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BOUNDARY LAYER EFFECTS OF INTERLAMINAR
STRESSES ADJACENT TO A HOLE IN A
LAMINATED COMPOSITE PLATE
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Abstract — An cigenfunction expansion is developed for the determination of the three-dimensional
stress field in the neighborhood of the intersection of the free edge of a hole and an interface in a
laminated composite plate. For transversely isotropic laminae, the stress field is shown to possess a
weak singularity whose strength depends on the material constants, the fiber orientations of the two
adjacent laminac as well as the polar angle ¢. Results for [0°790 | [0,70]. [0 /45 }. and [07/20 ] are
presented and the best and worst fiber orientations are identified.

Finally, the interlaminar stresses are computed and the variation as a function of the angle 0
is identified. The circumferential stress o, is shown to possess a small jump across the interface.
Results for its behavior in the interior of cach layer are also given.

L. INTRODUCTION

Despite careful design, practically every structure contains stress concentrations due to
holes. Bolt holes and rivet holes are necessary componeats for structural joints. It is not
surprising, therefore, that the majority of service cracks nucleate in the vicinity of a hole.
While the subject of stress concentrations is certainly familiar to engincers, the situation is
signiticantly more complex in the case of high-performance kiminated composite materials,
The presence of a hole in the laminate introduces significant stress contributions in the third
dimension which create a very complicated three-dimensional (3-D) stress ficld in the
vicinity of the hole. Morcover, this complex state of stress may depend on the stacking
sequence of the laminate, the fiber orientation of cuch lamina as well as the material
propertics of the fiber und of the matrix. Ultimately, these stress concentrations form a
primary source of damage initiation and property degradation, particularly in the presence
of cyclic loadings. Recent experimental investigations curried out by Bakis and Stinchcomb
(1986) on graphitc-cpoxy luminates which have been weakened by a circular hole give us
a better insight of this damage growth development under the action of cyclic loadings. In
general, the progression of this damaged process may be charicterized as (i) debonding
along fiber-matrix interfaces, (1) matrix cracking parallel to the fibers, (iii) matrix cracking
between fibers, (iv) delamination along the interface of two adjacent laminae with different
fiber orientations, and (v) fiber breakage.

Thus, if rational designs using fiber-reinforced -resin matrix composite laminates are
to be made, their performance under static, dynamic, fatiguc and environmental loads neced
to be predictable. The first step towards this goal is the realization that the ultimate failure,
as well as many other aspects of the composite behavior, is the result of the growth and
accumulation of microdamage to the fibers, matrix and their interfaces. Thus, it appears
that any generally successful model of performance and failure must incorporate the effects
of this damage in some way. This certainly represents a challenge. In this paper, we will
address only one form of such damage, that of dclamination.

Delamination has long been recognized as one of the most important failure modes in
taminated composite structures. The growth of a delamination may result in a substantial
reduction of strength and stiffness of the laminate, The identification, therefore, of such
locations in a composite structure is of great interest to the designer. Experimental studies
by Pipes ¢t al. (1973) have shown that the delamination mode of failure is most likely to
initiate at the free edges. One conjectures, therefore, that the stresses at the intersection
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Fig. 1 Laminated plate of arbiteary thickness with a circular hole,

between a free edge and an interface may well be singular. Indeed, recent analytical inves-
tigations (Wang and Chot, 1982 Zwicrs ¢f al., 1982) on straight free edges show that a
stress singularity exists there for certain types of laminates.

Alternatively, a curved free edge is inherently a 3-D problem which presents greater
mathematical difficulties. For this reason, past analyses have been based primarily on finite
clement methods with standard finite elements (Raju and Grews, 1982), as well as clements
which incorporate the stress singularity in the formulation (Rybicki and Schmuescer, 1978 ;
Cricson e af., 1984). While such methods can provide us with stress trends in the boundary
layer region, it is rather difficult to extract from them with certainty the order of the
prevailing stress singularity which is present at the material interfuce. Moreover, experi-
mental investigations carried out on straight edges by Pagano (1974) show that the laminate
stacking scquence can effect the static strength of the laminates. Similar experimental
observations were also made by Dantel ef al. (1974) on plates with circular holes. The
subject, therefore, does warrant further investigation.

Recently, Folias (1988) investigated analytically the interlaminar stresses at the bound-
ary layer of a hole free-edge, but for two isotropic materials of different material constants.
The analysis showed that the stress ficld there possesses a weakt singularity, which singularity
depends only on the material propertics. In this paper, the author extends this analysis to
include also transversely isotropic laminae with a [07/907], [07/45°] as well as other stacking
sequences.

2. FORMULATION OF THE PROBLEM

Consider the equilibrium of a laminated composite plate which occupies the space
ix] < %. |yl < = and |z} € 2k and contains a cylindrical hole of radius a whose gencrators
are perpendicular to the bounding planes, namely = = +2h. The plate consists of laminae
made of transversely isotropic material with a 0°/90°/0" stacking sequence. Let the plate be
subjected to a uniform tensile load g, along the y-axis and paraliel to the bounding planes
(sce Fig. 1).

t Less than 0.33.



Boundary fayer effects of interlaminar stresses 173

In the absence of body forces, the coupled differential equations governing the dis-
placement functions u, v and w are

Cu ] 2! ’:z Cw
Cll’:{‘__:"-cbbé‘;f""ch- ‘+(Cl +C66) +(C|1+Cn) __'_=0 (l)

3211 2 C‘:: .1 (“:W
(C +Ch(‘) +C66~ 1+C*2‘. -»+C44. w+(C’l"-CJJ)..(:_=O (2)

Ctu cr otw &w iy
(C1|+Ch).‘ +(C1 +C44) —+C55 -’\‘ +Cy, ;‘ +Cs, 1‘?

=0, 3

where the C, terms are the material constants defining a layer which has its fibers running
parallel to the x-axis. For the next layer, the fibers will be running paralle! to the y-axis and
the governing equations will be obtained from the above by simply interchanging the
appropriate coordinates.

The stress-displacement relations for the layer are given by the constitutive relations

K C,y Cix Gy O 0 07 _('r\'-l
T,y 21 C:: C:} 0 0 0 (g
7. Cy Gy Gy 0 0 0 C::
= ) 4
.. 0 0 0 Cu 0 02, h
T, 0 0 0 0 C4 0 2.,
| Ty L0 0 0 0 0 Cul L]
As to boundary conditions, we require that:
at == +2h: the surfiuce stresses must vanish (5)
at == +h: the displacements and surfice stresses must match (6)
at  r=u: thesurface stresses must vanish. )

Finally, in order to complete the formulation of the problem, the loading conditions far
away from the hole must be satisfied.

3. ASYMPTOTIC SOLUTION AT THE INTERFACE

The main objective of this analysis is to derive an asymptotic solution for the 3-D
stress field in the immediate vicinity of the region where the interface between two luminae
meets the free-of-stress surface of the hole. Thus, guided by a gencral analytical solution
for the equilibrium of a linear clastic isotropic layer which Folias and Reuter (1990)
and Folias and Wang (1990) have recently constructed, we assume the complementary
displacement ficld to be of the formt

(i) for lamina [0 ]

u'" =sin {l i +! ¢ i 8
Heo(r—a)! TP e(h—2)f dr—a)o(h—2)} ®)

t The angle 0 is defined in Fig, 1.
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[y = —(Ciy+ Css)[Coosin™ 04 C12 €08 0] +(C 1+ Co)(Cas + Cuy) cos™ O (1)
Ly = —(C+Ces)Cyy (12

[ = (Cia+ Css)(Ca + Coe) sin® 0 — (Co1+ Cy)(Cyy sin* 94 Cq cos® 6) (13)
[ = —(Ca+Cys)Css (14

[y, = (Cy,sin* 04 Cyq c05? 0)(Cyo 5in* 0+ C1; c0s? 0) — L(C 24 Ce) P sin® (20)  (15)
[y = Cys(Cyy5in 04+ Cyp c08® 0) + Cs5(Cy 5in° 04 C,5 cos™ 0) (16)

Ly = CyyCss. (7

In writing the above displacements, we used a cylindrical coordinate system (see Fig. 1)
and, furthermore, assumed that (r —a) « a. In view of the above, one, by direct substitution,
can showt that the governing equations (1) (3) arc indeed satisfied provided the unknown
function £ satisfics the differential relation

oo IO - =0 s
0(r—-u)3+('0(/1—-:)2 Ar—a)’ {:(7(11——:)3 f)(r~u)3-H‘F'(h—:)3 =0. (8)

where the ¢, ¢, and ¢y are functions of C,, and 0, and represent the roots of the cubic
cquation

T, T 7
3 2 s 3 4
y_Lrox o =0, 19
¢ 7‘1 ¢ 'I‘I ‘ 7’! ( )

with

T, = (Cy, $In® 04 C e c08* 0)(Cog sin* 0+ Ca; cos® 0)(Csssin® 0+ Cyy cos™ 0)
— HCy14 Co6) (Cyssin® 0+ Cy,y cos® 0) sin® (20)  (20)

T, = (C,,sin* 0+ Cgqcos” 0)[C33(Ces sin* 0+ Cyy cos’ 0)
+ Cu4(Cyssin? 04 Cyyco8® 0) — (Cay+ Cyy)* cos® 0]
+(C1#+ Co)[2(Ca3+ Cu3) (C31 4 Css5) sin? 0 — (Cy + Co) Cyy sin® 0 cos™ 0
—(C 3+ Cy5)}(Cao sin’ 0+ C1, cos? 0) sin* 0
+ Cy5(Cygp 5in* B4 C,,cos? B)(Csssin* 0+ Cyy cos’ 0) (1)

+ Write first the governing equations in cylindrical coordinates and then use the assumption. See
Appendix A.
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T) = C55[C33(C66 Siﬂ2 0+ C22 Cosz 6) + C44(C55 Sinz 0+ C44 COS2 0)
- (C:) + C44)2 COSZ 9] - (Cl 3 + C55)2C44 Sin2 0+ [Cl 1 Sinz 6 + Ce(, C052 9]C33C44 (22)

T, = C33C44C55- (23)
(it) for lamina [90°]
. @ . @ oA
(2 = si 2 3

u Slﬂe{lna(r_a)z +1|.a(h_z)z}a(r_a)a(h_:)_ (24)

9? , 0° |

4D
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(2 _

Y ‘{E'ar-@‘+J“av—afah—32+“’ah—:r}aw—:) (26)
Iy = = (C13+ Cas)[Coosin? 0+ C,, c05? 0] +(C 3+ Cy6)(C 3 + Cs5) cos® 0 27
Iy = —(C23+Cas)Css (28)

= {(C“ +C44)(C2| +CM,) Sin2 ()—(Cl\ +C55)(C13 sin: ()+CM, COS2 0)} (29)

-~
"~
|

Ly = = (Ciy+Cs5)Cus (30)

11 = (C128in? 0+ Cyq cO8? 0)(Cog 8in* 04 C |, €082 0) — (C 15+ Coe) *sin® O cos’ 0 (31)
I}; = Cs5(Cpa5in® O+ C c08* 0) + C44(Coe sin® 0+ C,, cos? 0) 32)

I}y = C4sCos, (33)

and the function H(r—a, h—2z) is of the same form as the H of layer [0°], except that ¢,, €,
¢, are now replaced by the appropriate ¢,, ¢,, ¢; of layer [90°]. It remains, therefore, for us
to construct a solution to eqn (18). To accomplish this, we introduce the local, to the corner,
stretched coordinate system (see Fig. 2), i.e.

r—a=pcos¢ (34)
h—
=2 _ s sing. 39)
Ja
FRONT SURFACE\
INTERFACE — 39O Nt b1
® Boi
BACK SURFACE/ of—

Fig. 2. Definition of local coordinates at the interface.
SAS 29:2-0
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Omitting the long and tedious mathematical details, the solution to equation (18). in terms
of the local coordinates, is found to bet

~ ~

. . 1{? :
Hp.$) = p’{A, cos (2¢) + B, sin (x) + ;J Y (d)sin [x(d)—i))djj(-é—(p“ B (36)
where

Y () = {A:cos [(x=2)tan"' (¢,)]+ B sin[(x—2)tan "' (¢h,)]

1 AEIN ‘\x N
ey w;<:)sin[«'1—:><(z>:—:)1d;}(‘:;) .67

(x— 2) 0 /
L] N
\/I + —tan- ¢
£ ¢z
— = "“__’Zf,:’;';f_",f, T (38)
1Y Vv I+tant o

Walh:) = (::‘) ~ {.t‘cos [(1—4) tan ' (\/: tan ({)3>}
+ B sin [(1~4)mn : <\/(: tan (b1>J}. (39)
. [

G,
p L4+ " tan ¢,
Y= G (40)
P: | +tan’ ¢,

¢$, =tan ' (\/z' tan (})). 41

and z, A, and 8, (i = 1,2, 3) arc constants to be determined from the boundary conditions.
Substituting the previously constructed displacement field into the boundary con-
ditions :

atep =0:
u'h =t (42)
plhh =t (43)
Wil =yt (44)
ot = atl (45)
il =gl (46)
ol =1 (47)
atp = —(n/2):
gl =0 (48)

t Sce Appendix A for details.
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e =0 (49)
=0 (50)
atgp =n/2:
o =0 (51
i =0 (52)
(2 _
=0 (53)

we arrive at a system of 12 algebraic equations. the determinant of which must vanish. This
latter condition leads to the determination of the characteristic values a. In general. the
values of x depend on the material constants C,;. as well as on the angle 6.

4. THE ISOTROPIC CASE
As a limit check, we let the laminae be homogeneous and isotropic but of different
material constants. Without going into the mathematical details, the material constants of
lamina | become:

| —
Ciu=C=Cy= °< »”')Gl (54)
1 —2v,
Cas=Cs55=Coo=GC (55)
. . 2v,
Cio=Cyh=Cyy = |:24‘;—|- 1 (56)
in view of which the displacements reduce to:
0 G, 0? 32 0*H
) o 7
" SmUé’(r-—a){l--zv, [O(r-a): Jr(7(/1—-:)3]}8(/1—:)2 7)
i G, Ik 02 *H
W = cos @ . —
! cos or—a) {l —2v, [O(r——a): + 0(/1-:)2]} d(h—2)? (58)

0° 0° I—v O*H I*H
o 1
W =G, {(3(r-—a)2 + 0(/1—:)2} {2<l —2v,>(7(r--a)2 + (7(/1—:)2}' (39)

Notice that the 0-dependence has totally been eliminated and that the function H now
attains the very simple form

H = p*{A,cos (ap)+ B, sin (2d) + A, cos (x —2)¢
+ B;sin(x—2)p+ A;cos (x—4)p + By sin (x—4)p} +(p**').  (60)

Similarly, the & collapses to the same expression except that the constants 4, and B, are
replaced by A, and B, respectively. The numerical results for this case lead to the same
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Fig. 3. Singularity steength for isotropic aminae.

results as those recently reported by Folias (1988). Figure 3, for example, depicts typical
vitlues of .

S. CHARACUTERIZATION OF THE FREE-EDGE STRESS SINGULARITY
Returning next to the algebraic system (42) (53), i one considers the case of a
graphite/epoxy layer, with cocllicients C,, (Knight, 1982):

(20,6228 1.0381  L.038E  0.0000  0.0000  0.0000
FO3SE 22300 12301 6.0000  6.0000  0.0000
L0381 12300 2.2301 0.0060 0.0000  0.0000
20,0000 0.0000 0.0000 0.5000 0.0000  0.0000 |
0.0000  0.0000  0.0000 0.0000 0.8696 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.8696 |

oh)

then the requirement of the determinant of the system to vanish leads to a transcendentad
equation for the roots «. The only roots of practical interest are those which lie in the
interval 5 < Re 2 < 6. The numerical results for the 12 x 12 system were carried out in
double precision. Omitting the long and tedious numerical details, the values of the charac-
teristic x for [0/90 ], [0 /70 ], [0 /45 ] and [0 /20 ] interfucest are shown in Fig. 4. Two
important characteristics are worth mentioning. First, the stress singularity is a function of
the material constants C,,, the angle of sweep 0 and the fiber orientation of the respective
laminae. Sccond, the singularity strength for anisotropic materials appears to be much
weaker than that of isotropic materials. The latter may have severe consequences to the
damage process and to the reduction of the overall strength in the plate. As a practical
matter, if one plots the max (x —6) as a function of the fiber angle orientation ff fora {0°/67
interface one can identify the most and least desirable fiber orientations. This is depicted
in Fig. 5.

Similar stress singularity profiles (see Fig. 4) have also been obtained by Wang and
Choi (1982) in their pioneering work on straight edges using a different method of solution.
The present analysis complements this and shows that, for sufficiently large holes, the results

+ The results for the stresses are presently generalized for an arbitrary {0/8] interface.
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for curved edges will be the same as those obtained near a straight free edge provided layer
orientations in the second problem are properly chosen to reflect the circumferential position
of a point on the hole boundary and the interface. While this result was to be expected, it
could not be taken for granted. This is because the latter method represents a discrete,
rather than a continuous, approach and the outcome of the limiting process had to be
established. Moreover, the present method of solution shows how a 3-D analysis can indeed
be developed to include also this continuous dependence on the angle 8 and thus provide
us with further insight on the construction of such 3-D solutions to transversely isotropic
plates with more complicated flaw geometries.

It may further be noted that the macromechanical approach actually underestimates
the value of the stresses at such regions. For example, if we examine the local geometry
from a micromechanical point of view, e.g. at 0 = 0 and for a [0°/90°] interface, one notices
that the adjacent fiber of layer [90°] intersccts the free surface of the hole boundary
perpendicularly. The explicit 3-D solution for the stress ficld in such regions is also known.
In particular, for a glass fiber embedded into an epoxy matrix the stress singularity is found
to be 0.2489 (Folias, 1989, 1990) while for a carbon fiber embedded into an epoxy matrix
is found to be 0.307 (Folias and Li, 1991). The former analysis assumes the fiber to be of
an isotropic material while the latter assumes the fiber to be of a transversely isotropic
material. Comparing these results with those of Fig. 4 it is clear that the stress singularity
predicted by the macromechanical theory is indeed underestimated. Such information
becomes essential for the proper estimation of the local damaged zone. This matter will be
discussed further later on.
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In the case of a [07/90 ] interface, the protile of the characteristic value x versus 8 is
symmetric with respect to the line ¢ = 45°. The same behavior was also obtained by Ericson
et al. (1984) by using finite elements. The present results, however, exhibit a stronger
singularity than that found in the above reference. The author attributes this to two factors.
First the matenal constants were different and second 1t is rather difficult to obtain accurate
results for the singularity strength based on finite clement analyses. On the other hand, it
is impressive indeed that Ericson ef al. (1984) as well as Raju and Grews (1982) were able
to recover the exact profile as a function of ) and the relative magnitude.

In order to make a proper comparison with the results of Ericson ef al., one should
use the same material constants, €, as they used. Computing, thercefore, the ) values from
their data (see Appendix B), our analysis gives the characteristic values depicted in Fig, 6.
At 0 =45 tor example, a = 5.9755 or x — 6 = 0.0245. If we now compare this value with
that found by Wang and Choi (1982). for ¢ £45 " straaght edge interface, i.c. x— 6 = 0.0255,
we see that the comparison is very good. The minor difference is probably due to the small
variation of the €, values used depending as to how they are computed. Our results are
based on the €, values shown in Appendix B. The results in the region between 20 < 6 < 70
compare very well with those reported by Ericson et af. On the other hand, for 0 < 0 < 20,
our singularity strength is found to be slightly higher, and the characteristic bell-shaped
profile is preserved.

Pagano and Pipes (1973) have shown that high-tensile .. stresses are associated with
decreased laminate strengths. This observation points to the importance of understanding
the interlaminar stress behavior near free edges in laminates. [t is now possible to compute
the interlaminar stresses adjacent to the hole surface. In particular,

Ty~ 0" full b Cun G, (62)

where the f5; are rather long and complicated functions of the angles ¢ and ¢ and the
material constants. The plots for 6., 1,., T4, for a [0 /90 ] interface, are given in Fig. 7.
Notice that the maximum o., stress for a [07/90°] interface occurst at § = 23 . The result
is in agreement with that found previously based on finite elements (Ericson et al., 1984;
Raju and Grews, 1982).

The reader may also note that all the stresses are normalized with respect to a function
C(0). which is negative, and may vary as onc travels along the direction of 0. More
specifically, the function represents the cocflicient A,. Through a scparate analysis, which
is to be valid across the thickness of the plate, it can be shown that the function is related
to the magnitude and in-plane direction of the applied load o,. This part of the development

+ The reader should also take into account the fact that (6 —2) is 2 maximum at 0* = 45" and that C() is
negative. The results are based on data given by eqn (61). Also. at @ = 0, CUh = ~ L.OUY" a4,
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is presently being completed, and the results will be reported in a follow up paper. In this
second paper, the author also intends to couple the present macromechanical results with
other newly derived results, which are based on 3-D micromechanical considerations, in
order to predict local damage initiation. The present analysis, however, does provide us
with the refative magnitudes of the interlaminar stresses (sec Fig. 8). Moreover, the solution
in its present formu s very general, with the characteristics of the applied load being reflected

only through the function C(0).

The results show the shear stress 1, to be relatively low throughout. On the other hand,
the normal stress ., appears to be dominant in the range — 30" < 0 < 307, beyond which
the shear stress r,, becomes the controlling stress, i.¢. along 30” < # < 607, with its maximum
ocecurring at 0 =457, A clearer plot for the stress o, at the interface is given in Fig. 9.
Finally, Fig. 10 depicts the jump which exists on the stress oy as one moves across the
interfuce, e, at p=0" and ¢ =0". The maximum difference occurs at ¢ =0 and is
approximately 27%. In Figs 11 and 12 we compare the stress ol at ¢ = 0— and ¢ = =90,
and g™ at ¢ = 0+ and ¢ = +90°.

In view of the above, one may draw the following conclusions for a [0/90°] stuacking
sequence
(a) In the vicinity of the interface there exists a boundary layer effect where the stress field

changes rather abruptly.

(b) The risk of defamination initiation is highest at 0 equal to 23°.

{¢) As one moves away from the plane of the interface, the stress concentration factor in
layer [90°] decreases rapidly (sce region —20 < 8 < 20 where debonding along fiber
matrix interfaces is most likely to initiate).

(d) Substantial damage is expected in the region ~40° < 0 < 40°.

(e) For the given set of material constants, C, a—6 is maximum at 8* = 8% = (#/2).

() Ingeneral, the magnitude of the singularity strength depends on the material constants,

C,. and on the fiber oricntation of the two respective laminae,

(£) As one moves approximately one radius’ distance away from the hole surface, the s.c.f.
(stress concentration factor) is expected to decrease to within 10% of the value of the
corresponding case of a plate without a hole (Folias and Wang, 1990: isotropic case).

6. DISCUSSION

Delamination at free edges has been a problem of significant concern in the design of
advanced fiber composites. The separation of the laminae, caused by high local interlaminar
stresses and low strength along the laminae interface, may result in ineffective load transfer,
reduction in stiffness and ultimately loss of structural integrity. In this study, the problem
has been investigated by treating cach lamina as a homogeneous, transversely isotropic,
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material. Thus the micromechanic effects of fiber size are not included, although a few of
these effects, e.g. when a fiber meets a free surface, have been reported separately by Folias
(1989, 1990).

The analytical investigation of the 3-D stress field adjacent to the hole and in the
vicinity of the interfaces of two laminac of {0°/907}, and [07/45"], and other fiber orientation,
shows the stresses to be singular, o, ~ p* " *. In general, the singularity exponent depends
on the material propertics, the corresponding fiber orientations as well as the angle of
sweep. The results provide us with better insight for the proper understanding of inter-
laminar stresses and the effect which they have on the mechanism of failure. For example,
for isotropic laminae the stress singularity is a rather weak singularity (<0.33), while in
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Fig. I1. The stress o™ for ¢ = 0* and ¢ = 90°.
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Fig. 12. Thestress aly) for g = 0 and = =90

transversely isotropic laminae it can be of a much higher order (<0.99), suggesting,
therefore, a greater influence in the damage process.

Pipes et al. (1973) and Pagano (1974) postulated that throughout the thickness it is
the stress o, which is the main cause of delamination for polymer-based structural
composites. This observation was based on experimental as well as analytical evidence for
laminates with differeat stacking sequences. Our analytical results are consistent with this
obscrvation particularly in the region where 6 is small. Alternatively, for larger values of ¢
the shear stress t,, plays a much more dominant role on interlaminar failures. Moreover,
in the case of a [0°/90°] interface delamination is most likely to take place at 8 = 23°. The
strain energy release rate may now be used in conjunction with the local stress field to
predict delamination failures. This matter is presently under investigation.

Finally, one may conclude that it is possible to reduce the likelihood of the delamination
mode of failure and thereby increcase the laminate strength. This can be accomplished by
carefully considering the effects of the singularity curves, the stress curves, the load direction
and the individual fiber orientations at each interface. Moreover, in future applications it
may be possible to choose the material constants C,; so that the cocfficients of the singular
terms of the interlaminar stresses vanish.,

Acknawledygements —This work was supported in part by the Air Force Office of Scientific Rescarch Grant No.
AFOSR-87-0204. The author wishes to thank Lt. Col. George Haritos for this support. The author would also
like to thunk Mr Fung Hong Zhong for carrying out some of the numerical calculations.

REFERENCES

Bakis, C. E. and Stinchcomb., W. W. (1986). Response of thick, notched laminates subjected to tension-com-
pression cyclic loads. ASTAM STP 907, 314-334.



134 E. S. Forlas

Duniel. 1. M., Rowlands. R E. and Whiteside, J. B. (1974). Effects of matenal and stacking sequence on behasvtor
of composite plates with holes. Exp. Mech, [3c]), 1-9.

Ericson. K., Persson, M., Carlsson. L. and Gustavsson. AL (1984). On the prediction of the mitiation of defami-
nation 1 a (0 Y0]s lammate with a circular hole. J. Compoy. Mater. 18, 935 306,

Folias, E. S, (1988). On the interlaminir stresses of a composite plate around the neighborhood of a hole. /nr. J
Solids Structures 23¢10, 1193 1200

Folias, E. S, (19893, On the stress singularities at the intersection of a evlindrical inclusion with the free surface
of a plate. Ine. J. Frace. 39, 25 .34,

Folias. E. S. (In press). On the prediction of tuilure at a tiber matnx ntertace in a composite subjected to a
transverse tensile load. J. Compos. Mater.

Folias, E. S and Reuter. Wo G (1990). On the equilibrium of a lineur elastic laver. Compur. Mech. 3t61. 359
468,

Fohas, E. S.and Wang, J.J. (1990). On the three-dimensional stress ficld around a cireular hole in a plate of
arbitrary thickness. Jur. J. Comput. Mech. 6(5), 379 391

Kunight, M. (1982). Three-dimensional elastic moduli of graphite epoxy composites. J. Compos. Marer. 16, 153
lol.

Li. P.and Folias, E0 S (i press). The 3D stress tield of a carbon tiber embedded into an epoxy matrix and
intersecting o free surface, J. Mech, Muater.

Pagano, N Joand Pipes, RO B (1973). Sonme observations on the interlaminar strength of composite materials,
Ine. J. Mech. Scei 15,679 6X0.

Pagano, NI (1974 On the caleulation of interlaminar normal stress in compaosite laminates. J. Compos, Vater.
R, 89 95

Pripes. Ro B Kanminski B. ELand Pagano, NUTL (1973) Influence of the free edge upon the strength of angle-ply
fammates. ASTM STP 821, 218 .226.

Rapuc L Soand Crews, JoHL (1982)) Three-duimensional analysis of [0.90]s and [90 0] Tanunates with a central
crreular hole, Compos. Technol, Rev. 4, 116 127,

Rybicki. E.Foand Schmueser, D0 WL (1978)0 Eftect of stacking sequence and fay-up angle on free edge stresses
around a hole i a kiminated plate under tension, J. Compos. Marer. 12, 3000 313,

Wang. S0 S0 and Chor T (1982)0 Boundary-laver effects in composite lammates: Part [ Free-edge stress
singudarsties. Jo Appls Mech. 49, S41 560

APPENDIX A

Verification of solution (cqn (30))
Use local coordinates detined by equs (34) and (35) to write egn (18) in the form

ViViViH = ViVIViH = 0
define
Vi, =0
and assume
Hy=p3 ()
which implies
o= dcos(x—d)d+ Bysin(x -1,

where

Thus

H, = VIV = Vi, = pt 'Fudy

;-4
?
= /": l(’)") Fiudy
\WEN
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where

€ (h—2)°

& &ilr—a)
{(h—2)*
€,(r—a)’

€,
+—tan’ ¢,
€3
I +tan’ ¢,
and

(h":) €3 I h-:

Vote-a o Jorma

€
=, = t;m“(\/;mn (bz).
3

tan ¢, =

cte. for Viand Vi

Sulution of system (1) (3)

Let
c?U_ in 0 au +cos{)£7{,{
CE T Tt T
Wy AV _sngv
Toy TNt T T @
i
w= 0: :

Such a substitution climinates the cross type of derivatives. Then utilize cylindrical coordinates and use the
assumption {r —a)/a « 1. By direct substitution, one can then show that the simplified governing equation is
indeed satistied provided that function H satisfies eqn (18).

APPENDIX B

From Ericson et al. (1984) data

E,=138GPa E, =E, =145GPa
G:=6G,, =G, =59GPa

Vip = vy = vy =020
we compute:

Coi = 139.6381
Cy: = 3.9002
1 = 3.9002
Cyr = 152779
Cyy = 32944
Cyy = 152779
Cas = Cyy = Cog = 5.9;
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in view of which our program then gives:

# x
0.1 3.9440
10 5.9469
13 3969
20 59714
W 397

43 39733




