as Raju and Grcws (I%?) were ahlc 

to rccovcr the exact profile as il function of II and the rclativo magnitude. 

In order to niakc a proper conipirison with the results of Ericson (‘I ~1.. one should 

use the same material constants, C’,,, as they used. Computing, thcrcforc. the C’,, values from 

their data (see Appcntlix IS), our ilIl~llySiS gives the characteristic VillUCS dcpictcd in t:ig. 6. 

At 0 = 45 ‘, for cxaniplc, sl = 5.9755 or z - 6 = 0.0345. If WC’ now compare this value with 

that found by Wilrlg and Choi ( 19X2). for (1 +-I5 Striligllt crigc intcrfiicc, i.e. 2 - 6 = 0.0255. 

WC SW that the comparison is very good. The minor difycrcncc is probably due to the small 

variation of’ the C,, values used dcpcnding as to how they arc computed. Our results arc 

based on the C’,, values shown in Appendix B. The results in the region bctwscn 20 < 0 < 70 

compare very well with those reported by Ericson rf ul. On the other hand, for 0 < 0 6 20, 

our singularity strength is found to be slightly higher. and the chtiractcristic bell-shaped 

profile is prcservcd. 

Pagano and Pipes (1973) have shown that high-tcnsiic 6:: stresses are associated with 

decreased laminate strengths. This observation points to the importance of understanding 

the interlaminar stress behavior near free cdgcs in laminates. It is now possible to compute 

the interlaminar stresses adjacent to the hole surface. In particular. 

where the f,, arc rather long and complicated functions of the angles 0 and (f, and the 

material constants. The plots for CJ,:, r,,, r,,._, for a [0 i90 ] interface. arc given in Fig. 7. 

Notice that the maximum oz._ stress for a [0 ‘190 ‘1 intcrfacc occurs? at U = 33 . The result 

is in agreement with that found previously based on finite elcmcnts (Ericson et NI., 1084; 

Raju and Grews, 1082). 

The reader may also note that all the strcsstls arc normalized with rcspcct to a function 

C(O), which is negative. and may vary as one travels along the direction of 0. Marc 

specifically, the function represents the cocfficicnt 2,. Through a separate analysis, which 

is to be valid across the thickness of the plate, it can bc shown that the function is rclatcd 

to the magnitude and in-plane direction of the applied load D,). This part of the devclopmcnt 

tThc reader should also tnkc into account the fact that (6-n) is a maximum nt O* = 45 and that C(O) is 
nqallve. The results arc tuscd on data given by cqn (hi 1. Also. at 0 = 0. C(O) : - I .O(hjhe’a,. 
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Fig. 7. Interi~m~n~r stresses for B [o”jW] interface. 

is presently being completed, and the results will be reported in a follow up paper. In this 

second paper, the author also intends to couple the present macromechanical results with 

other newly derived results, which are based on 3-D micromechanical considerations. in 

order to predict local damage init~~ltion. The present analysis, however. does provide us 

with the relative magnitudes of the intcrlaminar stresses (see Fig. 8). Moreover, the solution 

in its present form is very gencrid, with the characteristics of the applied load being rctlcctcd 

only through the function C(0). 

The results show the shear stress r,._ to he rclativcly low throughout. On the other hand, 

the normal stress f~,, appears to bc dominant in the range - 30 ’ G 0 < 30 ‘, hcyond which 

the shear stress tc,: bccomcs ttlcc~~ntrollingstrcss, i.e. along 30” c 0 < 60 ‘, with its maximum 

occurring at 0 = 45 ‘. A clcarcr plot for the stress o,, at the intcrfacc is given in Fig. 9. 

I?nally, l:ig. IO clcpicts the jump which exists on the stress flu0 as one moves itcross the 

intcrfacc. i.c. at fb = 0’ and (b = 0 . . The maximum dilrcrcncc occurs at 0 = 0 and is 

approximately 27%. In f+‘igs 1 I and 12 wccomparc the stress &I at 4 = 0- and 0 = -90 ‘, 

and 6/zi at cp = O-+ and (c, = $90”. 

In view of the above, one may draw the following conclusions for a [O/90’] stacking 

seq ucncc : 

(d) 
(t’) 
(1’) 

(g) 

In the vicinity of the interface thcrc exists a boundary layer effect where the stress field 

changes ruthcr abruptly. 

The risk of delanlin~ttion initi;ltion is highest at 0 equal to 23”. 

As one moves away from the plane of the interface, the stress concentration factor in 

layer [9@~] decreases rapidly (see region -20 < U < 20 where debonding along fiber 

matrix interfaces is most likely to initiate). 

Substantial damage is expected in the region -40” < 0 c 40”. 

For the given set of material constants, C,, ~-6 is maximum at O* = 0: zz ($12). 

In gcncral, the magnitude of the singularity strength depends on the material constants, 

C,,, and on the fiber orientation of the two respective laminac. 

As one moves approximately one radius’ distance away from the hole surface, the s.c.f. 

(stress concentration factor) is expected to decrease to within 10% of the value of the 

corresponding case of a plate without a hole (Folias and Wang, 1990: isotropic case). 

6. DISCUSSION 

Delamination at free edges has been a problem of significant concern in the design of 

advanced fiber composites. The separation of the laminae, caused by high local interlaminar 

stresses and low strength along the laminae interface, may result in ineffective load transfer, 

reduction in stiffness and ultimately loss of structural integrity. In this study, the problem 

has been investigated by treating each lamina as a homogeneous, transversely isotropic, 
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Fig. 8. Inter~~~i~~r shear stress ratio for a [O‘iYO’j interface. 

Fig. IO. The stress concentration factor for q5 = 0’ and O-. 

material. Thus the micromc~h~ni~ efTects of fiber size arc not included, although a few of 

these effects, e.g. when a fiber meets a free surface, have been reported separately by Folias 
(1989, 1990). 

The analytical investigation of the 3-D stress field adjacent to the hole and in the 
vicinity of the interfaces of two laminac of [OJ/90”], and [0”/45”], and other fiber orientation, 
shows the stresses to be singular, c,, - p’ __ ‘. In general. the singularity exponent depends 
on the material properties, the corresponding fiber orientations as well as the angle of 
sweep. The results provide us with better insight for the proper understanding of inter- 
laminar stresses and the etrect which they have on the mechanism of failure. For example, 
for isotropic laminae the stress singularity is a rather weak singularity (<0.33), while in 
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transvcrscly isotropic laminac it can bc of a much higher order (<0.99). suggesting. 
thcrcforc, a grcatcr inIlucncc in the damage process. 

I’ipcs CI rrl. (1973) and I’agano (1974) postulated that throughout the thickness it is 
the stress o,, which is the main C;ILIW of delamination for polymer-based structural 
composites. This observation was based on rxpcrimcntal as wrll as analytical cvidcnce for 
laminatrs with diGrent stacking scqucncrs. Our analytical results arc consistent with this 
observation particularly in the region where 0 is small. Alternatively, for larger values ofU 
the shear stress ‘T#: plays a much more dominant role on interlaminar failures. Moreover, 
in the case of a [0’/90’] interpxe delamination is most likely to take place at 0 = 23”. The 
strain energy release rate may now be used in conjunction with the local stress field to 
predict delamination failures. This matter is presently under investigation. 

Finally, one may conclude that it is possible to reduce the likelihood of the delamination 
mode of failure and thereby increase the laminate strength. This can be accomplished by 
carefully considering the effects of the singularity curves, the stress curves. the load direction 
and the individual fiber orientations at each interface. Moreover, in future applications it 
may bc possible to choose the material constants C,, so that the cocfflcicnts of the singular 
terms of the intcrlaminar strcsscs vanish. 
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vjvjv;ti = v;vjvjti : 0 

Vi/l, = 0 

II, = ,J;-41.‘,(+) 

ThUS 
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where 

p-1= 
(r_a)?+ ?I$ 

P: (h-z)' 
(r--u)‘+ -~ 
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and 

CIC. for vi and vi. 

l?U 
i( f ._.“, = sin U 

3u COY u I3t.J 
l?.r J(r-a) 

- 1_1- + ._‘ ; ‘_ J(I 

l?V 
0s --=~~~f) 

JV sin U LJV 1-.,- - ____ _._ 
Jy J(r-u) t nu 

(1W 
,,. = -.-. 

02 

Such a substitution diminatcs the cross type of derivatives. Then utilize cylindrical coordinates and USC the 
assumption (r-U)/U << I. By direct substitution, one can then show that the simplilird governing equation is 
indeed satislicd provided that function If satistics eqn (18). 

From Ericson YI ul. (1984) data : 

APPENDIX B 

E, f = 13X GPa i?>: = E,, = 14.5 GPa 

G,~=G,,=G~,=s.9Cl?l 

V,: = Y,, = “2, = 0.21, 

WC compute : 

C ,, = 139.6381 

c,: = 3.9002 

c, ., = 3.9002 

c*x = 15.2779 

c*, = 3.2944 

c,, = 15.2779 

c,, = c,, = c,, = 5.9; 




