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Abstract —The author in this paper investigates the 3-D stress field in the immediate vicinity of a
bonded interface and the free edge of a hole in a laminated composite plate. The laminates are
assumed to be of homogeneous and isotropic materials, but of ditferent elastic properties. As to
loading. a uniform tensile load is applied in the plane of the plate and at points far remote from
the hole (shown in Fig. 1).

In constructing the local asymptotic solution, the author assumes the 3-D field in a certain
form which then permits a straightforward Williams approach for the determination of the stress
singularitics. The displacement and stress fields are recovered explicitly and a stress singularity is
shown to exist for certain shear moduli ratios of G.;G,. In general, the stress singularity 1s shown
to be a function of the respective ratios of the shear moduli and Poisson’s ratio. Morcover, the
presence of a second singularity is observed which has signiticant implications for the problem of
adhesion. An extension of the results to anisotropic lavers is also discussed.

INTRODUCTION

Composite laminates are being used extensively in acrospace structures. Many of these
Laminates, however, develop high interlaminar stresses near holes that ultimately cause
delaminations. Knowledge of the stress ficld in such arcas is of great importance to the
designer. Unfortunately, the problem is 3-1) in nature and as a result it is very difficult to
solve. Morcover, the presence of two different matertal interfaces makes the problem even
more complex.

Problems of this type have been investigated from a 2-D point of view by many
rescarchers and the results can be found in the literature. For example, Knein (1927) looked
into the plane strain problem of an orthogonal clastic wedge bonded to a rigid basc. Rongved
(1933) investigated the problem of two bonded clastic half-spaces subjected to a con-
centrated foree in the interior. Subscquently, Williams (1959) studied the stress field around
a fault or a crack in dissimilur media. The work was then generalized by Rice and Sih
(1965) also to include arbitrary angles.

Bogy (1968) considered the general problem of two bonded quarter-planes of dissimilar
isotropic, clastic materials subjected to arbitrury boundary tractions. The problem was
solved by a straightforward application of the Mellin transform in conjunction with the Airy
stress function. A tew years later, Bogy (1971) extended his work to also include dissimilar
wedges of arbitrary angles. A few months later, Hein and Erdogan (1971), using the same
method of solution, independently reproduced the results by Bogy. Finally, Westmann
(1975) studied the case of a wedge of an arbitrary angle which was bonded along a finite
length to a half-space. His analysis showed the presence of two singularitics close to cach
other. Thus, climination of the first singular term does not lead to a bounded stress ficld
since the second singularity is still present.

Based on 3-D considerations,t Luk and Keer (1979) investigated the stress field in an
clastic half spiace containing a partially embedded axially loaded, rigid cylindrical rod. The
problem was tormulated in terms of Hankel integral transforms and was finally cast into a
system of coupled singular integral equations the solution of which was sought numerically.
The authors were able. however, to extract in the limit from the integral equations the
characteristic equation governing the singular behavior at the intersection of the frec surface

+ Dug to the symmetry of the applied load. the problem is 2-D.
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Fig. [. Laminated plate weakened by a cyhindrical hole.

and that of the rigid inclusion. Their result was in agreement with that obtained by Williams
(1952) for a right-angle corner with fixed - free boundary conditions.

Haritos and Kceer (1980) investigated the stress field in a half-space containing an
embedded rigid block under the conditions of plane strain. The problem was formulated
by cleverly superimposing the solutions to the problems of horizontal and vertical line
inclusions bencath an clastic half-space. By isolating the pertinent terms, the authors were
able to extract directly from the integral cquations the order of the stress singularity at both
corners. Both results are in agreement with the Williams solution. Moreover, the authors
point out the importance of the second singularity to the results of the load transfer
problems,

Delale (1984) extended the solution reported by Alblas (1957) for the equilibrium of
one lincar clastic layer with a hole to the case of two layers of different materials. He also
looked into the stress singularity at the vicinity of the hole but the estimalte of the singularity
is based on 2-D considerations. Finally, Folias (1987), utilizing the form of a general 3-D
solution for the equilibrium of lincar elastic layers, which he previously developed was able
to derive explicitly the 3-D displacement and stress fields at the intersection of a hole and
a free surface. The analysis revealed that the stresses at the corner are proportional to p* *
where p represents the local radius from the corner and x = 3.73959 +/1.11902. It is
interesting 10 note that the root is precisely the same as that obtained by Williams (1952)
in his classic paper for a 90 material corner with free-free stress boundaries.

The same general 3-D solution can now be used to solve the exact 3-D stress field in
the vicinity of the intersection of an interface with the free surface of the hole in a laminated
composite plate. Although our ultimate goal is the determination of the stress field in
transversely isotropic laminae, in this paper we will investigate the simpler case where the
laminae are made of homogencous and isotropic materials.

FORMULATION OF THE PROBLEM

Consider the equilibrium of a laminated composite plate which occupies the space
x| < =, |¥] < 2o and |z] €/ and contains a cylindrical hole of radius « whosc generators
are perpendicular to the bounding planes, namely = = x4 The plate is composed of laminae
that are made of homogencous and isotropic material but of different clastic propertics.
The laminates are assumed to be perfectly bonded at the interface. The plate is subjected
to a uniform tensile stress field, applied far away from the hole (see Fig. 1).

In the absence of body forces, the coupled differential equations governing the dis-

()

placement functions «™ are
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Fig. 2. Definition of local coordinates at the corner.
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where V* is the Laplacian operator. v, is Poisson’s ratio. and u{” represent the dis-

placement functions in media | and 2, respectively, and

oul™

e =" =123 m=1.2. (2
cx;

The stress—displacement relations are given by Hooke's law as
o = Ay &7, +2G,, € (3)

where 4, and G, are material constants describing media | and 2.

METHOD OF SOLUTION

The main objective of this analysis is to derive an asymptotic solution that is valid in
the immediate vicinity of the corner point, i.e. the point where the interface mecets the free
surfuce of the hole. Guided by a general solution to the cequilibrium of lincar elastic
layers which the author constructed in a previous paper (Folias, 1975) we assume the
complementary displucement licld in the form

‘1/'("1) 0]'(1"') 0/'(]"!!
u(m) — Vo (ml _‘L_ - A + A 4
-2v, )3 oz + oz oy i

‘\f{m) (‘) (ml a/'(‘m)
v( S i l —_y ""’ Ty 5
1 —‘7\'", { (v} J30 4 =5+ 5 } 2 (>

I 0 ﬁj {(m) aj'(:m)

= { 20w (6)

where the functions f™, j=1,2,3, are three-dimensional harmonic functions. If we
furthermore assume that

) «I W}I(m) (r—(l :) W20 j = l,...3 (7)
then the functions H{™ must satisfy the following equation :

SH™  PH™ s
r—a)’ ot 4a+r—a)’

H™ = 0. (8)

[t is found convenient at this stage to introduce the local coordinate system (see Fig. 2)
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in view of which, eqn (8) may now be written as
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Under the assumption that the radius of the inclusion is sufficiently large, so that the
condition p « a be meaningful, we seek the solution to eq (9) in the form

H = ¥ 0 ER (@) (10

n=10

where o stands for a constant. Without going into the mathematical details. we construct
the following series representations in ascending powers of p.

A fim) A
2 {(fl +*(4]z} = g {[A™ + A sin (xd) + BT + BT cos (x¢)

] ('7 -

+2C" sin (2 —2)p+ 2D cos (x—2)¢p} cos 26) (I1)

4: I_";:':)j‘,” = = [[A = AY]sin (2p) + [BY" — BY ) cos (x)} cos 20)  (12)
S50 = pr LA sin (ad) + B cos (a) ) sin (20) (13)
where
B(1—v,)C™ = a4} ~ AL (14)
and
8(1—v,)D" = 2f B — BY) (15)

and a2, 4™ BI" are constants to be determined from the boundiry conditions. In particular,

atp=0: ol =g? (16)
T =1 (17)
= ot as)
W = (19)
vV = (20)
BRETIE) @

atp=n/2: =0 (23)

T = (23)

sl'=0 (24)
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atd=—-n2: 2 =0 (25)
1 =0 (26)
a'? =0. 27

Substituting eqns (11)-(13) into eqns (16)-(27) one finds that all the boundary con-
ditions are satisfied if one considers the following combinations to vanish:

l—v 1—v
n A ! ()
=Bl +a+SVI<|—2V:) 4(!—2v.>D
(6.6 4B + | xa s (- )—a (22 ) et 0 sy
U AT T 0, 1=2v, =0

G‘ ) 3 b4
A"+ AL+ 22— 2)C " — (G—> (@A P +AP)+2@-2CP} =0 (29)
1

AN =A4P =0 (30)

AV + AL 422 =2)C ") = {[BV" + BY e - 2(a—2)D'"} tan <§;E) =0 (31)

BY"=0 (32)

I—v n h n L-v, an
- B — Y — —4 ——————— (l) 1 o
{1<I—2v,)['4' AYV-AV +{a | Z2, Ct"rtan 5
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+{a(l_2vl>[8| B - B+ |a—d 75 D=0 (33)

(A2 + AP)a+ B + BY}atan (%7—:) —2C(a—2)=2(x—~2)D"¥ tan (?) =0 (34)

BY' =0 (35)

| —v, N , . 1—v, on
'{“ (T—f‘z‘v't)["‘"’"“2"1“"‘"’*'[““‘(n—zh)]c”’}‘*’" (“)
1—v,
=,

The characteristic value « may now be determined by setting the determinant of the
algebraic system (28)-(36) equal to zero. Once the roots have been determined, the complete
displacement and stress fields can be constructed in ascending powers of p.

Without going into the mathematical details, the characteristic values a are constant
and can easily be determined with the aid of a computer. Although the equation has an
infinite number of complex roots, only roots with a | < min Re a < 2 are of practical
interest for they lead to singular stresses. [n general, the characteristic values of « depend
on the material properties of the laminae. Thus, the displacement field now reads:

h bl l— ' 9 -
)[B‘." -BY)-BP+ [a—4 #] D"’} =0. (36)
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Fig. 3. Strength of the singularity vs GG, for v, = v, = 0.3},

the displacement field

u'™ = qp® LA sin (- 1)+ BY cos (x - D+ C sin(x —3)p
+ D cos (2 = )ep) sindcos (20)

+ 207 MO cos (= 2)hp — D sin (2= 2)d ! sin ¢ sin O cos (20) {37)

e = ap® VAP sin(x—1)p+ BY cos (x~ D+ C sin {2 3)
+ D" cos (x— 3} cosOcos (20)

+2p* MO cos (2~ 2)p — DY sin (x~2)b) sin ¢ cos Jeos (20) (38)

w = apt HAT cos (2 Dp— BY sin (a0~ D+ C cos (x—3)p
— D" sin (2 —3)¢} cos (20)

=2p" HCY™ cos (x—2)p— D" sin (2= 2)p) cos P cos (20). (39)

The analysis clearly shows that, in the neighborhood of the interface and the free
surface of the hole, the stress field is proportional to p* 7 and that for certain material
properties it is singular. Moreover, the characteristic values x are independent of § but they
do depend on the material properties of the adjacent laminae. The first root 2 is found to
be precisely the same as that of the corresponding 2-D case reported by Bogy (1971).
Figures 3 and 4 depict typical results for various matcerial properties. Finally, in the limit
as G, — o, ie. for a perfectly rigid luminac, the characteristic value of o = 1L.7112 is
obtained. Moreover, as G, — G and v, — v, the solution of a continuous plate is recovered,
a result which clearly meets our expectations.

An extension of this analysis to other angles of intersection with the free surface reveals
the same results as those predicted by Bogy (1971) for the case of plane strain. It may also
be noted that the analysis confirms the presence of another weaker singularity which was
first pointed out by Westmann (1975). While it is true that the singular stress field is
dominated by the largest singularity, the presence of a second singularity has important
implications to the problem of adhesion.

As a practical matter, the designer may now appropriately choose the material con-
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Fig. 4. Strength of the singularity vs G /G, for v, = 0.33, v, = 0.25.

stants of the laminace so that the cocflicients of the singular terms of the interfacial stresses
vanish. There exists a suflicient number of constants that such an objective can indeed be

accomplished.
Focusing next on the interface plane = = 0, we find the shear and normal stresses, to
be
=04 (40)
and
= 2= )G, p* TlaA +{(@a=2)—4(1 - v,)]C" Y cos (20) + - - 40

2(‘m 'm 5 l -V,
0'1-’;') = (l :‘)‘V )(1_ l)/), 2 {1[8‘5")—( ; V)B'{"’]
- e
+ [Cx— ( }.,,,‘,' ) (1 —4)]D(lrll}cos (2())+ L (42)
()

Thus, only the shear stress 7,7 and the normal stress ¢! are of concern to the designer
for they may very well contribute to possible debonding.

Perhaps itis appropriate here to note that in the case of transversely isotropict laminae,
with a [0 ] and [90 ] stacking scquence, the exponent 2 is no longer independent of €. In
fact, it 1s a rather complicated function involving the material properties of the laminac as
well as an angular distribution in 0. The analysis has recently been completed and the results
will be reported in a follow-up paper. While it is well recognized that even these results may
not represent the actual behavior of a real world of laminate structure, it will evince many
of the stress field characteristics and provide us with a better understanding of the influence
which the various material constants have on the exponent 2. The author is well aware of
this fact and is presently investigating the matter from a micromechanics point of view
whereby he assumes a periodic extension of fibers embedded into a homogeneous and
isotropic matrix with given orientations. He believes that such investigations from different
angles may ultimately provide us with the proper understanding of the interlaminar stresses
and the proper input to judge the adequacy of the models in predicting the actual behavior
of the material,

t An extension to orthotropic laminac is now also possible.
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Finally. it may be noted that we are also investigating the stress field away from the
hole. for a [0 ] [90 ] stacking sequence of transversely isotropic laminae. This analysis will
include. in the limit. the corresponding isotropic casc. The results are expected to have the
same characteristics as those obtained by Folias and Wang (1986) for a single isotropic
layer.
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