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Abstract- Using an integral formulation, the equation for a plate subjected to periodic transverse vibrations 
of frequency w and containing a crack of length Xc. is solved for the Kirchhoff bending stresses. The usual 
inverse square root singular behavior of the stresses is recovered and may be related to that of non-vibrating 
cracked plate by 

where the functionf(h”) attains positive values for small A. 

NOTATION 

crack length 
Eh3/[ t2( 1 - 9) ] = flexural rigidity of a plate 
Young’s modulus of elasticity 
shear modulus of elasticity 
thickness of a plate 
foundation modulus of a plate 
bending moments as defined in text 
constant as defined in text 
time variable 
the unit step function 
shear force as defined in text 
transverse deflection of a plate in bending 
as defined in text with W’ =,l@s+W and W- =JliyOo”y 

rectangular coordinates in middle plane of plate 
X/c, v - Y/c, dimensionless rectangular coordinates 
05% Euler’s constant 
x F I + &a 
x - [ 
(2hpclD)d 
Poisson’s ratio 
I-V 
density of the material 
stress components 
(SD/W (m,,/c’) 
vibrating frequency of plate 

INTRODUCI’ION 
IN THE field of Solid Mechanics considerable theoretical work has been done on the 
transverse vibrations of plates with different geometries and different methods of 
support[ l-71. On the other hand no one, to the best of the author’s knowledge, has 
attempted to investigate the effect of these transverse vibrations on cracked thin plates. 

It is the intent, therefore, of this paper to study this effect for plates subjected to 
steady-state transverse vibrations. 
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FORMULATION OF THE PROBLEM 

Consider a homogeneous and isotropic thin plate of uniform thickness II which 

contains a crack of finite length 2c and is subjected to transverse vibrations. Follow-- 
ing Love[71, the classical differential equation governing the deflection H’(s. y. I) is 

c ~,, = _ 2hpc:’ 8% ~~ 
D at’ ’ 

!li 

If furthermore, one assumes that the plate vibrates in a normal mode, it’can be expressed 
as 

lv(x,y.t) = W(x,?‘) cos (wt++) 

where the function W(x, y) now satisfies the reduced equation 

(2) 

(V’- h’) W(x. _V) = 0. (3) 

As to boundary conditions, one must require the normal moment and equivalent 
vertical shear to vanish along the crack. 

However, suppose that one has already found a particular solution satisfying (3) 
but there is a residual normal moment M, and equivalent vertical shear I/, along the 
crack 1x1 < 1 of the form 

v 
r, 

(I’) = 0 (5) 

where, for simplicity, m,, will be taken to be a constant. Specifically, one needs to find 
a function W(x, y) such that it satisfies (3) and the following boundary conditions: 

aty=Oand]x] < 1 

at y = 0 and 1x1 > 1 the continuity requirements 

[ 
f$w+, -$(W-) = 0 I (IO 

lim (n=O, 1,2,3). 
l?l + 0 

Finally, to complete the formulation of the problem, we require that the function 
W together with its first derivatives to be finite far away from the crack. 

METHOD OF SOLUTION 

We construct the following integral representation for the function W (x, y) with the 
proper symmetrical behavior in x 

P1(~)e-V~/(s2+hz)ll/l + p~(~)e-\/(S*-h~)lullj(~_ A) 

+ iPil(s) sin [~‘(x.‘-.~‘)Iyl]U(h-.s)]cosxsds, (9) 
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where the Pi’s are arbitrary functions of s to be determined from the boundary con- 
ditions, and the? signs refer toy > 0 and y < 0 respectively. 

Following the same method of solution as in[8], one may show (see Appendix) 
that the problem reduces to the solution of the following singular integral equation 

J’, L[Alx-‘gu(~~d4$ =---o~.x: 1x1 < 1t (10) 

where the kernel L is given by 

L,x151, ~ lim Ix{ (w~~-?$;~~*~“~’ _ (.,~2~~~2e~~_~~Az)‘V’ U(s_h)J 

/,I+0 0 $2 

sin tsds (1 la) 

and its asymptotic expansion for small h’s is of the form 

(4 - vo)voX” + 73v,,” - 18Ov,,+ 128 

A method for constructing such a solution is given in [8]. Therefore, without going into 
the details (see Appendix), one may show that 

m 
W(x,y’) = I{ 

( v,)s2 + h2) e-vw+A9 YI _ ( v(,s2 _ X2) e- \/k-h’) I 1/l 

U(s-A) 
0 V(s2-t A”) d(s2- AZ) 

(“OS . 
V(~z~~~~ sin ti(h”-9) 1 yl(/(h-.s)j 

where 

(12) 

~4’ = - (4-;;;u,,h’ ’ (13) 

In view of (2), (12) and (13) and the definition of the stresses, it is a simple exercise 
to show that the stresses at the surface z = h/2c are of the form: 

p, 3-3v 0 I--v 
o-.r = * ---4-cosj- TCOST 1 cos (CIJt+C$)+O(eO) (14) 

PtI 

[ 

II +5U H I--v 50 
a,=* --4-cos~+~cos~ 

1 
cos (Wf+~)+O(E”) (1.5) 

T.~, 
I 

cos (0l+4) +0(G) (16) 

tWhere it is understood that the principal value of the integral is to be taken. 
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where the stress intensity factor Pb is 

which for v = 4 reduces to 
3 

P, = Fqj 
(17b) 

Notice that the expression inside the brackets for small values of the parameter A 
is positive. This indicates, at least for small frequencies, that a cracked plate subjected 
to transverse periodic vibrations is analogous to a cracked plate resting on an elastic 
foundation [9] with an equivalent spring constant 

(18) 

Consequently, in order to find an estimate of the stress intensity factor for large values 
of the parameter A, one might substitute the equivalent spring constant in the results 
of [ lo] to obtain 

35, 
Pb”----. 

1.78 

10 A*(]1 - 1.2 In A])’ 
(17c) 

A plot of the stress intensity factor, Pb/3/b for various values of the parameter A 
is given in Fig. 1. 
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Fig. I Stress intensity factor vs. the parameter A. 

Acknowledgemenfs -The research reported herein was partially supported by National Science Foundation 

Grant No. GK 1440. 

rt1 
PI 
r31 
[41 
r51 

REFERENCES 

J. F. Kirchoff, Math. 40 ( I850). 
W. Ritz, Annln Phys. 28,737 (1909). 
E. Mathieu, J. Math. !%r. 2, t. 14 ( 1869). 
A. Barth&my, To&use M&n de I’Acad. t. 9 (I 877). 
A. L. Likhoded, On the steady state oscillation of a plate simply supported along the edge. PMM 27, 
1143 (1963). 



Steady-state transverse vibrations of a cracked plate 367 

[6] A. L. Likhoded, Steady-state vibrations of plates with free edges. PMM 29, 1084 (1965). 
[7] A. E. H. Love, A Treutise on the Mathematical Theoy of Elasticity. Dover, New York. 
[E] E. S. Folias, Cracked spherical shell. J. M&h. Phys. 44.2 ( 1965). 
[9] E. S. Folias. On a plate supported by an elastic foundation and containing a finite crack. Submitted 

for publication to the J. appl. Mech. 
[IO] D. D. Ang, E. S. Folias, and M. L. Williams. The bending stress in a cracked plate on an elastic founda- 

tion. J. rrppl. Mech. 245-25 I (I 963). 

APPENDIX 

Assuming that one can differentiate under the integral sign, formally substituting 
(9) into (7). one obtains 

T ~,i(uils”-Ah’)~(~“+X2)PliS)+ ( v,,s:!+h’)~(s’-AX’)P,(s)U(s-A) 
(19) 

- i(o,,s’+hYjV/(hf-.SZ)P:,(s)U(A--s)) cosxsds = 0; 1x1 < I. 

A sufficient condition, but not necessary, is to let the expression inside the braces to 
vanish, i.e. choose 

P,(s) = (v,,s’+A~)~(s’-A”)P(s) 

P”(S) =- (v,,s:!-h”)~(s”+h2)P(~) (20) 

P3(s) = (v,,s’)-~?)-\/(s’+h~)P(s) 

where P(S) is still largely arbitrary. Conditions (8) are satisfied if the following combina- 
tion vanishes 

[X&4-Ah”)P(s) cosxsds= 0; 1x1 > 1. 
-0 (21) 

Define next 
~,jl+hl)P(s) cosxsds = u(x); Ix/ < 1 (22) 

where U(X) is an unknown function to be determined. By Fourier inversion of (22), 
one may express P(S) as a function of u (5)) i.e. 

(23) 

Hence, by substituting (9) into (6), and utilizing (20) and (23), one can obtain by 
interchanging the order of integration the singular integral equation given by (10). 
Once u(t) is determined, one may use (23), (20) and (9) to obtain (12). 

(Received I3 December 1967) 

R&urn&- Par I’intermediaire dune formule integrale. l’equation definie pour une plaque soumise aux vibra- 
tions periodiques transversales de frequence w et contenant une rupture d’une longueur 2c, est rksolue pour 
les tensions de pliage de Kirchhoff. Le comportement usuel singulier de I’inverse de la racine carree est 
retrouve et peut &tre lie a celui dune plaque fissurke non-vibrante par l’iquation: 

dans laquelle la fonctionfth’) atteind des valeurs positives pour petit A. 

Zusammenfassung-Mit Hilfe einer Integraldarstellung wird eine Gleichung fur eine Platte, das perio- 
dischen transversalen Schwingungen von der Frequenz w unterworfen wird, und die einen Riss von einer 
Lange von 2c aufweist, fur die Kirchoffschen Biegespannungen gel&t. Es ergibt das iibliche sich singullre 
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verhalten der Spannungen (d.h. Zunahme mit l/q\/), welches durch die folgende Gleichung in Beziehtrng 
zur nichtschwingenden, rissbehafteten Platte gesetzt werden kann 

wobei fiir kleine Werte von A die Funktionf(h4) positive Werte annimmt. 


